
Presenting Interval Pomsets with Interfaces

Amazigh Amrane1, Hugo Bazille1, Emily Clement2, Uli Fahrenberg1, and
Krzysztof Ziemiański3

1 EPITA Research Laboratory (LRE), Paris, France
2 Université Paris Cité, CNRS, IRIF, Paris, France

3 University of Warsaw, Poland

Abstract. Interval-order partially ordered multisets with interfaces
(ipomsets) have shown to be a versatile model for executions of concur-
rent systems in which both precedence and concurrency need to be taken
into account.
In this paper, we develop a presentation of ipomsets as generated by
a graph of certain discrete ipomsets (starters and terminators) under
the relation which composes subsequent starters and subsequent ter-
minators. Using this presentation, we show that also subsumptions are
generated by elementary relations. We develop a similar correspondence
on the automata side, relating higher-dimensional automata, which gen-
erate ipomsets, and ST-automata, which generate step sequences, and
their respective languages.

Keywords: pomset with interfaces, interval order, non-interleaving con-
currency, higher-dimensional automaton

1 Introduction

Pomsets with interfaces, or ipomsets as they have come to be called, have re-
cently emerged as a versatile model for executions of concurrent systems in
which both precedence and concurrency need to be taken into account. Their
first appearance was at RAMiCS 2020 in [9] which was based on the realization
that the series-parallel pomsets, which are used heavily in concurrency theory
[18–20,24,28], fail to model some rather simple concurrent executions. To over-
come this, [9] introduced a generalization of the serial composition of pomsets,
called gluing, which may continue events across compositions.

On the other hand, series-parallel pomsets have a nice algebraic characteri-
zation, given that they are the free models of concurrent semirings [4,5,17]. It is
therefore natural to ask whether their generalization in [9] presents similarly nice
algebraic properties. The definitive answer to that question is still out, but [9]
and its successor paper [12] collect some evidence which weigh to the negative
side: for example, the gluing composition of ipomsets is not cancellative, and
some ipomsets may be decomposed both as gluing and as parallel compositions.

Another class of pomsets which are important in concurrency theory are
interval orders [15, 16]. These are pomsets whose events may be represented as

2 A. Amrane, H. Bazille, E. Clement, U. Fahrenberg, K. Ziemiański

intervals on the real line and have found their place in relativity [31], concurrency
theory [21–23], and distributed computing [6, 25, 26]. Their algebraic theory,
however, is less developed. Starting in [10], a notion emerged that for the first,
ipomsets in their full generality may not be needed for concurrency but interval
orders suffice, and secondly, that ipomsets might provide a suitable algebraic
theory for interval orders. Picking up on ideas in [1–3, 13] and based on the
antichain representations of [22], the purpose of this paper is to develop such an
algebraic theory of interval orders.

This paper is organized as follows. In Section 2, we recall pomsets with
interfaces and a special subclass of starters and terminators. We then show that
the category of interval-order ipomsets with interfaces is isomorphic to a category
freely generated by starters and terminators under a certain congruence ∼. This
is the first major contribution of this paper. It ultimately builds on work of
Janicki and Koutny in [22] and only holds because we work with interval orders.
For general ipomsets the situation seems to be much more complicated [12].

In Section 3, we extend our algebraic treatment to subsumptions of ipom-
sets. Subsumption is an important notion in concurrency theory [10,14,17] which
frequently reasons about models and languages which are closed under subsump-
tions. As our second major contribution, we show that subsumptions of interval-
order ipomsets are freely generated by elementary transpositions of starters and
terminators up to ∼.

In Section 4 we extend our results to the operational side. We recall higher-
dimensional automata (HDAs), whose languages are subsumption-closed sets of
interval-order ipomsets, and introduce ST-automata, whose languages are se-
quences of starters and terminators under ∼. Precursors of ST-automata have
been used in [1, 3, 7, 8, 11]; our third major contribution is to make the defini-
tion precise (and simpler) and expose the exact relation between ST-automata
and HDAs. We provide translations in both directions, but only the translation
from HDAs to ST-automata preserves languages (using the isomorphisms of the
previous sections). The translation from ST-automata to HDAs introduces iden-
tifications and closures which imply that in the general case, the language of
an ST-automaton is only included in that of its corresponding HDA. We leave
open the problem whether there exists a syntactic restriction of ST-automata
on which the translation preserves languages.

2 Ipomsets and Step Sequences

Let us first define pomsets with interfaces and step sequences. We fix an alphabet
Σ, finite or infinite, throughout this paper.

2.1 Pomsets with interfaces

An ipomset (over Σ) is a structure (P,<, 99K, S, T, λ) consisting of the following:

– a finite set P of events;

Presenting Interval Pomsets with Interfaces 3

a

c•

b

a

Fig. 1. An interval ipomset, cf. Ex. 1.

– a strict partial order (i.e., an asymmetric, transitive and thus irreflexive
relation) < ⊆ P × P called the precedence order ;

– a strict partial order 99K ⊆ P × P called the event order ;
– a subset S ⊆ P called the source set ;
– a subset T ⊆ P called the target set ; and
– a labeling λ : P → Σ.

The precedence order is the ”usual” order: a < b means that a ended be-
fore the beginning of b. The event order is necessary in order to define gluing
composition, see below.

We require that

– the relation < ∪ 99K is total, i.e., for all x, y ∈ P , at least one of x = y,
x < y, y < x, x 99K y, or y 99K x holds;

– events in S are <-minimal in P , i.e., for all x ∈ S and y ∈ P , y ̸< x; and
– events in T are <-maximal in P , i.e., for all x ∈ T and y ∈ P , x ̸< y.

We may add subscripts “P ” to the elements above if necessary and omit any
empty substructures from the signature. We will also often use the notation

SPT instead of (P,<, 99K, S, T, λ) if no confusion may arise.

Example 1. Figure 1 depicts an ipomset P = {x1, x2, x3, x4} with four events
labelled λ(x1) = λ(x4) = a, λ(x2) = b and λ(x3) = c. (We do not show the
identity of events, only their labels.) Its precedence order is given by x1 < x2,
x3 < x2 and x3 < x4 and its event order by x1 99K x3, x1 99K x4 and x2 99K x4.
The sources are S = {x3} and the targets T = ∅. (We denote these by “•”.) We
think of events in S as being already active at the beginning of P , and the ones
in T (here there are none) continue beyond the ipomset P .

An ipomset (P,<, 99K, S, T, λ) is

– discrete if < is empty (hence 99K is total);
– a pomset if S = T = ∅;
– a conclist (short for “concurrency list”) if it is a discrete pomset;
– a starter if it is discrete and T = P ;
– a terminator if it is discrete and S = P ; and
– an identity if it is both a starter and a terminator.

A conclist is, thus, a pomset of the form (P, ∅, 99K, ∅, ∅, λ); to ease notation,
we will omit the ∅ from the notation.

4 A. Amrane, H. Bazille, E. Clement, U. Fahrenberg, K. Ziemiański

The source interface of an ipomset (P,<, 99K, S, T, λ) as above is the conclist
SP = (S, 99K↿S×S , λ↿S) where “↿” denotes restriction; the target interface of P
is the conclist TP = (T, 99K↿T×T , λ↿T).

We call a starter or terminator elementary if |S| = 1, resp. |T | = 1, that is if
it starts or terminates exactly one event. In the following, a discrete ipomset will
be represented by a vertical ordering of its elements following the event order,
with elements in the source (resp. target) set preceded (resp. followed) by the
symbol •.

Example 2. The ipomset ({x1, x2, x3}, ∅, x1 99K x2 99K x3, {x1, x2}, {x2, x3},
{(x1, a), (x2, b), (x3, c)}) can be represented by

[•a
•b•
c•

]
.

An ipomset P is interval if <P is an interval order [16], i.e., if it admits an
interval representation given by functions b, e : (P,<P) → (R, <R) such that

– b(x) ≤R e(x) for all x ∈ P and
– x <P y iff e(x) <R b(y) for all x, y ∈ P .

That is, every element x of P is associated with a real interval [b(x), e(x)] such
that x < y in P iff the interval of x ends before the one of y begins. The ipomset
of Fig. 1 is interval. We will only treat interval ipomsets in this paper and thus
omit the qualification “interval”.

The set of (interval) ipomsets is written iiPoms. We also denote

– by □ the set of conclists U = (U, 99K, λ);
– by St the set of starters SUU = (U, 99K, S, U, λ);
– by Te the set of terminators UUT = (U, 99K, U, T, λ);
– by Id = St ∩ Te the set of identities UUU = (U, 99K, U, U, λ);
– and let Ω = St ∪ Te, St+ = St \ Id, and Te+ = Te \ Id.

An isomorphism of ipomsets P and Q is a bijection f : P → Q for which

1. f(SP) = SQ; f(TP) = TQ; λQ ◦ f = λP ;
2. f(x) <Q f(y) iff x <P y; and
3. x ̸<P y and y ̸<P x imply that x 99KP y iff f(x) 99KQ f(y).

We write P ≃ Q if P and Q are isomorphic. The third axiom demands that if
x and y are concurrent and hence ordered by 99KP , then f respects that order.
Because of transitivity, event order may also appear between non-concurrent
events; isomorphisms ignore such inessential event order.

Due to the requirement that all elements are ordered by < or 99K and that
P is finite, there is at most one isomorphism between any two ipomsets. The
following lemma is trivial but rather important; it states that we may always
choose representatives in isomorphism classes such that isomorphisms become
equalities.

Lemma 3. For any ipomsets P and Q with TP ≃ SQ there exists Q′ ≃ Q such
that TP = SQ′ = P ∩Q′. ⊓⊔

Presenting Interval Pomsets with Interfaces 5

Let us recall the definition of the gluing operation of ipomsets.

Definition 4. Let P and Q be two ipomsets with TP ≃ SQ. The gluing of P
and Q is defined as P ∗Q = (R,<, 99K, S, T, λ) where:

1. R = (P ⊔ Q)x=f(x), the quotient of the disjoint union under the unique
isomorphism f : TP → SQ;

2. < =
(
{(i(x), i(y)) | x <P y} ∪ {(j(x), j(y)) | x <Q y} ∪ {(i(x), j(y)) | x ∈

P \ TP , y ∈ Q \ SQ}
)+

, where i : P → R and j : Q → R are the injections
and + denotes transitive closure;

3. 99K = {(i(x), i(y) | x 99KP y} ∪ {(j(x), j(y) | x 99KQ y};
4. S = i(SP); T = j(TQ);
5. λ(i(x)) = λP (x), λ(j(x)) = λQ(x).

Remark 5. The relation 99K is automatically transitive. On another note, com-
position is not cancellative: for example, a• ∗ [•a

a] = a• ∗ [a
•a].

Gluings of isomorphic ipomsets are isomorphic. The next lemma extends
Lem. 3 and follows directly from it.

Lemma 6. For any ipomsets P and Q with TP ≃ SQ there exist Q′ ≃ Q and
R ≃ P ∗Q such that TP = SQ′ = P ∩Q′, R = P ∪Q′, <R =

(
<P ∪<Q′ ∪ (P \

Q′)× (Q′ \ P)
)+

, 99KR = 99KP ∪ 99KQ′ , SR = SP , and TR = TQ′ . ⊓⊔

The following is clear and shown in [12].

Proposition 7. Isomorphism classes of ipomsets form a category iiPoms≃:

– objects are isomorphism classes of conclists;
– morphisms in iiPoms≃(U, V) are isomorphism classes of ipomsets P with

SP = U and TP = V ;
– composition of morphisms is gluing;
– identities are idU = UUU ∈ iiPoms≃(U,U). ⊓⊔

In analogy to iiPoms≃ we will also write Ω≃, St≃ etc. for subsets of ipomsets-
up-to-isomorphism.

2.2 Starters and terminators

We develop a representation of the category iiPoms≃ by generators and relations,
using the step decompositions introduced in [13].

Let Ω̄≃ be the directed multigraph given as follows:

– Vertices are isomorphism classes of conclists.
– Edges in Ω̄≃(U, V) are isomorphism classes of starters and terminators P

with SP = U and TP = V .

6 A. Amrane, H. Bazille, E. Clement, U. Fahrenberg, K. Ziemiański

Note that for all U, V ∈ □≃, Ω̄≃(U, V) ⊆ St≃ or Ω̄≃(U, V) ⊆ Te≃.
Let Coh≃ be the free category generated by Ω̄≃. Then non-identity mor-

phisms in Coh≃(U, V) are words

P1 . . . Pn ∈ Ω+
≃ (1)

such that TPi
= SPi+1

for all i = 1, . . . , n− 1. Such words are called coherent in
[2, 3]. Note that P1 . . . Pn is coherent iff the gluing P1 ∗ · · · ∗ Pn is defined.

The following property is immediate from Lemma 6. It permits to choose the
representant of a coherent word so that events overlap and will often be used
implicitly in the following.

Lemma 8. For every U, V ∈ □≃ and every non-identity morphism P1 . . . Pn ∈
Coh≃(U, V) there is Q1 . . . Qn ∈ Coh≃(U, V) such that P1 = Q1 and for all
i = 2, . . . , n, Pi ≃ Qi and TQi−1 = SQi = Qi−1 ∩Qi. ⊓⊔

Let ∼ be the congruence on Coh≃ generated by the relations

PQ ∼ P ∗Q (P,Q ∈ St or P,Q ∈ Te),

idU ∼ UUU (U ∈ □).
(2)

The first of these allows to compose subsequent starters and subsequent termi-
nators, and the second identifies the (freely generated) identities at U with the
corresponding ipomset identities in Id. (Note that the gluing of two starters is
again a starter, and similarly for terminators; but “mixed” gluings do not have
this property.) It is clear that ∼ is compatible with ipomset isomorphism. We
let Coh∼ denote the quotient of Coh≃ under ∼.

Let Ψ̄ : Coh≃ → iiPoms≃ be the functor induced by the inclusion:

Ψ̄(U) = U, Ψ̄(P) = P.

Then Ψ̄(P1 . . . Pn) = P1 ∗ · · · ∗ Pn. The following is straightforward.

Lemma 9. If P1 . . . Pn ∼ Q1 . . . Qm, then Ψ̄(P1 . . . Pn) = Ψ̄(Q1 . . . Qm). ⊓⊔

Thus Ψ̄ induces a functor Ψ : Coh∼ → iiPoms≃; we show below that Ψ is an
isomorphism of categories.

2.3 Step sequences

A step sequence [1] is a morphism in Coh∼, that is, an equivalence class of coher-
ent words under ∼. It is shown in [13] that every ipomset may be decomposed
into a step sequence:

Lemma 10 ([13]). For every P ∈ iiPoms≃ there exists w ∈ Coh∼ such that
Ψ(w) = P .

Presenting Interval Pomsets with Interfaces 7

A word P1 . . . Pn ∈ Coh≃ is dense if all its elements are elementary, i.e.,
start or terminate precisely one event. It is sparse if starters and terminators are
alternating, that is, for all i = 1, . . . , n−1, (Pi, Pi+1) ∈ (St+×Te+)∪(Te+×St+).
By convention, identities idU ∈ Coh≃ are both dense and sparse.

Lemma 11 ([13]). Every step sequence contains exactly one sparse represen-
tative.

Showing existence of sparse decompositions is easy and consists of gluing
starters and terminators until no more such gluing is possible. Showing unique-
ness is more tedious, see [13].

Example 12. The unique sparse step decomposition of the ipomset in Fig. 1 is

P =

[
a•

•c•

] [
•a•

•c

] [
•a•

a•

] [
•a
•a•

] [
b•

•a•

] [
•b
•a

]
:

it first starts the first a, then terminates c, then starts the second a, terminates
a, then starts b and finally terminates both b and the second a. The dense step
decompositions of P are

P =

[
a•

•c•

] [
•a•

•c

] [
•a•

a•

] [
•a
•a•

] [
b•

•a•

] [
•b
•a•

] [
•d
]

=

[
a•

•c•

] [
•a•

•c

] [
•a•

a•

] [
•a
•a•

] [
b•

•a•

] [
•b•
•a

] [
•b
]
,

which differ only in the order in which b and a are terminated at the end.

Using Lemmas 10 and 11 we may now define a functor Φ : iiPoms≃ → Coh∼
which will serve as inverse to Ψ : for P ∈ iiPoms let w ∈ Coh≃ be its unique
sparse step decomposition and put Φ(P) = [w]∼.

Theorem 13. Φ is a functor, Ψ ◦ Φ = IdiiPoms≃ , and Φ ◦ Ψ = IdCoh∼. Hence
Φ : iiPoms≃ ⇆ Coh∼ : Ψ is an isomorphism of categories.

Proof. We have Φ(P ∗Q) = Φ(P)Φ(Q) by definition of ∼, and the other claims
follow. ⊓⊔

Corollary 14. The category iiPoms≃ is generated by the directed multigraph Ω̄≃
using gluing composition under the identities (2).

3 Subsumptions in Step Sequences

A subsumption of ipomsets P and Q is a bijection f : P → Q for which

1. f(SP) = SQ; f(TP) = TQ; λQ ◦ f = λP ;
2. f(x) <Q f(y) implies x <P y; and
3. x ̸<P y, y ̸<P x, and x 99KP y imply f(x) 99KQ f(y).

8 A. Amrane, H. Bazille, E. Clement, U. Fahrenberg, K. Ziemiański

We write P ⊑ Q if there is a subsumption f : P → Q and P ⊏ Q if P ⊑ Q
and P ̸≃ Q. Thus, subsumptions preserve interfaces and labels but may remove
precedence order and add essential event order. Isomorphisms of ipomsets are
precisely invertible subsumptions.

In this section, we extend the equivalence between ipomsets and step se-
quences from Thm. 13 to also cover subsumptions.

Definition 15. A subsumption f : P → Q is elementary if there is a unique
pair x, y ∈ P such that x <P y and f(x) ̸<Q f(y).

We show that subsumptions are generated by elementary ones. To this end,
let P ⊏ Q with witness f : P → Q. Define O = <P \ <Q (we tacitly identify
<P with its image in Q by f), and let ⪯ ⊆ O × O be the relation given by
(x, y) ⪯ (x′, y′) if x ≤P x′ and y ≥P y′.

Lemma 16. ⪯ is a partial order on O and has a maximal element (x0, y0).
Let R be defined as P , but with <R = <P \ {(x0, y0)} and 99KR = 99KQ, then
id : P → R is an elementary subsumption and f : R → Q a subsumption.

Proof. Reflexivity, anti-symmetry and transitivity of ⪯ come from ≤P . As O is
finite, there exists a maximal element.

For the second part, we start by proving that R is an ipomset. S, T and λ
all come from P , and <R ∪ 99KR is total because (x0, y0) ∈ O. All that is left is
to prove is that <R is a strict partial order.

Irreflexivity and anti-symmetry are given by <P . For transitivity, let x <R y
and y <R z. Then x <P z and we have to show that either x ̸= x0 or z ̸= y0.
Assuming (x, z) = (x0, y0), there would be y such that x0 <P y <P y0 which
contradicts the maximality of (x0, y0) in the order ⪯.

Finally, id : P → R and f : R → Q clearly are subsumptions, and the first is
elementary because |<P \<R| = 1. ⊓⊔

Let us now introduce some useful notation for starters and terminators to
more clearly specify the conclists of events which are started or terminated. For
U ∈ □ and A,B ⊆ U we write A↑U = U\AUU for the starter which starts the
events in A and U↓B = UUU\B for the terminator which terminates the events in
B. In the following definition we express the result of transpositions of elements
of a coherent word w = P1 . . . Pn ∈ Coh≃.

Definition 17. Let U ∈ □ with A,B ⊆ U and A ∩ B = ∅. Let w = P1 . . . Pn ∈
Coh≃ and i ∈ {1, . . . , n− 1}. The i-th transposition on w, that we denote τi(w),
is equal to P1 . . . Pi−1 P

′
iP

′
i+1 Pi+2 . . . Pn, with P ′

iP
′
i+1 =

B↑(U \A)A↑U if Pi = A↑(U \B) and Pi+1 = B↑U,

U↓B(U \B)↓A if Pi = U↓A and Pi+1 = (U \A)↓B ,
(U \A)↓BA↑(U \B) if Pi = A↑U and Pi+1 = U↓B ,
B↑UU↓A if Pi = (U \B)↓A and Pi+1 = B↑(U \A).

Presenting Interval Pomsets with Interfaces 9

a

b

c

1 2 3 4 5

w

a

b

c

1 2 3 4 5

τ3(w)

a

b

c

1 2 3 4 5

τ2(w)

Fig. 2. Interval representations of several ipomsets, cf. Ex. 18.

That is, τi(w) swaps the ith and (i + 1)th element of w, but takes care of
adjusting them to preserve coherency between the start and ending of events.

Example 18. Figure 2 presents several interval representations of ipomsets. In-
tuitively, the left one is a depiction of

w =
[
b•
] a•

•b•

c•

•a•

•b
•c•

[
•a•

•c

] [
•a
]
.

By swapping the third and fourth elements (corresponding here to the second
case of the definition), we obtain

τ3(w) =
[
b•
] a•

•b•

c•

•a•

•b•
•c

[
•a•

•b

] [
•a
]
,

represented in the middle of the figure. If we instead apply the transformation
τ2 (third case of the definition), we obtain

τ2(w) =
[
b•
] [

•b
] [a•

c•

] [
•a•

•c

] [
•a
]

shown in the right part of the figure. Note that Ψ(w) = Ψ(τ3(w)) but Ψ(w) ⊏
Ψ(τ2(w)).

Remark 19. In the context of HDAs, [29] defines a notion of adjacency for paths
which consists of precisely the analogues of the transformations that we define
above. Adjacency is then used to define homotopy of paths, whereas we use it
to define subsumptions. On paths, homotopy is the symmetric and transitive
closure of subsumption.

Our goal now is to prove that the transpositions defined above are exactly
what is needed to express the notion of subsumption on step sequences. This
will be done in Thm. 26, but first we need some technical lemmas.

First we treat the first two cases in Def. 17, swapping starters or swapping
terminators:

Lemma 20. Let w = P1 . . . Pn ∈ Coh≃. If Pi, Pi+1 ∈ St or Pi, Pi+1 ∈ Te, then
τi(w) ∼ w.

10 A. Amrane, H. Bazille, E. Clement, U. Fahrenberg, K. Ziemiański

Proof. Let Pi = A↑U ′ and Pi+1 = B↑U . As w is coherent, U = U ′ ∪ B and
A∩B = ∅. Then the lemma follows from Pi ∗Pi+1 = A∪B↑U = B↑(U ′ \A)∗A↑U .
The arguments are similar in the case of successive terminators. ⊓⊔

Lemma 21. Let w1, w2 ∈ Coh≃∩St∗, resp. w1, w2 ∈ Coh≃∩Te∗, be dense. Then
w1 ∼ w2 iff there exist dense words u1, . . . , um ∈ Coh≃ ∩ St∗, resp. u1, . . . , um ∈
Coh≃ ∩Te∗, for some m ≥ 0, and indices i1, . . . , im−1 ∈ {1, . . . , n− 1} such that
u1 = w1, um = w2 and, for all k, uk+1 = τik(uk).

Proof. The direction from right to left follows from Lem. 20. For the converse,
write w1 = P1 . . . Pn and w2 = Q1 . . . Qn and assume that w1, w2 ∈ St∗. Let, for
all i ≤ n, xi be the event started in Qi and in the ijth starter of uk. Set
uk+1 = τi ◦ · · · ◦ τij−1(uk). Then um = w2. The arguments are similar for
w1, w2 ∈ Te∗. ⊓⊔

Lemma 22. Let w1 = P1 . . . Pn, w2 = Q1 . . . Qn ∈ Coh≃ be dense. Then w1 ∼
w2 iff there exist dense words u1, . . . , um ∈ Coh≃, for some m ≥ 0, and indices
i1, . . . , im−1 ∈ {1, . . . , n − 1} such that u1 = w1, um = w2 and, for all k,
uk+1 = τik(uk).

Proof. The direction from right to left follows again from Lem. 20. For the
converse, let w = R1 . . . Rl be a sparse coherent word such that w ∼ w1 ∼ w2.
Note that l ≤ n. For all i ≤ l, there exist factors w1,i = Pi,1 . . . Pi,ji and w2,i =
Qi,1 . . . Qi,j′i

of respectively w1 and w2 such that w1,i ∼ w2,i ∼ Ri. In addition,
if Ri is a starter (resp. terminator) then w1,i and w2,i are sequences of starters
(resp. terminators). The lemma now follows using Lem. 21. ⊓⊔

Now we treat the last two cases in Def. 17 which swap starters with termi-
nators or terminators with starters:

Lemma 23. Let w = P1 . . . Pn ∈ Coh≃. If PiPi+1 = A↑UU ′↓B with A ∩B = ∅,
then Ψ(τi(w)) ⊏ Ψ(w). If PiPi+1 = U↓BA↑U ′, then Ψ(w) ⊏ Ψ(τi(w)).

Proof. Since w is coherent, we have U = U ′. Let P ′
iP

′
i+1 = (U \A)↓BA↑(U \B).

Then the lemma follows from P ′
i ∗ P ′

i+1 ⊏ Pi ∗ Pi+1. Indeed, in P ′
i ∗ P ′

i+1 the
elements of B must precede those of A, while they are concurrent in Pi∗Pi+1. As
to the second claim, if PiPi+1 = U↓BA↑U ′, then U ′ \A = U \B, and the events
of B precede those of A in Pi ∗Pi+1, while they are concurrent in B↑U ∗U↓A. ⊓⊔

Lemma 24. Let f : P → Q be a subsumption and P = P1 ∗ · · · ∗ Pn, Q =
Q1∗· · ·∗Qn dense step decompositions. Then there exist dense words u1, . . . , um ∈
Coh≃ for some m ≥ 0, and indices i1, . . . , im−1 ∈ {1, . . . , n − 1} such that
u1 = w1 = P1 . . . Pn, um = w2 = Q1 . . . Qn and, for all k, uk+1 = τik(uk).

Proof. We proceed by induction on ar = |<P \ <Q| (we again tacitly identify
<P with its image in Q by f). For ar = 0 the claim is clear.

If ar = 1, then exists exactly one pair (x, y) ∈ P × P such that x <P y
and, without loss of generality, x 99KQ y. This means that x must be terminated

Presenting Interval Pomsets with Interfaces 11

and y started in both P and Q. Moreover, there exists P ′
1 . . . P

′
n ∼ P1 . . . Pn and

i, U, U ′ such that P ′
i = U↓{x} and P ′

i+1 = {y}↑U ′. Else, there would exist z, w (not
necessarily distinct) such that x < z, w < y, z ̸< w and w ̸< z. Then, removing
the order between x and y would force to remove either between x and z or w and
y, which contradicts the assumption. We also have that τi(P

′
1 . . . P

′
n) ∼ Q1 . . . Qn.

Using Lem. 22, there are g, h such that Q1 . . . Qn = h◦τi ◦g(P1 . . . Pn) and every
transposition respects the condition in the lemma.

If ar > 1, then let (x0, y0) and P ′ be as defined in Lem. 16, with P ′ =
P ′
1 . . . P

′
n any dense decomposition. Using the base case, there exists a transfor-

mation from P1 . . . Pn to P ′
1 . . . P

′
n. Then, |<P ′ \ <Q| = ar − 1, and using the

induction hypothesis allows us to conclude there exists a transformation from
P ′
1 . . . P

′
n to Q1 . . . Qn. By composing those two, we obtain a transformation from

P1 . . . Pn to Q1 . . . Qn, hence the result. ⊓⊔

Example 25. Let P = ab, Q = [ab] and a• •ab• •b and b• [a•
•b•] [

•a•
•b] •a be dense

step decompositions of P resp. Q. An example of a sequence as in Lem. 24 is

w0 = a••ab••b,

w1 = a• [•a•
b•] [

•a
•b•] •b,

w2 = a• [•a•
b•] [

•a•
•b] •a,

w3 = b• [a•
•b•] [

•a•
•b] •a,

with i1 = 2, i2 = 3, and i3 = 1.

Let <e be the relation on Coh≃ defined by w2 <e w1 if there is an index i
such that w2 = τi(w1) and PiPi+1 = A↑UU ′↓B with A ∩ B = ∅ (third case of
Def. 17). Denote by the same symbol <e the relation induced in the quotient
Coh∼ and by ≤ = <∗

e the reflexive, transitive closures.

Theorem 26. For P1, P2 ∈ iiPoms≃, P1 ⊑ P2 iff Φ(P1) ≤ Φ(P2). For w1, w2 ∈
Coh∼, w1 ≤ w2 iff Ψ(w1) ⊑ Ψ(w2).

Proof. By Lemmas 23 and 24. ⊓⊔

Corollary 27. Subsumptions of ipomsets are freely generated by the relation <e.

4 Higher-Dimensional Automata and ST-Automata

We now transfer the isomorphisms of the previous Sections 2 and 3 to the op-
erational side. We recall higher-dimensional automata which generate ipomsets
and introduce ST-automata which generate step sequences, and we clarify their
relation.

12 A. Amrane, H. Bazille, E. Clement, U. Fahrenberg, K. Ziemiański

4.1 Higher-dimensional automata

We give a quick introduction to higher-dimensional automata and their lan-
guages and refer the interested reader to [3, 13] for details and examples.

A precubical set

X = (X, ev, {δ0A,U , δ
1
A,U | U ∈ □, A ⊆ U})

consists of a set of cells X together with a function ev : X → □ which to
every cell assigns a conclist of concurrent events which are active in it. We write
X[U] = {q ∈ X | ev(q) = U} for the cells of type U . For every U ∈ □ and A ⊆ U
there are face maps δ0A, δ

1
A : X[U] → X[U \A] (we often omit the extra subscript

U) which satisfy

δνAδ
µ
B = δµBδ

ν
A for A ∩B = ∅ and ν, µ ∈ {0, 1}. (3)

The upper face maps δ1A terminate events in A and the lower face maps δ0A
transform a cell q into one in which the events in A have not yet started.

A higher-dimensional automaton (HDA) X = (X,⊥,⊤) is a precubical set
together with subsets ⊥,⊤ ⊆ X of start and accept cells. Note that we do not
assume HDAs to be finite here; finiteness is needed when reasoning about regular
languages, see [11,13], but we will not do that here. See Fig. 3 for an example.

A path in an HDA X is a sequence α = (q0, φ1, q1, . . . , φn, qn) consisting of
cells qi ∈ X and symbols φi which indicate face map types: for every i = 1, . . . , n,
(qi−1, φi, qi) is either

– (δ0A(qi),1
A, qi) for A ⊆ ev(qi) (an upstep) or

– (qi−1,%A, δ
1
A(qi−1)) for A ⊆ ev(qi−1) (a downstep).

The source and target of α as above are src(α) = q0 and tgt(α) = qn, and α is
accepting if src(α) ∈ ⊥ and tgt(α) ∈ ⊤. Paths α and β may be concatenated to
α ∗ β if tgt(α) = src(β).

The event ipomset ev(α) of a path α is defined recursively as follows:

– if α = (q), then ev(α) = idev(q);

– if α = (q 1A p), then ev(α) = A↑ev(p);
– if α = (p %B q), then ev(α) = ev(p)↓B ;
– if α = α1 ∗ · · · ∗ αn is a concatenation, then ev(α) = ev(α1) ∗ · · · ∗ ev(αn).

The language of an HDA X is

L(X) = {[ev(α)]≃ | α accepting path in X} ⊆ 2iiPoms≃ .

Languages of HDAs are closed under subsumption [11]: whenever P ⊑ Q ∈ L(X),
then also P ∈ L(X).

Presenting Interval Pomsets with Interfaces 13

4.2 ST-automata

Definition 28. An ST-automaton is a structure A = (Q,E, I, F, λ) consisting
of sets Q, E ⊆ Q×Ω≃ ×Q, I, F ⊆ Q, and a function λ : Q → □ such that for
all (q, SUT , r) ∈ E, λ(q) = S and λ(r) = T .

This is thus a plain automaton over Ω≃ (finite or infinite) with an additional
labeling of states with conclists that is consistent with the labeling of edges.
(But note that the alphabet Ω≃ is infinite.)

Remark 29. Equivalently, an ST-automaton may be defined as a directed multi-
graph G together with a graph morphism ev : G → Ω̄≃ and initial and final
states I and F . This definition would be slightly more general than the one
above, given that it allows for multiple edges with the same label between the
same pair of states.

A path in an ST-automaton A is defined as usual: an alternating sequence π =
(q0, e1, q1, . . . , en, qn) of states qi and transitions ei such that ei = (qi−1, Pi, qi) for
every i = 1, . . . , n and a sequence P1, . . . , Pn ∈ Ω≃. The path is accepting if q0 ∈
I and qn ∈ F . The label of π as above is ℓ(π) = [idλ(q0)P1idλ(q1) . . . Pnidλ(qn)]∼,
the equivalence class under ∼.

The language of an ST-automaton A is

L(A) = {ℓ(π) | π accepting path in A} ⊆ 2Coh∼ .

Contrary to languages of HDAs, languages of ST-automata may not be closed
under subsumption, see below.

4.3 From HDAs to ST-automata

We now define translations between HDAs and ST-automata. In order to relate
them to their languages, we extend the pair of functors Φ : iiPoms≃ ⇆ Coh∼ : Ψ
to the power sets the usual way:

Φ(A) = {Φ(P) | P ∈ A}, Ψ(B) = {Ψ(w) | w ∈ B}.

To a given HDA X = (X,⊥,⊤) we associate an ST-automaton F (X) =
(Q,E, I, F, λ) as follows:

– Q = X, I = ⊥, F = ⊤, λ = ev, and
– E = {(δ0A(q),A↑ev(q), q) | A ⊆ ev(q)} ∪ {(q, ev(q)↓A, δ1A(q)) | A ⊆ ev(q)}.

That is, the transitions of F (X) precisely mimic the starting and terminating
of events in X. (Note that lower faces in X are inverted to get the starting
transitions.)

Example 30. Figure 3 shows an HDA X with L(X) = {bc} together with its
translation to an ST-automaton F (X).

14 A. Amrane, H. Bazille, E. Clement, U. Fahrenberg, K. Ziemiański

a

b c⊥ ⊤
∅ ∅

∅

∅

∅ ∅

b

a

b

a

c

c

a[b
a] [c

a]

b• •b

a•

•a

[•b•
a•]

[•b•
•a]

c• •c

[b•
•a•] [•b

•a•]

b• •b

[•b
•a]

[b•
a•]

[c•
•a•] [•c

•a•]

c• •c

a•

•a

[•c•
a•]

[•c•
•a]

a•

•a[•c
•a]

[c•
a•]

⊥ ⊤

Fig. 3. Two-dimensional HDA X (left) and corresponding ST-automaton F (X) (right).

Theorem 31. For any HDA X, L(F (X)) = Φ(L(X)).

Proof. For identities note that a path with a single cell q is accepting in X if and
only if it is accepting in F (X), and Φ(idev(q)) = [idλ(q)]∼. Now let w = P1 . . . Pm ∈
L(F (X)) be a non-identity. By definition, there exists π = (q0, e1, q1, . . . , en, qn)
where ei = (qi−1, P

′
i , qi), P

′
i ∈ Ω≃ such that idλ(q0)P

′
1idλ(q1) . . . P

′
nidλ(qn) ∼ w.

This means that P ′
1 ∗ · · · ∗ P ′

n is a decomposition of some P ∈ L(X), hence
w ∈ Φ(L(X)).

For the converse, let w = P1 . . . Pm ∈ Φ(L(X)). Let P ′
1 ∗· · ·∗P ′

n be the sparse
step decomposition of P = P1∗· · ·∗Pm. We have P ′

1 . . . P
′
n ∼ w. In addition, there

exists an accepting path α = β1 ∗ · · · ∗ βn in X such that ev(βi) = P ′
i . By con-

struction there exists an accepting path π = (src(β1), e1, tgt(β1), . . . , en, tgt(βn))
in F (X) where ei = (src(βi), P

′
i , tgt(βi)). We have ℓ(π) ∼ w. ⊓⊔

4.4 From ST-automata to HDAs

Let A = (Q,E, I, F, λ) be an ST-automaton, then we define an HDA G(A) =
(X,⊥,⊤). Ideally, the cells of the precubical set X would be the states of A and
ev = λ; but this does not quite work as the result is not necessarily a precubical
set. The difficulty is in the face maps which we first define as relations on Q:
For every U ∈ □ and A ⊆ U , let

δ0A,U = {(q, p) | (p,A↑U, q) ∈ E}, δ1A,U = {(q, r) | (q, U↓A, r) ∈ E}.

(Hence, starting transitions in A are inverted to get lower face relations.) Now
there are three problems which may appear: the so-defined face relations may not
be total (i.e., undefined for some faces), they may not be functional (i.e., multi-
valued for some faces), and they may not satisfy the precubical identities (3).

Example 32. Let A be the ST-automaton of Fig. 4. Then L(A) = ∅ as there are
no paths from I to F . Translating A to an HDA will require adding all faces
which are shown on the right of Fig. 3.

Presenting Interval Pomsets with Interfaces 15

∅

[b
a] a [c

a] a

∅
⊥ ⊤

[b•
a•]

[•b
•a•] [c•

•a•] [•c
•a•]

a•

Fig. 4. An ST-automaton with missing face relations, cf. Ex. 32.

The first problem is easily solved, as we may just freely add missing faces.
Given that we address functionality afterwards, we can as well freely add all
faces, so define

Q̄ = {(q,B,C) | q ∈ Q,B,C ⊆ ev(q), B ∩ C = ∅},

with ēv : Q̄ → □ given by ēv((q,B,C)) = ev(q) \ (B ∪ C) and

δ̄0A,U = {((q,B,C), (r,B,C)) | (q, r) ∈ δ0A,U , A ⊆ U \ (B ∪ C)}
∪ {((q,B,C), (q,B ∪A,C)) | A ∩ C = ∅},

δ̄1A,U = {((q,B,C), (r,B,C)) | (q, r) ∈ δ1A,U , A ⊆ U \ (B ∪ C)}
∪ {((q,B,C), (q,B,C ∪A)) | A ∩B = ∅}.

That is, each existing cell q ∈ Q is associated with (q, ∅, ∅), and (q,B,C) is its
(formal) face where B is unstarted and C terminated. Existing face maps (q, r) ∈
δνA,U are copied to each pair ((q,B,C), (r,B,C)) for which A ⊆ U \ (B ∪ C).

In order to solve the second problem, we need to identify some elements of
Q̄ with others. Let ∼ be the equivalence relation on Q̄ generated by

q ∼ q′ ∧ ∃A ⊆ U ∈ □, ν ∈ {0, 1} : (q, r), (q′, r′) ∈ δ̄νA,U =⇒ r ∼ r′,

let Q′ = Q̄∼ be the quotient, and let δ0A,U , δ
1
A,U be the face relations induced

on Q′. These are now single-valued and total, i.e., functions. Given that q ∼ q′

implies ēv(q) = ēv(q′), also ēv passes to the quotient.
Lastly, we need to make sure that the precubical identities (3) are satisfied.

This may again be done by defining an equivalence relation, again denoted ∼, on
Q′, which identifies faces which should be equal according to (3). Let X = Q′

∼
be the quotient, and let ev, δ0A,U , δ

1
A,U be the mappings induced on X. Then X

is a precubical set, and we may define ⊥,⊤ ⊆ X to be the equivalence classes of
I, F ⊆ Q.

Example 33. Continuing Ex. 32, let again A be the ST-automaton of Fig. 4.
Then G(A) is the HDA of Fig. 3 and L(G(A)) = {bc} ≠ ∅ = L(A).

Remark 34. The above translation from ST-automata to HDAs may be under-
stood as a colimit in a presheaf category. HDAs are presheaves over a precube
category, see [11]. Using Rem. 29, we may view an ST-automaton A as a mor-
phism into a variant of Ω̄≃ which may be embedded into that precube category
(inverting starters in the process), and then G(A) is the colimit closure of the
composition of these morphisms with the Yoneda embedding.

16 A. Amrane, H. Bazille, E. Clement, U. Fahrenberg, K. Ziemiański

Theorem 35. For any ST-automaton A, Ψ(L(A)) ⊆ L(G(A)).

Proof. Let π = (q0, e1, q1, . . . , en, qn), ei = (qi−1, Pi, qi) be an accepting path in
A. Then α = (q0, φ1, q1, . . . , φn, qn), where

– φi =1A if Pi = A↑U is a starter,
– φi =%B if Pi = U↓B is a terminator,

is an accepting path in G(A). Furthermore,

Ψ(λ(π)) = Ψ(P1P2 · · ·Pn) = P1 ∗ · · · ∗ Pn = λ(α) ∈ L(G(A)),

which concludes the proof. ⊓⊔

Example 33 shows that the inclusion in the theorem may be strict. It is clear
that for any HDA X, G(F (X)) = X; but as we have seen, F (G(A)) may be
very different from a given ST-automaton A. The following lemma collects a few
properties of ST-automata which are in the image of the HDA translation.

Lemma 36. Let A = F (X) for some HDA X. Then A = (Q,E, I, F, λ) has the
following properties:

1. for all q ∈ Q with λ(q) = idU and all S, T ⊆ U , there exist p, r ∈ Q such
that (p, SUU , q), (q, UUT , r) ∈ E;

2. for all (p, P, q), (q,Q, r) ∈ E, if P,Q ∈ St or P,Q ∈ Te, then also (p, P ∗
Q, r) ∈ E;

3. for all (p, P ∗Q, r) ∈ E there is q ∈ Q such that (p, P, q), (q,Q, r) ∈ E.

Proof. The first item is clear because X has all face maps, so for all q ∈ Q = X
with ev(q) = U and all S, T ⊆ U , also δ0S(q), δ

1
T (q) ∈ Q.

The second property is induced by compositionality of lower resp. upper face
maps. To show it, assume first that P,Q ∈ St, then P = B↑U ′ for some U ′ ∈ □
and Q = C↑U where U = U ′ ∪ B. These transitions are derived from the lower
face maps δ0B : X[U] → X[U \ B] and δ0C : X[U \ B] → X[U \ (B ∪ C)]. Since
X is a precubical set, we also have the face map δ0B∪C : X[U] → X[U \ (B ∪C)]
which gives the transition (p, P ∗Q, r). We argue similarly when P,Q ∈ Te.

The argument for the third item is inverse to the above: (p, P ∗ Q, r) ∈ E
mimicks δ0B∪C (assuming P,Q ∈ St), which may be split into δ0Cδ

0
B . ⊓⊔

We leave open the problem to give a precise characterization of ST-automata
which are translations of HDAs.

5 Conclusion

Several previous works have studied interval pomsets with interfaces, their repre-
sentations, and their associated operational model. This paper unifies two differ-
ent presentations (as a combinatorial object and as a word on a non-free monoid)
and states how standard operations and transformations are expressed in both
of these presentations.

Presenting Interval Pomsets with Interfaces 17

We have shown that to every interval ipomset (up to isomorphism) corre-
sponds an equivalence class of words, called step sequences, and that the trans-
formation from one to another induces an isomorphism of categories. This implies
that interval ipomsets are freely generated by certain discrete ipomsets (starters
and terminators) under the relation which composes subsequent starters and
subsequent terminators. We have also (constructively) exhibited a partial order
on step sequences to represent subsumptions. Finally, we have explored the oper-
ational model on step sequences, that is ST-automata, and exposed translations
between higher-dimensional automata (HDAs) and ST-automata. However, from
ST-automata to HDAs this translation does not preserve languages, we only have
inclusion. Stating the properties needed for an ST-automaton to have a precise
HDA translation stays an open problem for now.

One thing which is missing from this paper is a treatment of interval repre-
sentations of (interval) ipomsets. We believe that using the work of Myers in [27]
it may be shown that any interval ipomset has a canonical interval representation
which is closely related to its sparse step decomposition, see Fig. 2.

References

1. Amazigh Amrane, Hugo Bazille, Emily Clement, and Uli Fahrenberg. Languages
of higher-dimensional timed automata. In PETRI NETS, 2024. Accepted.

2. Amazigh Amrane, Hugo Bazille, Uli Fahrenberg, and Marie Fortin. Logic and
languages of higher-dimensional automata. In DLT, 2024. Accepted.

3. Amazigh Amrane, Hugo Bazille, Uli Fahrenberg, and Krzysztof Ziemiański. Clo-
sure and decision properties for higher-dimensional automata. In Erika Ábrahám,
Clemens Dubslaff, and Silvia Lizeth Tapia Tarifa, editors, ICTAC, volume 14446
of Lecture Notes in Computer Science, pages 295–312. Springer-Verlag, 2023.

4. Stephen L. Bloom and Zoltán Ésik. Free shuffle algebras in language varieties.
Theoretical Computer Science, 163(1&2):55–98, 1996.

5. Stephen L. Bloom and Zoltán Ésik. Varieties generated by languages with poset
operations. Mathematical Structures in Computer Science, 7(6):701–713, 1997.

6. Armando Castañeda, Sergio Rajsbaum, and Michel Raynal. Unifying concur-
rent objects and distributed tasks: Interval-linearizability. Journal of the ACM,
65(6):45:1–45:42, 2018.

7. Uli Fahrenberg. Higher-dimensional timed automata. In Alessandro Abate,
Antoine Girard, and Maurice Heemels, editors, ADHS, volume 51 of IFAC-
PapersOnLine, pages 109–114. Elsevier, 2018.

8. Uli Fahrenberg. Higher-dimensional timed and hybrid automata. Leibniz Trans-
actions on Embedded Systems, 8(2):03:1–03:16, 2022.

9. Uli Fahrenberg, Christian Johansen, Georg Struth, and Ratan Bahadur Thapa.
Generating posets beyond N. In Uli Fahrenberg, Peter Jipsen, and Michael Winter,
editors, RAMiCS, volume 12062 of Lecture Notes in Computer Science, pages 82–
99. Springer-Verlag, 2020.

10. Uli Fahrenberg, Christian Johansen, Georg Struth, and Krzysztof Ziemiański. Lan-
guages of higher-dimensional automata. Mathematical Structures in Computer
Science, 31(5):575–613, 2021.

11. Uli Fahrenberg, Christian Johansen, Georg Struth, and Krzysztof Ziemiański. A
Kleene theorem for higher-dimensional automata. In Bartek Klin, S lawomir Lasota,

18 A. Amrane, H. Bazille, E. Clement, U. Fahrenberg, K. Ziemiański

and Anca Muscholl, editors, CONCUR, volume 243 of LIPIcs, pages 29:1–29:18.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022.

12. Uli Fahrenberg, Christian Johansen, Georg Struth, and Krzysztof Ziemiański.
Posets with interfaces as a model for concurrency. Information and Computation,
285(2):104914, 2022.

13. Uli Fahrenberg and Krzysztof Ziemiański. A Myhill-Nerode theorem for higher-
dimensional automata. In Lúıs Gomes and Robert Lorenz, editors, PETRI NETS,
volume 13929 of Lecture Notes in Computer Science, pages 167–188. Springer-
Verlag, 2023.

14. Jean Fanchon and Rémi Morin. Regular sets of pomsets with autoconcurrency.
In Luboš Brim, Petr Jančar, Mojmı́r Křet́ınský, and Antońın Kučera, editors,
CONCUR, volume 2421 of Lecture Notes in Computer Science, pages 402–417.
Springer-Verlag, 2002.

15. Peter C. Fishburn. Intransitive indifference with unequal indifference intervals.
Journal of Mathematical Psychology, 7(1):144–149, 1970.

16. Peter C. Fishburn. Interval Orders and Interval Graphs: A Study of Partially
Ordered Sets. Wiley, 1985.

17. Jay L. Gischer. The equational theory of pomsets. Theoretical Computer Science,
61:199–224, 1988.

18. J. Grabowski. On partial languages. Fundamenta Informaticae, 4(2):427, 1981.
19. Tony Hoare, Bernhard Möller, Georg Struth, and Ian Wehrman. Concurrent Kleene

algebra and its foundations. Journal of Logic and Algebraic Methods in Program-
ming, 80(6):266–296, 2011.

20. Tony Hoare, Stephan van Staden, Bernhard Möller, Georg Struth, and Huibiao
Zhu. Developments in concurrent Kleene algebra. Journal of Logic and Algebraic
Methods in Programming, 85(4):617–636, 2016.

21. Ryszard Janicki, Jetty Kleijn, Maciej Koutny, and Lukasz Mikulski. Paradigms of
Concurrency - Observations, Behaviours, and Systems - a Petri Net View, volume
1020 of Studies in Computational Intelligence. Springer-Verlag, 2022.

22. Ryszard Janicki and Maciej Koutny. Operational semantics, interval orders and
sequences of antichains. Fundamenta Informaticae, 169(1-2):31–55, 2019.

23. Ryszard Janicki and Xiang Yin. Modeling concurrency with interval traces. Infor-
mation and Computation, 253:78–108, 2017.

24. Tobias Kappé, Paul Brunet, Alexandra Silva, and Fabio Zanasi. Concurrent Kleene
algebra: Free model and completeness. In Amal Ahmed, editor, ESOP 2018, volume
10801 of Lecture Notes in Computer Science, pages 856–882. Springer-Verlag, 2018.

25. Leslie Lamport. Time, clocks, and the ordering of events in a distributed system.
Commun. ACM, 21(7):558–565, 1978.

26. Leslie Lamport. On interprocess communication. Part I: basic formalism. Dis-
tributed Computing, 1(2):77–85, 1986.

27. Amy Myers. Basic interval orders. Order, 16(3):261–275, 1999.
28. Vaughan R. Pratt. Modeling concurrency with partial orders. J. Parallel Program-

ming, 15(1):33–71, Feb 1986.
29. Rob J. van Glabbeek. On the expressiveness of higher dimensional automata.

Theoretical Computer Science, 356(3):265–290, 2006. See also [30].
30. Rob J. van Glabbeek. Erratum to “On the expressiveness of higher dimensional

automata”. Theoretical Computer Science, 368(1-2):168–194, 2006.
31. Norbert Wiener. A contribution to the theory of relative position. Proceedings of

the Cambridge Philosophical Society, 17:441–449, 1914.

	Presenting Interval Pomsets with Interfaces

