
Weakly well-composed cell complexes over nD pictures

Nicolas Boutry a,1, Rocio Gonzalez-Diaz b,1, Maria-Jose Jimenez b,1

aEPITA Research and Development Lab. (LRDE), Le Kremlin-Bicêtre, France,
E-mail: nicolas.boutry@lrde.epita.fr,

https://www.lrde.epita.fr/wiki/User:Nboutry
bDepartment of Applied Math (I), Universidad de Sevilla, Sevilla, Spain,

E-mail: {rogodi,majiro}@us.es,
http://personal.us.es/{rogodi,majiro}

Abstract

In previous work we proposed a combinatorial algorithm to “locally repair” the
cubical complex Q(I) that is canonically associated with a given 3D picture
I. The algorithm constructs a 3D polyhedral complex P (I) which is homotopy
equivalent to Q(I) and whose boundary surface is a 2D manifold. A polyhedral
complex satisfying these properties is called well-composed. In the present paper
we extend these results to higher dimensions. We prove that for a given n-
dimensional picture the obtained cell complex is well-composed in a weaker
sense but is still homotopy equivalent to the initial cubical complex.

Keywords: Digital topology, discrete geometry, well-composedness, cubical
complexes, simplicial complexes, cell complexes, manifolds.

1. Introduction

Ensuring that the boundary of an object in a discrete image is constructed
from closed surfaces in R3 allows to implement surface parameterization [10].
This is crucial for certain applications in geometric modeling [30] and computer
graphics [11]. For example, texture mapping can be used to enhance visual
quality of polygonal models. Also, as discussed in [12], the computation of ho-
mology groups [16] and, in particular, the computation of homology generators
on a surface [7, 8, 9], can be helpful for topology repairing, model editing and
feature recognition. In discrete geometry, it is well-known that the multigrid
convergence of some geometrical estimators is slowed when there are “pinches”
in the boundary of an object in a discrete image [21, 23]. Requiring that the
boundary surface be a manifold avoids such problematic situations. For all
these reasons, well-composedness [4, 24, 25, 26] (meaning that the boundary of
a set is a topological manifold) is a good topological property to be required.

1Partially supported by MINECO, FEDER/UE under grant MTM2015-67072-P. Author
names listed in alphabetical order.
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Thereafter, strong results such as the Jordan Curve Theorem can be applied
on the connected components of the boundary [19, 33] in 2D. Moreover, the
Jordan-Brouwer separation property [20, 22] can be applied in nD. Since nD
signals appear more and more frequently in applications such as 3D Magnetic
Resonance Imaging and 4D Computerized Tomography scans, it is important
to extend the theory of well-composedness to higher dimensions.

In digital topology, two main families of methods are used to make 2D and
3D binary images well-composed: topological reparation, which does not preserve
the topology of the initial image in general; and well-composed interpolation,
which typically preserves the topology but requires an increase of resolution of
the whole domain of the image. Regarding topological reparations, the first 2D
method was introduced by Latecki et al. [26], the first 3D method by Siqueira et
al. [35] and the first nD method by Boutry et al. [3]. Regarding well-composed
interpolations, one has to mention the 3D method of Stelldinger et al., called
Majority Interpolation [36], the nD min/max method of Mazo et al. [29], and
the nD self-dual in-between method of Boutry et al. [2]. In the midst of these
two families, Gonzalez-Diaz et al. [13] proposed a 3D method to construct well-
composed cell complexes that are homotopy equivalent to the 3D cubical com-
plex canonically associated to the given image. This can be very useful when
computing (co)homological information of a set only based on its surface (see
[17]). Furthermore, the cell complex resulting from this method, that is, the
positions of the cells, their geometry, and their boundary face relationships, can
efficiently be stored into 3D binary images [14, 15]. This method is strongly
related to boundary extraction methods, such as the marching cubes of Lorensen
et al. [27] and its nD extensions, due to Daragon et al. [6] (which ensures that
the boundary is a discrete surface), and Lachaud et al. [22] (which ensures that
the resulting boundary is a (pseudo-)manifold). However, whether or not these
methods preserve the topology is unknown and a procedure for efficiently storing
the resulting complex into an nD binary image is also unknown.

Finally, some other definitions of well-composedness such as the one based on
the equivalence of connectivities [2], digital well-composedness [2], well-composed-
ness in the sense of Alexandrov [2, 5, 32], or well-composedness on arbitrary
grids [1, 4, 37] exist, but they do not ensure that the boundaries consist of
surfaces in Rn and their parameterization may not be possible.

In this paper, we extend to any dimension the method presented in [13, 14,
15]. In brief, given an nD binary image I (also called an nD picture), the nD
cubical complex Q(I) canonically associated with I is constructed and stored
as an nD binary image J = (Zn, FJ). Each point in the foreground FJ of J is
the barycenter of a cell of Q(I) (see Section 4.1). Then, using Procedure 1, we
detect the critical points of FJ that correspond to critical cells of Q(I) (i.e., cells
that are involved in critical configurations). By applying the repairing process
given in Procedure 5, we replace each critical point p of FJ by a suitable set S(p)
of points (that depends only on the coordinates of p), to obtain a new nD binary
image L = (Zn, FL). By applying Procedure 6 to the points of FL, we construct
a simplicial complex PS(I) such that Q(I) is a deformation retraction of PS(I).
Finally, we prove that there always exists a face-connected path in PS(I) of
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Figure 1: Graphical diagram of the method: we start from an nD picture I = (Zn, FI) (then
FI ⊂ 4Zn). The set FJ of points in Zn encodes the cells of the associated cubical complex
Q(I) (blue is used for 0-cells, red for 1-cells and green for 2-cells). In this example, the set
R of critical points is composed by the points encoding the vertex v and all the cells of Q(I)
incident to v. Now, we “repair” FJ to obtain a set FL of points in Zn. Then, we compute the
simplicial complex PS(I) whose set of vertices is FL. Observe that for any two n-simplices
σ and σ′ incident to a common vertex v′ in PS(I), there exists a face-connected path π of
n-cells in PS(I) incident to v′, joining σ and σ′; therefore, PS(I) is weak well-composed.

n-simplices incident to a common vertex v′, joining any two n-simplices σ and
σ′ incident to v′, that is, PS(I) is what we call weakly well-composed (wWC).
Figure 1 graphically illustrates the basic stages of our method. At the end of
the paper we include a table with main notations used.

2. nD Well-composed pictures

Latecki et al. introduced in [24] the notion of well-composedness for 2D
pictures as those sets not containing any critical configuration. Later, well-
composedness was extended to 3D sets in [25] defining again forbidden subsets
that make the continuous analog of the picture have a boundary surface that
is not a manifold. In [2], the concept of critical configurations (i.e., forbidden
subsets) was extended to nD. In this section, after introducing some notations
and definitions, we recall how we can characterize critical configurations in nD.

Definition 1 (nD picture). Let n ≥ 2 be an integer and Zn the set of points
with integer coordinates in nD space Rn. An nD binary image is a pair I =
(Zn, FI) where FI is a finite subset of Zn called foreground of I. If FI ⊂ 4Zn

(i.e., coordinates are multiples of 4), we will say that I is an nD picture.

We need the foreground FI included into 4Zn (and not Zn) because, as we will
see later, in a first step we add new points between the elements of FI to obtain
FJ , encoding the cubical complex associated to I, which justifies a scale factor
of 2; in a second step, during the reparation, we add new points between points
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Figure 2: Examples of blocks: in pink, B((0, 4), ∅); in red, B((4, 4), {e1}); in blue,
B((12, 0), {e2}); in green, B((16, 0), {e1, e2}).

of FJ to obtain FL, encoding the repaired complex, which justifies a second
factor of 2. In fact, any given nD binary image image I0 = (Zn, FI0) can be
transformed into an nD picture I = (Zn, FI) by setting FI := 4FI0 .

Notation 2. For integers k ≤ k′, Jk, k′K denotes the set {k, k+1, . . . , k′−1, k′}.

Let B = {e1, . . . , en} denote the canonical basis of Zn. Given a point z ∈ 4Zn

and a family of vectors F = {f1, . . . , fk} ⊆ B, we define the block of dimension
k associated to the couple (z,F) (see Figure 2) as:

B(z,F) =

z +
∑

i∈J1,kK

λi f
i : λi ∈ {0, 4},∀i ∈ J1, kK

 .

A subset B ⊂ 4Zn is called a block if there exists a couple (z,F) ∈ 4Zn×P(B)2

such that B = B(z,F). We will denote the set of blocks of 4Zn by B(4Zn).
Two points p, q belonging to a block B ∈ B(4Zn) are said to be antagonists

in B if their distance equals the maximum distance using the L1-norm3 between
two points in B. The antagonist of a point p in a block B ∈ B(4Zn) containing
p exists and is unique. It is denoted by antagB(p). Note that when two points
(x1, . . . , xn) and (y1, . . . , yn) are antagonists in a block of dimension k ∈ J0, nK,
then |xi − yi| = 4 for i ∈ {i1, . . . , ik} ⊆ J1, nK and xi = yi otherwise.

Now, let I = (Zn, FI) be an nD picture and B ∈ B(4Zn) a block of dimension
k ∈ J2, nK. We say that I contains a primary critical configuration of dimension
k in the block B if FI ∩B = {p, p′}, with p, p′ being two antagonists in B. We
say that I contains a secondary critical configuration of dimension k in the block
B if FI ∩B = B \ {p, p′}, with p, p′ being two antagonists in B. More generally,
a critical configuration (CC) of dimension k ∈ J2, nK is either a primary or a
secondary critical configuration of dimension k.

Definition 3 (DWC). An nD picture is said to be digitally well-composed
(DWC) if it does not contain any CC.

The 2n-neighborhood of a point p ∈ 4Zn is the set N2n(p) = {p ± 4ei : i ∈
J1, nK}. A sequence (p1, . . . , pk) of elements of 4Zn is said to be a 2n-path in
4Zn if, for any i ∈ J1, k − 1K, pi ∈ N2n(pi+1).

2The expression P(B) represents the set of all the subsets of B.
3The L1-norm of a vector α = (x1, . . . , xn) is ||α||1 =

∑
i∈J1,nK |xi|.
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Proposition 4 ([2]). Let I = (Zn, FI) be an nD picture. If I is DWC then, for
any pair of points p, p′ of FI which are antagonists in some block B ∈ B(4Zn),
there exists a 2n-path in FI ∩B joining p and p′.

Proposition 5. Let I = (Zn, FI) be an nD picture. If I is DWC then, for any
block B ∈ B(4Zn) and for any two points p, q ∈ FI ∩ B, there exists a 2n-path
in FI ∩B joining p and q.

Proof. Let B ∈ B(4Zn) be a block such that FI ∩B is non-empty. For any two
points p, q ∈ FI∩B, there exists a block B′ ⊆ B such that q = antagB′(p). Then
by Proposition 4, there exists a 2n-path joining p and q in FI ∩B′ ⊆ FI ∩B. �

3. nD wWC cell complexes

Roughly speaking, a regular cell complex K is a collection of cells (where
k−cells are homeomorphic to k-dimensional balls) glued together by their bound-
aries (faces), in such a way that a non-empty intersection of any two cells of
K is a cell in K. When the k-cells in K are k-dimensional cubes, we refer to
K as a cubical complex. When they are k-dimensional simplices (points, edges,
triangles, tetrahedra, etc.), we refer to K as a simplicial complex. Regular
cell complexes have particularly nice properties, for example, their homology is
effectively computable (see [28, p. 243]).

Definition 6 (Face-connected path). Let ` ∈ J1, nK. Let S be a set of `-cells
of K. We say that two `-cells σ and σ′ are face-connected in S if there exists
a path π(σ, σ′) = (σ1 = σ, σ2 . . . , σm−1, σm = σ′) of `-cells of S such that for
any i ∈ J1,m − 1K, σi and σi+1 share exactly one (` − 1)-cell of K. The set S
is face-connected if any two `-cells σ and σ′ in S are face-connected in S.

The set of cells incident to a cell σ in K is denoted by AK(σ) and the set of

`-cells incident to σ, by A(`)
K (σ). A k-face µ of a cell σ is a k-cell that is face

of σ; it is a proper face of σ if k < ` and a maximal face of σ if k = ` − 1.
A cell of K which is not a proper face of any other cell of K is said to be a
maximal cell of K. An external cell of K is a proper face of exactly one maximal
cell in K. A regular cell complex is pure if all its maximal cells have the same
dimension. The rank of a cell complex K is the maximal dimension of its cells.
The boundary surface of a pure regular cell complex K, denoted by ∂K, is the
regular cell complex composed by the external cells of K together with all their
faces. Observe that ∂K is also pure.

Definition 7 (nD cell-complex). An nD cell complex K is a pure regular cell
complex of rank n embedded in Rn. The underlying space (i.e., the union of the
cells as subspaces of Rn) will be denoted by |K|.

An nD cell complex K is said to be (continuously) well-composed if |∂K| is an
(n− 1)-manifold, that is, each point of |∂K| has a neighborhood homeomorphic
to Rn−1 into |∂K|.
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Definition 8 (wWCness). An nD cell complex K is weakly well-composed

(wWC) if for any 0-cell µ in K, A(n)
K (µ) is face-connected.

We will see later, in Section 4, that if an nD picture I is DWC, then the
cubical complex Q(I) canonically associated to I is wWC.

Definition 9 (Cubical complex Q(I)). The nD cubical complex Q(I) canon-
ically associated to an nD picture I = (Zn, FI) is composed by those size-4 n-
dimensional cubes centered at each point in FI whose (n− 1)-faces are parallel
to the coordinate hyperplanes, together with all their faces.

Roughly speaking, two topological spaces are homotopy equivalent if one
can be continuously deformed into the other. A specific example of homotopy
equivalence is a deformation retraction of a space X onto a subspace A which
is a family of maps ft : X → X, t ∈ [0, 1], such that: f0(x) = x, ∀x ∈ X;
f1(X) = A; ft(a) = a, ∀a ∈ A and t ∈ [0, 1]. The family {ft : X → X}t∈[0,1]
should be continuous in the sense that the associated map F : X × I → X,
where F (x, t) = ft(x), is continuous. See [18, p. 2].

Definition 10 (Cell complexes over nD pictures). A cell complex over an
nD picture I is an nD cell complex, denoted by K(I), such that there exists a
deformation retraction from K(I) onto Q(I).

4. The cubical complex canonically associated to an nD picture I

In Section 4.1, we explain how to compute an nD digital image J = (Zn, FJ)
encoding the nD cubical complex Q(I). We use this codification to prove that
if I is DWC then Q(I) is wWC. Later, in Section 4.2 we give a procedure to
obtain the points in FJ encoding the critical cells of Q(I) responsible of Q(I)
not being wWC. Finally, in Section 4.3, we compute a simplicial complex QS(I)
which is, in fact, homeomorphic to Q(I), and prove that QS(I) is also weak-
well-composed if I is DWC.

4.1. The nD binary image J = (Zn, FJ) encoding Q(I)

We say that J = (Zn, FJ) encodes Q(I) if FJ is the set of barycenters of the
cells in Q(I)4. We say that p ∈ FJ encodes σ ∈ Q(I) if p is the barycenter of σ.
In that case, we denote σ as σQ(I)(p).

Notation 11. Let N,M ∈ Z such that 0 ≤ N < M . Let p = (x1, . . . , xn) ∈ Zn.
Then NM (p) denotes the set of indices {i ∈ J1, nK : xi ≡ N mod M}.

Now notice that 2Zn can be decomposed into the disjoint sets E` := {p ∈ 2Zn :
Card(04(p))5 is `}. For example En = 4Zn and E0 = 2Zn \ 4Zn.

4Observe that FJ ⊂ 2Zn.
5Card(S) is the cardinality of the set S.
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Proposition 12. The set of points of FJ encoding the faces of σQ(I)(p) is:

DFJ
(p) := D+

FJ
(p) \ {p} where D+

FJ
(p) =

p+
∑

j∈04(p)

λj e
j : λj ∈ {0,±2}

 .

The subset of points encoding the i-faces of σQ(I)(p) will be denoted by Di
FJ

(p).

For example, if p ∈ FJ ∩ E0 then DFJ
(p) = ∅. If p ∈ FJ ∩ En then DFJ

(p) =
{p′ ∈ FJ such that ||p− p′||∞ = 2}6.
Proof. The following procedure computes the set of points encoding the faces
of σ = σQ(I)(p), for a point p ∈ FJ with 04(p) = {i1, . . . , i`}.
Initialization (` = 0): Then p ∈ E0 and D+

FJ
(p) = {p} encodes σ plus its faces.

Heredity (` ∈ J1, nK): We assume that for any point q ∈ Em ∩ FJ , with m ∈
J0, `− 1K, D+

FJ
(q) encodes σ plus its faces. Then the set of faces of σ is the set

of cells {σm}m covered7 by σ and encoded by {qm}m := {p+λ∗ eik : k ∈ J1, `K
and λ∗ ∈ {±2}}. Thanks to the induction hypothesis:

D+
FJ

(qm) =

p+ λ∗ eik +
∑

r∈J1,`K\{k}

λre
ir : λr ∈ {0,±2}

 .

Therefore, the cell σ and its faces are encoded by the points in the set:

{p} ∪
⋃
m

D+
FJ

(qm) =

p+
∑

j∈J1,`K

λj e
ij : λj ∈ {0,±2}

 = D+
FJ

(p).

By induction on `, for any p ∈ FJ , D+
FJ

(p) encodes σQ(I)(p) plus its faces. �

Proposition 13. If p encodes an `-cell σ ∈ Q(I), then the set of points encoding
the cells in Q(I) incident to σ is:

AFJ
(p) := A+

FJ
(p)\{p} where A+

FJ
(p) =

p+
∑

j∈24(p)

λj e
j : λj ∈ {0,±2}

∩FJ .

Besides, the set of points encoding the n-cells incident to σ in Q(I) is An
FJ

(p) :=

FJ ∩
{
p+

∑
j∈24(p) λj e

j : λj ∈ {±2}
}
. In general, the `-cells incident to σ in

Q(I) are encoded by the points in the set A`
FJ

(p) := AFJ
(p) ∩ E`.

Proof. Let p ∈ E` ∩FJ . Each point q = p+
∑

j∈24(p) λj e
j , where λj ∈ {0,±2},

lies in Ek+`, being k the number of non-null coefficients λj . If q ∈ FJ , then q
encodes a (k + `)-cell incident to p in FJ since p ∈ DFJ

(q). �

6The L∞-norm of a vector γ = (x1, . . . , xn) is ||γ||∞ = maxi∈J1,nK |xi|.
7A cell σ1 is covered by a cell σ2 if σ1 is a maximal face of σ2.
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Lemma 14. For any p, p′ in 2Zn, we have the following equivalences:

p′ ∈ A+
FJ

(p)⇔ p′ = p+
∑

j∈24(p)

λje
j , λj ∈ {0,±2}

⇔ p = p′ +
∑

j∈04(p′)

λ′je
j , λ′j ∈ {0,±2} ⇔ p ∈ D+

FJ
(p′).

Proof. Only the central equivalence needs to be proved. Assume that p′ =
p +

∑
j∈24(p) λje

j , λ′j ∈ {0,±2}. Then 04(p′) = 04(p) ∪ {j ∈ 24(p) : λj 6= 0}.
Define the coefficients λ′j , j ∈ 04(p′), such that λ′j := 0 when j ∈ 04(p) and

λ′j := −λj when j ∈ 24(p) and λj 6= 0. Then p = p′ +
∑

j∈04(p′) λ
′
je

j . The
reasoning is dual for the converse implication. �

Remark 15. Let p, p′, p′′, p′′′ ∈ FJ such that p′ ∈ DFJ
(p). Then, (1) if p′′ ∈

DFJ
(p′), then p′′ ∈ DFJ

(p); (2) if p′, p′′ ∈ DFJ
(p) ∩ AFJ

(p′′′), with

p′ = p+
∑

j∈04(p)

λ′je
j and p′′ = p+

∑
j∈04(p)

λ′′j e
j , where λ′j , λ

′′
j ∈ {0,±2}

and if λ′j 6= 0 6= λ′′j , for some index j ∈ 04(p), then λ′j = λ′′j .

Proposition 16. If two points p and p′ encoding two n-cells σ and σ′ of Q(I)
are 2n-neighbors, then σ and σ′ share exactly one (n− 1)-cell.

Proof. Since p, p′ ∈ En are 2n-neighbors then p′ = p+ λ ei for some i ∈ J1, nK
and λ ∈ {±4}. Then q = 1

2 (p+ p′) ∈ En−1 encodes the common (n− 1)-face. �
Now we are ready to prove the main result of this subsection.

Proposition 17. If an nD picture I = (Zn, FI) is DWC then, the associated
nD cubical complex Q(I) is wWC.

Proof. We assume that FI is DWC. Let p ∈ FJ be a point of 2Zn encoding
a cell σ of Q(I). Then the set of points of 4Zn encoding the n-cells in Q(I)
incident to σ is An

FJ
(p). Since FI is DWC, it means, by Proposition 5, that

for any two points q and q′ belonging to An
FJ

(p), there exists a 2n-path (q =

p1, p2, . . . , pk−1, pk = q′) of points in An
FJ

(p) encoding n-cells of Q(I) incident

to σ such that, for each i ∈ J1, k − 1K, pi ∈ N2n(pi+1). By Proposition 16,
(σQ(I)(p

1), . . . , σQ(I)(p
k)) is a path of n-cells such that, for any i ∈ J1, k − 1K,

σQ(I)(p
i) and σQ(I)(p

i+1) share exactly one (n − 1)-face of Q(I). Since this is
true for any pair of n-cells incident to σQ(I)(p), for any p ∈ FJ , then Q(I) is
wWC. �

4.2. Critical cells in Q(I)

In this subsection, we define the notion of critical cells of Q(I) that are
derived from the notion of critical configurations given in Section 2 and give a
procedure to compute the points in FJ that encode them.
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Figure 3: Left: a critical vertex (in red) resulting from a 2D CC in a 2D space. Middle: a
“full” critical edge resulting from a 2D CC in a 3D space and its corresponding critical vertices
(in red). Right: a critical vertex (in red) resulting from a 3D CC in a 3D space.

Definition 18 (Critical cells). Let I = (Zn, FI) be an nD picture and Q(I)
its associated cubical complex. At each block B ∈ B(4Zn) such that FI ∩B is a
primary or a secondary critical configuration, let p and p′ be two antagonists in

B. Then, the cell centered at p+p′

2 is defined as a full-critical cell of Q(I), its
vertices as critical vertices, and each cell containing at least one critical vertex
will be called critical.

We say that a point p in FJ is critical if p encodes a critical cell of Q(I) (see
Figure 3). Procedure 1 computes the set R of critical points in FJ : starting from
the nD picture I, for each blockB ∈ B(4Zn) in the domain of the image, it checks
if there exists a couple of antagonists {p, p′} ∈ B such that either FI∩B = {p, p′}
(primary configuration) or B \FI = {p, p′} (secondary configuration). Then the
intersection of the continuous analogs of the cells encoded by p and p′ is a
“pinch” (in the sense that the boundary of the continuous analog will not be

homeomorphic to Rn−1). This pinch, encoded by p∗ = p+p′

2 , is then a full-
critical cell of Q(I). Consequently, all the vertices of Q(I) contained in D0

FJ
(p∗)

are critical, and all the cells of Q(I) containing a critical vertex are critical cells.
We obtain then that V encodes the critical vertices of Q(I) and R encodes the
critical cells of Q(I). Note that a discussion about the complexity of a similar
algorithm, able to verify that an image is DWC, is discussed in [1]; summarily,
the complexity of this algorithm is linear with respect to the number of blocks
contained in the smallest hyperrectangle containing FI , and is particularly fast
in small dimensions.

Procedure 1: Obtaining the critical points in FJ .

Input: The picture I = (Zn, FI) and the binary image J = (Zn, FJ).
Output: The set R of critical points in FJ .
V := ∅ ; R := ∅;
for B ∈ B(4Zn) of dimension k ∈ J2, nK and p ∈ B do

p′ := antagB(p);
if (FI ∩B = {p, p′} or B \ FI = {p, p′}) then

p∗ := p+p′

2 ; V := V ∪ D0
FJ

(p∗)

end

end
for q ∈ FJ such that D0

FJ
(q) ∩ V 6= ∅ do

R := R ∪ {q}
end
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Figure 4: Three examples of cone joins.

Remark 19. If a point p ∈ E` ∩R, with ` ∈ J0, nK, then any point p′ ∈ AFJ
(p)

is in R. Conversely, if a point p ∈ E` \R, then no point p′ ∈ DFJ
(p) lies in R.

4.3. Computing the simplicial complex QS(I) over I

In this subsection we explain how the simplicial complex QS(I) (which is,
in fact, a subdivision of Q(I)) is constructed.

Definition 20. [31] The cone (join) on a simplicial complex K with vertex
v, denoted by v ∗ K is the simplicial complex whose simplices have the form
〈v0, . . . , v`, v〉 (where 〈v0, . . . , v`〉 is a simplex of K spanned by the set of points
{v0, . . . , v`}), along with all faces of such simplices.

Some examples of cone joins are depicted in Figure 4.
The simplicial complex QS(I) is constructed using Procedure 2 recursively

with the cone join operation.

Procedure 2: Obtaining the simplicial complex QS(I).

Input: The point set FJ .
Output: The simplicial complex QS(I).
QS(I) := {〈p〉 : p ∈ E0 ∩ FJ};
for ` ∈ J1, nK do

for p ∈ E` ∩ FJ do
compute the subcomplex KDFJ

(p) of QS(I) formed by the

simplices of QS(I) such that all their vertices lie in DFJ
(p);

QS(I) := QS(I) ∪ (p ∗KDFJ
(p))

end

end

Observe that |Q(0)
S (I)| = FJ and |QS(I)| = |Q(I)|. By construction, any

`-simplex σ ∈ QS(I), with ` ∈ J0, nK, can be defined by an (ordered) list of its
vertices 〈v0, . . . , v`〉 satisfying that vi ∈ Di

FJ
(vj) for 0 ≤ i < j ≤ `. Besides, if σ

is an n-simplex of QS(I) then there always exists a set of points {vi ∈ Ei ∩FJ :
i ∈ J0, nK} such that σ = 〈v0, . . . , vn〉.

Remark 21. Next tips help to construct simplices incident to a given simplex:
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Figure 5: Let QS(I) be the simplicial subdivision of a 4-size 2-dimensional cube. Starting
from two simplices σ = 〈v0, v1, v2〉 (in dark blue) and σ′ = 〈v′0, v′1, v2〉 (in light blue) in QS(I)

sharing a vertex v2 ∈ E2, we look for a face-connected path joining σ and σ′ in A(2)
QS(I)

(〈v2〉).
Using Procedure 3, we define an intermediary simplex α = 〈v′′0 , v′′1 , v2〉 (in green) since we are
in the case r = r′. Then we reiterate the procedure on (σ, α) and on (α, σ′) defining µ (in

yellow) and µ′ (in orange) to get the path π = (σ, µ, α, µ′, σ′) joining σ and σ′ in A(2)
QS(I)

(〈v2〉).

2

v1

v

Figure 6: A path in A(2)
QS(I)

(〈v2〉) (light gray) induces a path in A(1)
QS(I)

(〈v1〉) (dark gray).

• Let v ∈ E` with ` ∈ J0, n−1K. If w = v±2ei, with i ∈ 24(v), then w ∈ E`+1.
Furthermore, when w belongs to FJ , then v ∈ D`

FJ
(w). Additionally, when

` ∈ J1, nK, if z = v ± 2ej, with j ∈ 04(v), then z ∈ D`−1
FJ

(v).

• Let v` ∈ E` ∩ FJ with ` ∈ J1, nK. Then, there exist subindices 1 ≤ i1 <
· · · < i` ≤ n, such that {i1, . . . , i`} = 04(v`). For j decreasing from ` − 1
to 0, define vj := vj+1 + λj+1e

ij+1 , where λj ∈ {±2}. Then, σQS(I)(v`) =
〈v0, . . . , v`〉 is an `-simplex in AQS(I)(〈v`〉).

• Let ` ∈ J1, nK, k ∈ J0, n− `K, vk+` ∈ Ek+`∩FJ and vk ∈ Dk
FJ

(vk+`). Then,
there exist subindices 1 ≤ ik+1 < · · · < ik+` ≤ n with ij ∈ 24(vk) and
λ∗j ∈ {±2}, for j ∈ Jk+1, k+`K, such that vk+` = vk+

∑
j∈Jk+1,k+`K λ

∗
je

ij .

For j increasing from k+ 1 to k+ `− 1, define vj := vj−1 + λ∗je
ij . Then,

σQS(I)(vk, vk+`) = 〈vk, . . . , vk+`〉 is an `-simplex in AQS(I)(〈vk, vk+`〉).

Example 22. Let us consider I = (Z4, FI) such that FI = {(0, 0, 0, 0)}. Then
Q(I) consists in a 4-size 4-dimensional cube centered at (0, 0, 0, 0) and QS(I)
is a subdivision of the cube in 4-simplices, all of them incident to vertex v =
(0, 0, 0, 0). Let k = 0, ` = 3, v0 = (2,−2, 2,−2) ∈ E0 ∩FJ and v3 = (2, 0, 0, 0) ∈
E3 ∩ FJ . Then, v3 = v0 + 2e2 − 2e3 + 2e4. Define v1 := v0 + 2e2 and v2 :=
v0 + 2e2 − 2e3. Then, σQS(I)(v0, v3) = 〈v0, v1, v2, v3〉 ∈ QS(I).
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An example of Procedure 3 computing a face-connected path inA(`)
QS(I)(〈v`〉),

joining two different `-simplices σ and σ′ is depicted in Figure 5.

Procedure 3: Obtaining a face-connected path in A(`)
QS(I)(〈v`〉), for a

given vertex v` ∈ E` ∩ FJ , ` ∈ J1, nK, joining two different `-simplices
σ = 〈v0, . . . , v`−1, v`〉 and σ′ = 〈v′0, . . . , v′`−1, v`〉 in QS(I), where vi, v

′
i ∈

Ei ∩ FJ for i ∈ J0, `− 1K.
Input: σ = 〈v0, . . . , v`−1, v`〉 and σ′ = 〈v′0, . . . , v′`−1, v`〉 in QS(I) with

v` ∈ E` ∩ FJ and σ 6= σ′.

Output: A face-connected path in A(`)
QS(I)(〈v`〉) joining σ and σ′.

Let j ∈ J0, `− 1K such that vj 6= v′j and for each s ∈ Jj + 1, `K, vs = v′s;

if j = 0 then
σ and σ′ share exactly the (`− 1)-face 〈v1, . . . , v`〉

else

vj = vj+1 + λer and v′j = vj+1 + λ′er
′

for some r, r′ ∈ 04(vj+1) and

λ, λ′ ∈ {±2};
if r 6= r′ then

v′′j−1 := vj+1 + λer + λ′er
′ ∈ Dj−1

FJ
(vj) ∩ Dj−1

FJ
(v′j);

Let σQS(I)(v
′′
j−1) = 〈v′′0 , . . . , v′′j−1〉 obtained using Remark 21;

α := 〈v′′0 . . . , v′′j−1, vj , vj+1, . . . , v`〉 and α′ := 〈v′′0 , . . . , v′′j−1, v′j ,

vj+1, . . . , v`〉 share the (`− 1)-face 〈v′′0 , . . . , v′′j−1, vj+1, . . . , v`〉;
if σ and α (resp. α′ and σ′) do not share an (`− 1)-face then

repeat the process for σ and α (resp. α′ and σ′)
end

else
r = r′ and λ 6= λ′. Take λ∗ ∈ {±2} and r′′ ∈ 04(vj+1), r′′ 6= r, r′;

v′′j := vj+1 + λ∗er
′′ ∈ Dj

FJ
(vj+1);

σQS(I)(v
′′
j ) = 〈v′′0 , . . . , v′′j 〉 obtained using Remark 21;

α := 〈v′′0 , . . . , v′′j , vj+1, . . . , v`〉;
if σ and α (resp. α and σ′) do not share an (`− 1)-face then

repeat the process for σ and α (resp. α and σ′)
end

end

end

Proof of Proc 3. Let v` ∈ E` ∩ FJ , with ` ∈ J1, nK. Let σ = 〈v0, . . . , v`−1, v`〉,
σ′ = 〈v′0, . . . , v′`−1, v`〉 ∈ A

(`)
QS(I)(〈v`〉) with σ 6= σ′.

Let us prove property (P`): “there exists a face-connected path π(σ, σ′) in

A(`)
QS(I) (〈v`〉) joining σ and σ′ and whose vertices are all in D+

FJ
(v`)”.

Initialization (` = 1): two different 1-simplices σ = 〈v0, v1〉 and σ′ = 〈v′0, v1〉 are

joined by the face-connected path (σ, σ′) in A(1)
QS(I)(〈v1〉).

Heredity (` ∈ J1, nK): assume that (Pm) is true for m ∈ J0, ` − 1K. Let j ∈
J0, ` − 1K such that vj 6= v′j and for any i ∈ Jj + 1, ` − 1K, vi = v′i. Now, let
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λ, λ′ ∈ {±2} and r, r′ ∈ 04(vj+1) such that vj = vj+1+λer and v′j = vj+1+λ′er
′
.

Then, two cases are possible:

(1) When r 6= r′, we define v′′j−1 := vj+1 +λer +λ′er
′

and deduce v′′0 , . . . , v
′′
j−2

such that σQS(I)(v
′′
j−1) = 〈v′′0 , . . . , v′′j−1〉. We define then α := 〈v′′0 , . . . , v′′j−1,

vj , vj+1, . . . , v`〉 and α′ := 〈v′′0 , . . . , v′′j−1, v′j , vj+1, . . . , v`〉. Since α and α′

share the face 〈v′′0 , . . . , v′′j−1, vj+1, . . . , v`〉, then π(α, α′) := (α, α′). By (Pj)

(j < `) there exists a face-connected path π(µ, µ′) in A(j)
QS(I)(〈vj〉) joining

µ := 〈v0, . . . , vj−1, vj〉 and µ′ := 〈v′′0 , . . . , v′′j−1, vj〉. We can rewrite each

ith element of π(µ, µ′) such that: π(µ, µ′)(i) = 〈ξi0, . . . , ξij−1, vj〉, where for

each i, ξik ∈ Ek where k belongs to J0, j − 1K. From this path, we can de-

duce (see Figure 6) a face-connected path π(σ, α) in A(`)
QS(I)(〈v`〉) joining

σ and α based on π(µ, µ′): ∀i, π(σ, α)(i) := 〈ξi0, . . . , ξij−1, vj , vj+1, . . . , v`〉.
The reasoning is similar for α′ and σ′, so we can obtain π(α′, σ′). Using
the concatenation operator ∧, we obtain that a face-connected path in

A(`)
QS(I)(〈v`〉) joining σ and σ′ is π(σ, α) ∧ π(α, α′) ∧ π(α′, σ′).

(2) When r = r′, between σ and α (respectively, α and σ′), we can apply (1),

from which we deduce π(σ, α) and π(α, σ′) in A(`)
QS(I)(〈v`〉), and then a

path joining σ and σ′ in A(`)
QS(I)(〈v`〉) is π(σ, α) ∧ π(α, σ′).

By induction on `, we deduce that (P`) is true for any ` ∈ J1, nK. �

Example 23. Let I = (Z4, FI) and FI = {(0, 0, 0, 0)}. Let v3 = (2, 0, 0, 0),
v0 = (2, 2, 2, 2), v1 = (2, 2, 2, 0), v2 = (2, 2, 0, 0), v′0 = (2,−2,−2, 2), v′1 =
(2,−2, 0, 2) and v′2 = (2,−2, 0, 0). Let us apply Procedure 3 to obtain a face-

connected path in A(3)
QS(I)(〈v3〉) joining σ = 〈v0, v1, v2, v3〉, and σ′ = 〈v′0, v′1, v′2, v3〉.

• Take σ and σ′, then j = 2, v2 = v3 + 2e2 and v′2 = v3 − 2e2. We are in case
(2): r = 2 = r′. Let vi2 := v3 − 2e3 = (2, 0,−2, 0), vi1 := (2, 2,−2, 0) and
vi0 := (2, 2,−2, 2). Let α1 := 〈vi0, vi1, vi2, v3〉.
• Take σ and α1, then j = 2, v2 = v3 + 2e2 and vi2 = v3 − 2e3. Let vii1 :=
v3 + 2e2 − 2e3 = (2, 2,−2, 0) = vi1, vii0 := vi0, α2 := 〈vi0, vi1, v2, v3〉 and α′2 :=
〈vi0, vi1, vi2, v3〉 = α1, then α2 and α1 share a 2-face.
• Take σ and α2, then j = 1, v1 = v2 + 2e3 and vi1 = v2 − 2e3. Let viii1 :=
v2 + 2e4 = (2, 2, 0, 2), viii0 := (2, 2, 2, 2) = v0 and α3 := 〈v0, viii1 , v2, v3〉, then σ
and α3 share a 2-face.
• Take α3 and α2, then j = 1, viii1 = v2 + 2e4 and vi0 = v2 − 2e3. Let
viv0 = v2 + 2e4 − 2e3 = (2, 2,−2, 2) = vii0 , α4 := (vii0 , v

iii
1 , v2, v3) and α′4 :=

(vii0 , v
ii
1 , v2, v3) = α2, then α3 and α4 (resp. α4 and α2) share a 2-face.

• Take α1 and σ′, then j = 2, vi2 = v3 − 2e3 and v′2 = v3 − 2e2. Let vv1 :=
v3 − 2e3 − 2e2 = (2,−2,−2, 0), vv0 := (2,−2,−2, 2) = v′0, α5 := 〈v′0, vv1 , vi2, v3〉
and α′5 := 〈v′0, vv1 , v′2, v3〉, then α5 and α′5 (resp. α′5 and σ′) share a 2-face.
• Take α1 and α5, then j = 1, vi1 = vi2 + 2e2 and vv1 = vi2 − 2e2. Let
vvi1 := vi2+2e4 = (2, 0,−2, 2), vvi0 := (2, 2,−2, 2) = vi0 and α6 := 〈vi0, vvi1 , vi2, v3〉,
then α1 and α6 share a 2-face.
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• Take α6 and α5, then j = 1, vvi1 = vi2 + 2e4 and vv1 = vi2 − 2e2. Let
vvii0 := vi2 + 2e4 − 2e2 = (2,−2,−2, 2) = v′0, α7 := 〈v′0, vvi1 , vi2, v3〉 and α′7 :=
〈v′0, vv1 , vi2, v3〉 = α5, then α6 and α7 (resp. α7 and α5) share a 2-face.
Finally, the resulting face-connected path is (σ, α3, α4, α2, α1, α6, α7, α5, α

′
5, σ
′).

Procedure 4: Obtaining a face-connected path inA(`)
QS(I)(〈vk, vk+`〉), with

` ∈ J2, nK, k ∈ J0, n − `K, vk+` ∈ Ek+` ∩ FJ and vk ∈ Dk
FJ

(vk+`), joining

two different simplices σ and σ′ in A(`)
QS(I)(〈vk, vk+`〉).

Input: σ = 〈vk, vk+1, . . . , vk+`−1, vk+`〉 and σ′ = 〈vk, v′k+1, . . . , v
′
k+`−1,

vk+`〉 in QS(I), with σ 6= σ′.

Output: A face-connected path in A(`)
QS(I)(〈vk, vk+`〉) joining σ and σ′.

Let j ∈ Jk + 1, k + `− 1K such that vj 6= v′j and vs = v′s for each

s ∈ Jj + 1, k + `− 1K;
if j = k + 1 then

σ and σ′ share the (`− 1)-face 〈vk, vk+2, . . . , vk+`−1, vk+`〉
else

vj = vj+1 + λer and v′j = vj+1 + λ′er
′

for some r, r′ ∈ 04(vj+1) with

r 6= r′ and λ, λ′ ∈ {±2} (by Remark 15);

v′′j−1 := vj+1 + λer + λ′er
′
;

let σQS(I)(vk, v
′′
j−1) = 〈vk, v′′k+1, . . . , v

′′
j−1〉 obtained using Remark 21;

α := 〈vk, v′′k+1, . . . , v
′′
j−1, vj , vj+1, . . . , vk+`〉 and α′ := 〈vk, v′′k+1,

. . . , v′′j−1, v′j , vj+1, . . . , vk+`〉;
if σ and α (resp. α′ and σ′) do not share an (`− 1)-face then

repeat the process for σ and α (resp. α′ and σ′)
end

end

Proof of Procedure 4. Let σ = 〈vk, . . . , vk+`−1, vk+`〉 and σ′ = 〈vk, v′k+1, . . . ,
v′k+`−1, vk+`〉, σ 6= σ′. Let us prove property (P ′`) : “there exists a face-

connected path π(σ, σ′) in A(`)
QS(I)(〈vk, vk+`〉) whose vertices are all in A+

FJ
(vk)∩

D+
FJ

(vk+`), joining σ and σ′”.
Initialization (` = 2): Observe that σ = 〈vk, vk+1, vk+2〉 and σ′ = 〈vk, v′k+1, vk+2〉
share the 1-face 〈vk, vk+2〉. Then π(σ, σ′) = (σ, σ′).
Heredity (` ∈ J3, nK): we assume that (P ′m) is true for m ∈ J2, `− 1K. We want

to prove that (P ′`) is true. We define α := 〈vk, v′′k+1, . . . , v
′′
j−1, vj , vj+1, . . . , vk+`〉

and α′ := 〈vk, v′′k+1, . . . , v
′′
j−1, v

′
j , vj+1, . . . , vk+`〉. It follows that α and α′ share

an (`−1)-face. Since j ∈ Jk+1, k+`−1K, then j−k ≤ `−1. Then (by (P ′j−k)), the
(j−k)-simplices µ = 〈vk, vk+1, . . . , vj−1, vj〉 and µ′ = 〈vk, v′′k+1, . . . , v

′′
j−1, vj〉 are

joined by a face-connected path π(µ, µ′) in A(j−k)
QS(I)(〈vk, vj〉). By rewriting each

ith element of π(µ, µ′): π(µ, µ′)(i) = 〈vk, ξik+1, . . . , ξ
i
j−1, vj〉, we deduce the ith el-

ement of a new path π(σ, α): π(σ, α)(i) = 〈vk, ξik+1, . . . , ξ
i
j−1, vj , vj+1, . . . , vk+`〉,

in A(`)
QS(I)(〈vk, vk+`〉) joining σ and α. We proceed similarly with α′ and σ′ to
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Figure 7: From left to right: an nD picture I = (Zn, FI); its corresponding simpli-
cial complex QS(I); two 2-simplices σ and σ′ of QS(I) incident to a vertex v` and a
2n-path π2n := (v0n, v

1
n, v

2
n) of points in An

FJ
(v`); the face-connected path of 2-simplices

(σ(0,−), σ(0,+), σ(1,−), σ(1,+), σ(2,−), σ(2,+)) (in light gray, yellow, orange, red, green, and

light gray) in A(n)
QS(I)

(〈v`〉) computed from π2n using Remark 24.

obtain π(α′, σ′) in A(`)
QS(I)(〈vk, vk+`〉). We obtain the path we were looking for,

using the concatenation operator ∧: π(σ, σ′) := π(σ, α) ∧ π(α, α′) ∧ π(α′, σ′).
By induction on ` ∈ J2, nK, (P ′`) is true for any ` ∈ J2, nK and k ∈ J0, n− `K. �

Remark 24. Given vertices v` ∈ E` ∩ FJ and vn, v
′
n ∈ An

FJ
(v`), there exist

subindices 1 ≤ i1 < · · · < i` ≤ n and 1 ≤ i`+1 < · · · < in ≤ n, such that
{i1, . . . , i`} = 04(v`) and {i`+1, . . . , in} = 24(v`). We have

vn = v` +
∑

j∈J`+1,nK

λje
ij and v′n = v` +

∑
j∈J`+1,nK

λ′je
ij , where λj , λ

′
j ∈ {±2}.

For j ∈ J0, ` − 1K, define vj := vj+1 + λj+1e
ij+1 , being λj ∈ {±2}. We have

vj ∈ Dj
FJ

(vj+1), for all j ∈ J0, `− 1K.

(P1) If vn, v
′
n are 2n-neighbors, then there exists r ∈ J`+1, nK such that λr 6= λ′r

and λj = λ′j, for all j 6= r. Suppose, without loss of generality, that

r = n. Define vn−1 := 1
2 (vn + v′n). For j ∈ J` + 1, n − 2K, define vj :=

vj+1+λj+1e
ij+1 . Then σ := 〈v0, . . . , vn−1, vn〉 and σ′ := 〈v0, . . . , vn−1, v′n〉

are n-simplices in AQS(I)(〈v`〉) sharing a common (n− 1)-face.

(P2) Any two n-simplices µ and µ′ in QS(I) incident to vn are face-connected

in A(n)
QS(I)(〈vn〉) by Procedure 3.

(P3) Any two n-simplices µ = 〈v0, . . . , v`−1, v`, v`+1, . . . , vn−1, vn〉 and µ′ :=

〈v′0, . . . , v′`−1, v`, v′`+1, . . . , v
′
n−1, vn〉 are face-connected in A(n)

QS(I)(〈v`, vn〉):

Let µ′′ := 〈v′0, . . . , v′`−1, v`, v`+1, . . . , vn−1, vn〉. By Procedure 3 (resp. by
Procedure 4), µ and µ′′ (resp. µ′′ and µ′) are face-connected in

A(n)
QS(I)(〈v`, vn〉).

Now let us prove the main result in this subsection (depicted in Figure 7).

Proposition 25. If I is DWC then QS(I) is wWC.
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Proof. Assume that I is DWC. Let ` ∈ J0, nK and v` ∈ E` ∩ FJ . Let
σ = 〈v0, . . . , v`−1, v`, v`+1, . . . , vn〉 and σ′ = 〈v′0, . . . , v′`−1, v`, v′`+1, . . . , v

′
n〉 be

two different n-simplices of QS(I) incident to v`. We want to prove property

(P): “there exists a face-connected path in A(n)
QS(I)(〈v`〉) joining σ and σ′”.

When ` = n, then v′n = vn, and (P) is true by Remark 24.(P2).
Now, when ` ∈ J0, n−1K, since I is DWC, then there exists a 2n-path in An

FJ
(v`)

denoted π2n := (v0n := vn, v
1
n, . . . , v

m−1
n , vmn := v′n) joining vn and v′n. For each

pair (vin, v
i+1
n ), where i belongs to J0,m− 1K, we obtain, using Remark 24.(P1),

the n-simplices σ(i,+) and σ(i+1,−) in A(n)
QS(I)(〈v`〉) sharing an (n−1)-face. Since,

by Remark 24.(P3), there are face-connected paths:

π(σ = σ(0,−), σ(0,+)) in A(n)
QS(I)(〈v`, v

0
n〉),

π(σ(i,−), σ(i,+)) in A(n)
QS(I)(〈v`, v

i
n〉), for i ∈ J1,m− 1K,

π(σ(m,−), σ(m,+) = σ′) in A(n)
QS(I)(〈v`, v

m
n 〉),

(where π(a, b) means that there is a face-connected path of n-simplices joining
a and b). Then σ and σ′ are face-connected by a path resulting from the
concatenation of the paths described above:

π(σ, σ′) := π(σ0,−, σ0,+)∧π(σ0,+, σ1,−)∧· · ·∧π(σm−1,+, σm,−)∧π(σm,−, σm,+),

in A(n)
QS(I)(〈v`〉). Since (P) is true for any pair of n-simplices σ and σ′ in

A(n)
QS(I)(〈v`〉) and for any v` in QS(I), then QS(I) is wWC. �

5. Combinatorial method to obtain the weak well-composed simpli-
cial complex PS(I) over an nD picture I

The aim of this section is to compute a wWC simplicial complex PS(I)
over I. For doing this, we first “enlarge” the nD binary image J = (Zn, FJ),
encoding Q(I), around the critical points and compute a new nD binary image
L = (Zn, FL). Then, we construct the simplicial complex PS(I) and prove later
that PS(I) is a wWC simplicial complex over I. For the sake of clarity, the
proofs of the results presented in this section are given in an annex at the end
of this document.

5.1. Computing the nD binary image L = (Zn, FL)

In this subsection we give a procedure to obtain the nD binary image L =
(Zn, FL) that will be used later to compute the simplicial complex PS(I).

Notation 26. The set Zn \ 2Zn can be decomposed into the disjoint sets:

O` := {p ∈ Zn \ 2Zn : Card(02(p)) is `} ,

where ` ∈ J0, n− 1K. Then, Zn = (ti∈J0,nKEi)
⊔

(ti∈J0,n−1KOi).
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Figure 8: Computing FL from FJ , where FJ (showed on the left) encodes two 2-cubes sharing
a vertex (as in Figure 1). The blue, red and green points on the left figure belong, respectively,
to E0, E1 and E2. Black points in the middle are critical. The blue, red and green points on
the right belong, respectively, to ((E0 \R)∪O0)∩FL, ((E1 \R)∪O1)∩FL and (E2 ∩FL)∪R.
Note that each red rectangle, admitting a center called p, encloses the set S(p).

Definition 27 (S-Block). Let p ∈ 2Zn. The S-block S(p) is the set:

S(p) :=

p+
∑

j∈24(p)

λj e
j : λj ∈ {0,±1}

 .

Observe that if p ∈ E` then S(p)\{p} ⊆
⊔

i∈J0,`KOi and, for any point q ∈ S(p),

it is satisfied that ||p − q||∞ ≤ 1. For example, if p encodes a 0-cell, then
S(p) = {q ∈ Zn : ||p− q||∞ ≤ 1}. If p encodes an n-cell, then S(p) = {p}.

The following result establishes that Zn =
⊔

p∈2Zn S(p).

Remark 28. For any point q ∈ Zn the only p ∈ 2Zn such that q ∈ S(p) is:

p = q +
∑

j∈12(q)

µj e
j , where µj = 1 if j ∈ 14(q) or −1 if j ∈ 34(q).

Procedure 5 is used to compute the nD binary image L = (Zn, FL), by adding
the S-block S(p) to J = (Zn, FJ), for each critical point p (see Figure 8).

Procedure 5: Computing the nD binary image L = (Zn, FL).

Input: The nD binary image J = (Zn, FJ) encoding Q(I) and the set R
of critical points of FJ .

Output: An nD binary image L = (Zn, FL).
FL := FJ // initial points are preserved;
foreach p ∈ R do

FL := FL ∪ S(p) // we enlarge J around the critical points
end

Observe that since p ⊆ S(p), initial points are preserved, and, since S(p) ∩
S(q) = ∅ if p 6= q by Remark 28, then the entire set S(p) is added to FL.

5.2. The intermediary sets DFL
(p) and AFL

(p) for any p ∈ FL

In this subsection, we first define a partition of FL into the sets C` for ` ∈
J0, nK. Second, for each point p ∈ C`, we define the sets DFL

(p) (used to compute
PS(I)) and AFL

(p) (used to prove that PS(I) is wWC).

17



Figure 9: From left to right: The set FL from Figure 8; computation of DFL
(p) (blue points)

for a (red) point p ∈ E1 \R; D1
FL

(p) (in red) for a (green) point p ∈ E2 ∩R; DFL
(p) (in blue)

for a (red) point p ∈ O1.

In [13, 14, 15], in 3D context, C` would encode the `-cells of a 3D polyhedral
complex over I; DFL

(p) would encode the set of faces of the cell encoded by p;
and AFL

(p) would encode the set of cells incident to p.

Remark 29. The set FL can be decomposed into the disjoint sets:

Cn := (En ∩ FL) ∪R and C` := ((E` \R) ∪ O`) ∩ FL for ` ∈ J0, n− 1K.

Definition 30. For p ∈ FL, define the set DFL
(p) := D+

FL
(p) \ {p} where:

• If p ∈ C0 then D+
FL

(p) = {p}.

• If p ∈ E` \R, for ` ∈ J1, nK, then p ∈ C` and D+
FL

(p) := D+
FJ

(p);

• If p ∈ E` ∩R, for ` ∈ J1, nK, then p ∈ Cn and

D+
FL

(p) := S(p) t (DFJ
(p) \R) t

⊔
r∈DFJ

(p)∩R

(S(r) ∩N (p)).

• If p ∈ O`, for ` ∈ J1, n − 1K, then p ∈ C` and ∃q ∈ R s.t. p ∈ S(q). We
have:

D+
FL

(p) := (S(q) ∩N+(p)) t (DFJ
(q) \R) t

⊔
r∈DFJ

(q)∩R

(S(r) ∩N (p)),

with N+(p) :=
{
p+

∑
j∈02(p) λje

j : λj ∈ {0,±1}
}

and N (p) := N+(p) \ {p}.
For p ∈ C`, ` ∈ J1, nK and j ∈ J0, `− 1K, Dj

FL
(p) denotes the set DFL

(p) ∩ Cj.

Notice that if p ∈ 2Zn then N (p) = {q ∈ Zn : ||p− q||∞ = 1}.
The intermediary steps for computing DFL

(p) are depicted in Figure 9.

Proposition 31. If p ∈ C` then DFL
(p) ⊆

⊔
i∈J0,`−1K Ci.

Example 32. Let p ∈ C` with ` ∈ J1, nK.
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• Suppose p = (0, `. . ., 0, 2, n−`. . . , 2) ∈ E` \ R. Then D+
FL

(p) = {(x1, . . . , x`,
2, n−`. . . , 2) : xi ∈ {0,±2}}.

• Suppose p = (0, `. . ., 0, 2, n−`. . . , 2) ∈ E` ∩R. We have S(p) = {(0, `. . ., 0, x`+1,
. . . , xn) : xi ∈ {2, 2± 1}} and DFJ

(p) \R = {(x1, . . . , x`, 2, n−`. . . , 2) : xi ∈
{0,±2}} \R.
Now, if, for example, r = (0, `′. . ., 0, 2, n−`

′
. . . , 2) ∈ DFJ

(p) ∩ R, with `′ < `,

then S(r) ∩N (p) =
{

(0, `′. . ., 0, 1, `−`
′

. . . , 1, x`+1, . . . , xn) : xi ∈ {2, 2± 1}
}
.

• Suppose p = (0, k. . ., 0, 2, `−k. . . , 2, 1, n−`. . . , 1) ∈ O`, k ∈ J0, `K and ` < n. We
have q = (0, k. . ., 0, 2, `−k. . . , 2, 2, n−`. . . , 2) ∈ Ek is the only point such that p ∈
S(q). We have S(q) ∩ N+(p) = {(0, k. . ., 0, xk+1, . . . , x`, 1, n−`. . . , 1) : xi ∈
{2, 2± 1}} and DFJ

(q) \R = {(x1, . . . , xk, 2, n−k. . . , 2) : xi ∈ {0,±2}} \R.
Now, if, for example, r = (0, k′. . ., 0, 2, k−k

′
. . . , 2, 2, n−k. . . , 2) ∈ DFJ

(q) ∩R, with

k′ < k, then S(r) ∩ N (p) = {(0, k′. . ., 0, 1, k−k
′

. . . , 1, xk+1, . . . , x`, 1, n−`. . . , 1) :
xi ∈ {2, 2± 1}}.

Remark 33. Let p ∈ FL.

• If p ∈ E` \R then p ∈ C`. A point p′ lies in D`−1
FL

(p) (for ` ∈ J1, nK) iff:

p′ = p+ λ ej , with λ ∈ {±2} and j ∈ 04(p).

• If p ∈ E`∩R then p ∈ Cn. A point p′ lies in Dn−1
FL

(p) iff one of the following
cases holds for p′ (corresponding to each of the sets in Definition 30):

p′ = p+ λ ej, with λ ∈ {±1} and j ∈ 24(p);

p′ = p+ λ ej, with λ ∈ {±2} and j ∈ 04(p) s.t. p+ λ ej ∈ En−1 \R;

p′ = p+ λ ej, with λ ∈ {±1} and j ∈ 04(p) s.t. p+ 2λ ej ∈ R.

• If p ∈ O`, then p ∈ C` and ∃q ∈ 2Zn s.t. p ∈ S(q) (by Remark 28).
Therefore, a point p′ lies in D`−1

FL
(p) (for ` ∈ J1, n − 1K) iff one of the

following cases holds (corresponding to each of the sets in Definition 30):

p′ = p+ λ ej, with λ ∈ {±1} and j ∈ 24(p);

p′ = q + λ ej, with λj ∈ {±2} and j ∈ 04(p) s.t. q + λ ej ∈ E`−1 \R;

p′ = p+ λ ej, with λj ∈ {±1}, and j ∈ 04(p) s.t. q + 2λ ej ∈ R.

Definition 34. Define the set AFL
(p) := A+

FL
(p) \ {p} for p ∈ C`, where:

• If ` = n then A+
FL

(p) = {p}.

• If ` < n and p ∈ E` \R then A+
FL

(p) := (A+
FJ

(p) \R) t
⊔

q∈AFJ
(p)∩R S(q).

• If ` < n and p ∈ O` then A+
FL

(p) := FL∩
{
p+

∑
j∈12(p) λj e

j : λj ∈ {0,±1}
}

.
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The set AFL
(p) ∩ C`+1, for p ∈ C` and ` ∈ J0, n− 1K, is denoted by A`+1

FL
(p).

Example 35. Let p ∈ C` for ` ∈ J0, n− 1K.

• Suppose p = (0, `. . ., 0, 2, n−`. . . , 2) ∈ E` \ R. Then A+
FJ

(p) = {(0, `. . ., 0, x`+1,
. . . , xn) : xi ∈ {2, 2± 2}}.
Now, if, for example, q = (0, `′. . ., 0, 2, n−`

′
. . . , 2) ∈ AFJ

(p) ∩ R, with `′ > `,

then S(q) =
{

(0, `′. . ., 0, x`′+1, . . . , xn) : xi ∈ {2, 2± 1}
}
.

• Suppose p = (0, k. . ., 0, 2, `−k. . . , 2, 1, n−`. . . , 1) ∈ O`, we have A+
FL

(p) = FL ∩
{(0, k. . ., 0, 2, `−k. . . , 2, x`−k+1, . . . , xn) : xi ∈ {1, 1± 1}}.

Proposition 36. If p ∈ C` for ` ∈ J0, n− 1K, then AFL
(p) ⊆

⊔
i∈J`+1,nK Ci and

p′ ∈ AFL
(p) iff p ∈ DFL

(p′).

Remark 37. Let p ∈ C` and p′′ ∈ Dk
FL

(p), where ` ∈ J1, nK and k ∈ J0, ` − 1K.
The expression of a point p′ ∈ D`−1

FL
(p)∩A`−1

FL
(p′′) can be deduced from Remark

33 and Definition 34:

• If p′′ ∈ Ok, then p′ ∈ O`−1 and p ∈ O` or p ∈ E`′∩R, for some `′ (this last
case only if ` = n). In any case, since p′ ∈ D`−1

FL
(p), then p′ = p + λej,

for λ ∈ {±1} and j ∈ 02(p). Now, since p′ ∈ A`−1
FL

(p′′), j ∈ 12(p′′).

Therefore, p′ = p+ λej for λ ∈ {±1} and j ∈ 02(p) ∩ 12(p′′).

• Else p′′ ∈ Ek \ R. Since p′ ∈ D`−1
FL

(p), by Remark 33, p′ = z + λej for
z ∈ {p, q} (being q the point in 2Zn such that p ∈ S(q)), λ ∈ {±1,±2} and
j ∈ 02(p). Moreover, p′ ∈ A`−1

FL
(p′′), so, necessarily j ∈ 02(p) ∩ 24(p′′).

5.3. Computing the wWC simplicial complex PS(I) over I

The aim of this section is to compute a simplicial complex PS(I) whose
vertex set is FL and prove that it is wWC over I.

First, PS(I) is constructed using the cone join operation as follows.

Procedure 6: Obtaining the simplicial complex PS(I).

Input: The point set FL.
Output: The simplicial complex PS(I).
PS(I) := {〈p〉 : p ∈ C0};
for ` ∈ J1, nK do

for p ∈ C` do
let KDFL

(p) be the set of simplices whose vertices lie in DFL
(p);

PS(I) := PS(I) ∪ (p ∗KDFL
(p))

end

end

As in the case of QS(I), any simplex σ ∈ PS(I) is given by an (ordered) list
its vertices 〈v0, . . . , v`〉 such that vi ∈ DFL

(vj) for 0 ≤ i < j ≤ n. In particular,
if σ is an n-simplex, then σ = 〈v0, . . . , vn〉 where vi ∈ Ci for all i ∈ J0, nK. An
example of computation of PS(I) from FL is given in Figure 10.
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Figure 10: From left to right: the set FL; the corresponding set C0 (in blue); adding (p ∗
KDFL

(p)) for each (red) point p ∈ C1; adding (p ∗KDFL
(p)) for each (green) point p ∈ C2.

Remark 38. [31, p. 12] Let K1,K2 be simplicial complexes and f : K
(0)
1 →

K
(0)
2 a map such that if 〈v0, . . . , vk〉 in K1 then f(v0), . . . , f(vk) are vertices of

a simplex of K2. Then f can be extended to a continuous map g : |K1| → |K2|.

Proposition 39. There exists a deformation retraction of |PS(I)| onto |QS(I)|.

Proof. The maps ft : |PS(I)| → |PS(I)|, t ∈ [0, 1], are defined as follows:
For any v ∈ FL, let ft(v) := v + t(p− v), where p ∈ FJ is such that v ∈ S(p).
We have that:

• ft(v) = v for any v ∈ FJ and t ∈ [0, 1] (because if v ∈ FJ then v ∈ S(v)).

• Let us see that if σ = 〈v0, . . . , vk〉 is a simplex of PS(I) then f1(v0), . . . ,
f1(vk) are vertices of a simplex of QS(I): Since σ ∈ PS(I), then vi ∈ C` for
` ∈ J0, kK and vj ∈ AFL

(vi) for 0 ≤ i < j ≤ k. Now, given i ∈ J0, k − 1K:

– If vi ∈ Ei \R then f1(vi) = vi.

– If vi ∈ Oi then there exits pi ∈ R such that vi ∈ S(pi). Moreover,

∗ If k < n then vj ∈ Oj∩S(pj) for j ∈ J0, kK and pj ∈ R∩AFJ
(pi).

∗ If k = n, then vn ∈ AFJ
(pi) and f1(vn) = vn.

Then, f1 : FL → FJ can be extended to a continuous map f1 : |PS(I)| →
|QS(I)| by Remark 38.

• f0(x) = x and f1(x) ∈ |QS(I)|, for any x ∈ |PS(I)|;

• ft(y) = y, for any y ∈ |QS(I)| and for any t ∈ [0, 1].

Then, F : |PS(I)| × [0, 1] → |PS(I)|, given by F (x, t) = ft(x), is a deformation
retraction of |PS(I)| onto |QS(I)|. �

Proposition 40. Let ` ∈ J1, nK and k ∈ J0, n− `K.

• For any v` ∈ C`, there exists an `-simplex σPS(I)(v`) = 〈v0, . . . , v`〉 such
that vi ∈ Ci for all i ∈ J0, `K.

• For any vk ∈ Ck and vk+` ∈ Ak+`
FL

(vk), there exists an `-simplex σPS(I)(vk,
vk+`) = 〈vk, . . . , vk+`〉 such that vi ∈ Ci for all i ∈ Jk, k + `K.
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Procedure 7: Computing a face-connected path in A(`)
PS(I)(〈v`〉) for v` ∈

C`, and ` ∈ J1, nK, joining two different simplices σ and σ′ in A(`)
PS(I)(〈v`〉).

Input: Two different `-simplices σ = 〈v0, . . . , v`−1, v`〉 and σ′ = 〈v′0, . . . ,
v′`−1, v`〉 in PS(I) s.t. vi, v

′
i ∈ Ci, for all i ∈ J0, `− 1K and v` ∈ C`.

Output: A face-connected path in A(`)
PS(I)(〈v`〉) joining σ and σ′.

Let j ∈ J0, `− 1K such that vj 6= v′j and for each s ∈ Jj + 1, `K, vs = v′s;

if j = 0 then
σ and σ′ share the (`− 1)-simplex 〈v1, . . . , v`〉

else
vj+1 ∈ S(wr) for some wr ∈ Er and r ∈ J0, j + 1K;
vj = z + λ ei and v′j = z′ + λ′ ei

′
, where i, i′ ∈ 02(vj+1),

λ, λ′ ∈ {±1,±2} and z, z′ ∈ {vj+1, wr} (by Remark 33);
if i 6= i′ then

if |λ| = |λ′| then

v′′j−1 := z + λ ei + λ′ ei
′ ∈ Dj−1

FL
(vj) ∩ Dj−1

FL
(v′j)

else

(suppose |λ| = 1 and |λ′| = 2) w′′j−1 := wr + 2λ ei + λ′ ei
′
;

if w′′j−1 ∈ Cj−1 then

v′′j−1 := w′′j−1 ∈ D
j−1
FL

(vj) ∩ Dj−1
FL

(v′j)

else

v′′j := vj+1 + λ ei + 1
2λ
′ ei
′ ∈ Dj−1

FL
(vj) ∩ Dj−1

FL
(v′j)

end

end
By Proposition40, there exists v′′t ∈ Ct, t ∈ J0, j − 2K, s.t.
α := 〈v′′0 , . . . , v′′j−1, vj , vj+1, . . . , v`〉 and α′ := 〈v′′0 , . . . , v′′j−1, v′j ,
vj+1, . . . , v`〉 are `-simplices in APS(I)(〈v`〉) sharing a common
(`− 1)-face;

if σ and α (resp. α′ and σ′) do not share an (`− 1)-face then
repeat the process for σ and α (resp. α′ and σ′)

end

else

∃ i′′ ∈ 02(vj+1), i′′ 6= i, s.t. v′′j := z′′ + λ′′ei
′′ ∈ Dj

FL
(vj+1) for

some z′′ ∈ {vj+1, wr} and λ′′ ∈ {±1,±2} (by Remark 33) ;
By Proposition 40, there exist v′′t ∈ Ct, t ∈ J0, j − 1K, such that
α := 〈v′′0 , . . . , v′′j , vj+1, . . . , v`〉 is an `-simplex in APS(I)(〈v`〉);

if σ and α (resp. α and σ′) do not share an (`− 1)-face then
repeat the process for σ and α (resp. α and σ′)

end

end

end

Procedure 7 is depicted in Figures 11 and 12.
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Procedure 8: Computing a face-connected path in A(`)
PS(I)(〈vk, vk+`〉), for

vk+` ∈ Ck+`, vk ∈ Dk
FL

(vk+`), ` ∈ J2, nK and k ∈ J0, n − `K, joining two

different simplices σ and σ′ in A(`)
PS(I)(〈vk, vk+`〉).

Input: Two different `-simplices σ = 〈vk, vk+1, . . . , vk+`−1, vk+`〉 and

σ′ = 〈vk, v′k+1, . . . , v
′
k+`−1, vk+`〉 in A(`)

PS(I)(〈vk, vk+`〉).
Output: A face-connected path in A(`)

PS(I)(〈vk, vk+`〉) joining σ and σ′.

Let j ∈ Jk + 1, k + `− 1K such that vj 6= v′j and for each

s ∈ Jj + 1, k + `− 1K vs = v′s;
if j = k + 1 then

σ and σ′ share the (`− 1)-simplex 〈vk, vk+2, . . . , vk+`〉
else

vj+1 ∈ S(wr) ∩ Aj+1
FL

(vk) for some r ∈ J0, j + 1K and wr ∈ Er;

vj = z + λ ei and v′j = z′ + λ′ ei
′

where λ, λ′ ∈ {±1,±2},
i, i′ ∈ 24(vk) ∩ 02(vj+1) and z, z′ ∈ {vj+1, wr} (by Remark 37);

if i 6= i′ then
if |λ| = |λ′| then

v′′j−1 := z + λ ei + λ′ ei
′

else

(suppose |λ| = 1 and |λ′| = 2) v′′j−1 := wr + 2λ ei + λ′ ei
′

end
by Proposition 40, there exists v′′t ∈ Ct, t ∈ Jk+ 1, j− 2K, such that
α := 〈vk, v′′k+1, . . . , v

′′
j−1, vj , vj+1, . . . , v`〉 and α′ := 〈vk, v′′k+1, . . . ,

v′′j−1, v′j , vj+1, . . . , vk+`〉 are in A(`)
PS(I)(〈vk, vk+`〉);

if σ and α (resp. α′ and σ′) do not share an (`− 1)-face then
repeat the process for σ and α (resp. α′ and σ′)

end

else

by Remark 37, ∃ i′′ 6= i s.t. v′′j := z′′ + λ′′ei
′′ ∈ Dj

FL
(vj+1)∩

Aj
FL

(vk) for some z′′ ∈ {vj+1, wr} and λ′′ ∈ {±1,±2};
if vk ∈ Ok then

i′′ ∈ 02(vj+1) ∩ 12(vk)
else if vk ∈ Ek \R and vj+1 ∈ Ej+1 \R then

i′′ ∈ 04(vj+1) ∩ 24(vk)
else

i′′ ∈ 02(vj+1) ∩ 24(vk)
end
by Proposition 40, there exists v′′t ∈ Ct, for t ∈ Jk + 1, j − 1K, such
that α := 〈vk, v′′k+1, . . . , v

′′
j , vj+1, . . . , vk+`〉 is in

A(`)
PS(I)(〈vk, vk+`〉);

if σ and α (resp. α and σ′) do not share an (`− 1)-face then
repeat the process for σ and α (resp. α and σ′)

end

end
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Figure 11: Computing a face-connected path (using Procedure 7) joining two simplices of
PS(I) which are incident to v1 ∈ C1. Blue points belong to C0, red points to C1 and green
ones to C2. In Case A and Case B, we start from σ = 〈v0, v1〉 and σ′ = 〈v′0, v1〉 and we deduce

directly the face-connected path π = (σ, σ′) in A(1)
PS(I)

(〈v1〉), since σ and σ′ share v1.

σ

σ'

v2

v0

v1 v'1

v'0

v''1

w''1

v''0
α

α'

v2

v0
v1

v'1

v'0

v''0

σ

σ'

α

α'

A B

Figure 12: Computing a face-connected path (using Procedure 7) joining two simplices of
PS(I) incident to v2 ∈ C2. Blue points belong to C0, red points to C1 and green ones to C2.
Case A: let σ = 〈v0, v1, v2〉 and σ′ = 〈v′0, v′1, v2〉. Then z = w2 = v2. Since i = i′, there
exists t ∈ 04(v2). Let w′′1 = v2 + λ′′et, from which we compute v′′1 , and then v′′0 . We obtain
then α = 〈v′′0 , v′′1 , v2〉 and α′ = 〈v′′0 , v′1, v2〉 which share a 1-face. Since σ and α do not share
a 1-face, we again apply the procedure to obtain the face-connected path joining them. Case
B: let σ = 〈v0, v1, v2〉 and σ′ = 〈v′0, v′1, v2〉. Then z = w2 = v2. Since i 6= i′ and λ 6= λ′, we
compute w′′0 ∈ C0, and then v′′0 = w′′0 . We deduce α = 〈v′′0 , v1, v2〉 and α′ = 〈v′′0 , v′1, v2〉. We

obtain the face-connected path (σ, α, α′, σ′) joining σ and σ′ in A(2)
PS(I)

(〈v2〉).

Let ` ∈ J0, n− 1K and v` ∈ C`. We have the following results.

Remark 41. Any two n-simplices are face-connected in A(n)
PS(I)(〈v`, vn〉).

Proposition 42. Let vn, v
′
n ∈ An

FL
(v`) such that vn ∈ Ek∩R and v′n ∈ AFJ

(vn)
for some k ∈ J0, n−1K. There exist two n-simplices (one incident to vn and the
other incident to v′n) in APS(I)(〈v`〉) sharing a common (n− 1)-face.

Proposition 43. Let wn, w
′
n ∈ En ∩ An

FL
(v`). If wn and w′n are 2n-neighbors,

then there exist two n-simplices (one incident to wn and the other incident to

w′n) face-connected in A(n)
PS(I)(〈v`〉).
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Figure 13: From left to right: an nD picture I = (Zn, FI); its corresponding simplicial
complex PS(I) (blue points belong to C0, red points to C1 and green ones to C2), a vertex v

and two n-simplices σ and σ′ of PS(I) incident to v; looking for a path in A(2)
PS(I)

(〈v〉) joining

σ = 〈v, v1, v2〉 and σ′ = 〈v, v′1, v′2〉: since v2 ∈ E1 ∩ R and v′2 ∈ E1 ∩ R then k = k′ = 1; since
Card(04)(v) is 0 then `′ = 0 and there exists only one ω ∈ E0 ∩ R such that v ∈ S(ω); we
deduce the path (σ(0,−) = σ, σ(0,+), σ(1,−), σ(1,+), σ(2,−), σ(2,+) = σ′) joining σ and σ′.

Remark 33 Remark 37 Prop. 40 Proc. 6

Proc. 8 Proc. 7 Prop. 42

Remark41 Prop. 43 Remark 24

Th. 44

Figure 14: Diagram of the proof of Th. 44.

Finally, the main result of the paper ensures that the simplicial complex
PS(I) previously constructed is always wWC. This proof is illustrated in Fig-
ure 13.

Theorem 44. The simplicial complex PS(I) is always wWC.

In Figure 14 a diagram of the proof of Th. 44 is given. A 4D example is depicted
in Figure 15 (in fact, the projections on the fourth coordinate t, from t = −2 to
t = 6).

6. Complexity

Starting from an nD binary image I0 = (Zn, FI0) whose domain is contained
in an nD rectangle of M0 pixels, we scale it by a factor of 4 to obtain the new
image I = (Zn, FI) contained in an nD rectangle of M = 4n ·M0 pixels.

The time complexity of {E`}`∈J0,nK, {O`}`∈J0,n−1K and the 04, 24, 02 and 12
operators is θ(n ·M). With p ∈ Zn, when 02(p) = J1, nK, we obtain N+(p) by
setting all the values λi to {0,±1} in the expression p+ λ1e

1 + · · ·+ λne
n. The

time complexity of N+(p) is O(3n · n2). We can compute the values of N+(p)
only for p ∈ J−1, 2Kn (by periodicity). This way, we obtain a time complexity
of O(3n · n2 · 4n) for computing N+. The same reasoning holds for S and
DFJ

. Let us now estimate the complexity of Procedure 1. As detailed in [1],
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Figure 15: A primary 4D CC X = {p, p′}, with p = (0, 0, 0, 0) and p′ = (4, 4, 4, 4), repaired
into a wWC cell complex by the implementation of the method proposed in the paper.

detecting CCs in an nD image of M pixels can be done in O(5n ·M) and a slight
modification of this method will give the coordinates of the center p∗ of each
CC in I. The union of V and D0

FJ
(p∗) needs at most 3n ·M operations, which

means a total of O(3n ·M2 · 5n) operations for the first loop of Procedure 1.
Concerning the second loop, we have to check if D0

FJ
(q) ∩ V is empty, which

means a maximum of 3n ·M operations for each q. The time complexity of
the second loop is O(3n · M2). The time complexity of Procedure 1 is then
O(15n ·M2). Since DFJ

(p) and S(p) are known, the computation of FJ and of
FL can be done in O(M) each. The time complexity of C`∈J0,nK is O(M ·n) and
the time complexity of DFL

is O(3n ·M2 + 27n ·M). About the computation
of PS(I) in Procedure 6, for each ` ∈ J1, nK and p ∈ C`, we have a maximum of
A(n) simplices in PS(I), which is less or equal to 22

n ·M and a maximum of
3n vertices in DFL

(p). Since we check if the vertices of each simplex of PS(I)
belong to DFL

(p), we proceed to make at most A(n) · (n+ 1) · 3n ·n operations.
The time complexity of p ∗KDFL

(p) is O(3n · n), and the one of the union with
PS(I) is O(3n · A(n)). The time complexity of the computation of PS(I) is
then O(A(n) · 3n · n2 ·M). The time complexity for computing PS(I) is then
Tcomp(M0, n) = O(22

n · 48n · n2 ·M2
0 + 108n ·M0).

In terms of storage, FI , FJ , and FL are matrices of size M . The sets
{E`}`∈J0,nK and {O`}`∈J0,n−1K need one matrix of size 4n each. By periodic-
ity, the 04, 24, 02 and 12 operators can be stored as matrices of lists, and then
will use an amount of space not greater than 4n · n. Then, the sets N+(p)
and DFJ

(p) can be stored using matrices of 4n lists, which makes an amount
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of 4n · 3n · n bytes. The sets V , R, and the elements of the family {C`}`∈J0,nK
will be stored in one matrix of size M each. For each p, the sets DFL

(p) will be
stored as matrices of size 3n of elements of n coordinates, which means a total
of M ·3n ·n bytes at most. Finally, the set PS(I) uses an amount of memory not
greater than A(n) simplices times a maximal number of (n+ 1) points made of
n coordinates. Then, the final storage cannot be greater than A(n) · (n+ 1) · n.
The total amount of memory needed is then Tstor(M0, n) = O(22

n ·n2 · 4n ·M0).
When the dimension n is a constant, the time complexity and the amount of

memory needed to compute PS(I) are, respectively, quadratic and linear w.r.t.
the number of pixels of I.

7. Conclusion

The method presented in this paper extends a 3D method presented in [13,
14, 15] to any dimension. Starting from an nD cubical complex Q(I) that is not
well-composed, we “topologically repair” it by computing a simplicial complex
PS(I) which is homotopy equivalent to Q(I) and wWC. In subsequent work,
our goal is to prove that PS(I) is (continuously) well-composed. One way is to
prove that PS(I) is a subdivision of a cell complex P (I) that generalizes the one
computed in [13, 14] and that can be efficiently stored as an nD binary image
by storing one point per n-cell, as in the 3D case studied in [15].
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Annex: Proofs of the results presented in Section 5

Proof of Proposition 31. If p ∈ E` \ R, the assertion is true by Proposition
12. If p ∈ E`∩R, then p ∈ Cn and S(p)\{p} ⊆ ti∈J`,n−1KOi. If q ∈ DFJ

(p), then
q ∈ ti∈J0,n−1KEi and S(q) \ {q} ⊂ ti∈J0,`−1KOi. Finally, if p ∈ O`, ` < n, let
k ∈ J0, `K be Card(04(p)): If p ∈ S(q), then q ∈ Ek and DFJ

(q) ⊂ ti∈J0,k−1KEi.
Besides, S(q) ⊂ Ek t (ti∈Jk,n−1KOi) and N(p) ⊂ ti∈J0,`−1KOi, so S(q)∩N(p) ⊂
ti∈Jk,l−1KOi. In the case that k = `, one can check that S(q)∩N(p) = ∅. Since
DFJ

(q) ⊂ ti∈J0,k−1KEi, if r ∈ DFJ
(q) then S(r) ⊂ (ti∈J0,kKEi) t (tj∈Ji,n−1KOj)

and then S(r) ∩N(p) ⊂ tj∈Jk−1,`−1KOj . �

Proof of Proposition 36. For each p ∈ C`, let p′ be a point in AFL
(p).

Let us prove first that p′ ∈
⊔

i∈J`+1,nK Ci and that p ∈ DFL
(p′).

If p ∈ E` \R:

• If p′ ∈ AFJ
(p) \R, then p′ = p+

∑
j∈24(p) λj e

j for some λj ∈ {0,±2}, not

all null, so p′ ∈ El+k (k is the number of coefficients λj 6= 0). By Lemma 14,
p ∈ DFJ

(p′). Since p′ 6∈ R, DFJ
(p′) = DFL

(p′). Hence p ∈ DFL
(p′).

• If p′ ∈ tq∈AFJ
(p)∩RS(q), let q = p+

∑
j∈24(p) λ

∗
j e

j be the point in El+k ∩
R such that λ∗j = 2 or −2 for specific subset of k indices in 24(p) and
λ∗j = 0 for the rest. The points in S(q) are those with the form p +∑

j∈24(p) λ
∗
j e

j +
∑

j∈24(q) λj e
j with λj ∈ {0,±1}, so they lie in Ek+` if

all the coefficients λj are null (the point q itself) or in On−k′ , with k′
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being the number of non-null coefficients λj . Since 1 ≤ k′ ≤ n− `− k, we
know S(q) ⊂ Ek+` t

⊔
i∈Jk+`,n−1KOi. In the case that p′ = q ∈ Ek+` ∩ R,

the point p′ +
∑

j∈04(p′)∩24(p)−λ
∗
j e

j is p, which is, therefore, a point in

DFJ
(p′) \ R ⊂ DFL

(p′); if p′ ∈ S(q) \ {q}, with q ∈ AFJ
(p) ∩ R, then

p ∈ DFJ
(q) by Lemma 14, and hence, p ∈ DFJ

(q) \R ⊂ DFL
(p′).

If p ∈ O`, let q be the point such that p ∈ S(q). Let `1 := Card(04(p)), then
q ∈ E`1 and `1 ≤ `. Let p′ be a point in AFL

(p). Then, p′ = p+
∑

j∈12(p) λj e
j ,

with λj = 1 or −1 for a specific subset of k indices in 12(p) (1 ≤ k ≤ n− `) and
λj = 0 otherwise. For 1 ≤ k ≤ n− `− 1, p′ ∈ O`+k, that is, p′ ∈ ti∈J`+1,n−1KCi.
For k = n − `, p′ ∈ E`′ where `′ is Card(04(p′)), which satisfies that `1 ≤ `′,
since some of the odd coordinates in p may have become congruent with 0 mod
4 in p′. Notice that, in this case, p′ ∈ AFJ

(q), since both p′ and q are points in
2Zn and 04(q) ⊂ 04(p′), but then, p′ ∈ R by Remark 19, since q ∈ R. Hence,
p′ ∈ E`′ ∩R ⊂ Cn. Let us prove now that p ∈ DFL

(p′).

• If 1 ≤ k ≤ n− `− 1, p′ ∈ Ok+`. Let q′ be the point such that p′ ∈ S(q′).
Notice that q′ ∈ E`1+k1 , for some 0 ≤ k1 ≤ n−`−1, which is Card(04(p′))\
Card(04(p)). If p and p′ lie in the same S-block, that is, q = q′ (which
happens when k1 = 0), then p ∈ S(q′) ∩ N(p′), so p ∈ DFL

(p′). On
the other hand, if q 6= q′ then q′ ∈ E`1+k1

, with 1 ≤ k1 ≤ k. Since
q ∈ E`1 ∩ R, by Remark 19, q′ ∈ E`1+k1

∩ R and ∃ r ∈ DFJ
(q′) ∩ R such

that p ∈ S(r) ∩N(p′), which is r = q. So p ∈ DFL
(p′).

• If k = n − `, p′ ∈ E`′ with `1 ≤ `′. There are two cases: if `′ = `1, then
p′ = q and since p ∈ S(q), p ∈ DFL

(p′); if `′ > `1, then by Remark 19,
p′ ∈ E`′ ∩ R since p′ ∈ AFJ

(q) and q ∈ R. Also, p ∈ N(p′) and there
exists a point q′ ∈ DFJ

(p′) ∩ R such that p ∈ S(q′), which is q′ = q. So
p ∈ DFL

(p′).

Now, let us prove the converse.
If p′ ∈ E` \R, then DFL

(p′) = DFJ
(p′) ⊂ Ek \R, with k < ` (by Remark 19). If

p ∈ DFJ
(p′), then p′ ∈ AFJ

(p) \R ⊂ AFL
(p).

If p′ ∈ E` ∩R and p ∈ DFL
(p′), we have the following cases:

• p ∈ S(p′) \ {p′}, then p = p′ +
∑

j∈24(p′) λj e
j , with λj ∈ {0,±1}, not

all null, so p ∈ On−k, k being the number of coefficients λj 6= 0, k ∈
J1, n − `K. Then points in AFL

(p) are under the form p +
∑

j∈12(p) µj e
j ,

with µj ∈ {0,±1} not all null. Since {j ∈ 24(p′) : λj 6= 0} = 12(p), we
have p′ = p+

∑
j∈12(p)(−λj) e

j and hence p′ ∈ AFL
(p).

• p ∈ DFJ
(p′) \ R, then p = p′ +

∑
j∈04(p′) λj e

j , for some coefficients λj ∈
{0,±2}, not all null, such that p 6∈ R. Then p ∈ E`−k \ R, k being the
number of coefficients λj 6= 0, 1 ≤ k ≤ `. Since p′ ∈ AFJ

(p) ∩ R, then
S(p′) ⊂ AFL

(p) and hence, p′ ∈ AFL
(p).

• p ∈
⊔

r∈DFJ
(p′)∩R(S(r) ∩ N(p′)). Let r = p′ +

∑
j∈04(p′) λ

∗
j e

j , with

λ∗j ∈ {0,±2}, not all null, be a point in DFJ
(p′) ∩ R, such that p =
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p′ +
∑

j∈04(p′)
1
2λ
∗
j e

j +
∑

j∈24(p′) λj e
j , for some coefficients λj ∈ {0,±1}.

Hence p ∈ On−k−k′ , where k and k′ are, respectively, the number of coef-
ficients λ∗j 6= 0 and λj 6= 0. Thus p′ = p+

∑
j∈12(p) µj e

j , with µj = − 1
2λ
∗
j

for the indices j such that λ∗j 6= 0, and µj = −λj for those j such that
λj 6= 0, what means that p′ ∈ AFL

(p) (being p ∈ On−k−k′).

If p′ ∈ O`, let q′ be the point such that p′ ∈ S(q′). We have q′ = p′ +∑
j∈12(p′) µ

∗
j e

j , with µ∗j = 1, if j ∈ 14(p′) and µ∗j = −1 if j ∈ 34(p′). For a

point p ∈ DFL
(p′), we have the following cases:

• If p ∈ S(q′)∩N(p′), then p = p′+
∑

j∈24(p′) λj e
j , for some coefficients λj ∈

{0,±1}, not all null. Now, p ∈ O`−k, k being the number of coefficients
λj 6= 0. Now, p′ can be expressed as p′ = p+

∑
j∈12(p) µj e

j with µj = −λj
(and µj = 0 for the indices j for which λj was not defined), so p′ ∈ AFL

(p).

• If p ∈ DFJ
(q′) \R, then q′ ∈ AFJ

(p) (by Lemma 14); or, since p′ ∈ S(q′),
q′ ∈ R. Hence, q′ ∈ AFJ

(p) ∩R and p′ ∈ S(q′), so p′ ∈ AFL
(p).

• If p ∈
⊔

r∈DFJ
(q′)∩R(S(r)∩N(p′)). Let r = q′+

∑
j∈04(q′) λ

∗
j e

j , with λ∗j ∈
{0,±2}, not all null, such that r ∈ R. Then p = p′ +

∑
j∈04(p′)

1
2λ
∗
j e

j +∑
j∈24(p′) λj e

j , for some coefficients λj ∈ {0,±1}. Then p ∈ O`−k−k′

where k and k′ are, respectively, the number of coefficients λ∗j 6= 0 and

λj 6= 0. Then p′ = p +
∑

j∈12(p) µj e
j , with µj = − 1

2λ
∗
j for the indices

j such that λ∗j 6= 0 and µj = −λj for those j such that λj 6= 0, so
p′ ∈ AFL

(p) (being p ∈ O`−k−k′). �

Proof of Proposition 40. Let ` ∈ J1, nK and k ∈ J0, n− `K.
Let us see how to construct σPS(I)(v`). Let wr ∈ Er, r ∈ J0, `K, s.t. v` ∈ S(wr).
There exist subindices 1 ≤ i1 < · · · < ir ≤ n and 1 ≤ ir+1 < · · · < i` ≤ n
such that {i1, . . . , ir} = 04(v`) and {ir+1, . . . , i`} = 24(v`). From j = ` − 1 to
j = r, let vj := vj+1 + λj+1 e

ij+1 , λj+1 ∈ {±1}. From j = r − 1 to j = 0, let
wj := wj+1 + λj+1 e

ij+1 , λj+1 ∈ {±2}. Then:

• If wj 6∈ R, let vj := wj .

• Else, wj = wr +
∑

s∈Jj+1,rK λ
∗
s e

is where λ∗s ∈ {±2}, for s ∈ Jj + 1, rK; let

vj := vr +
∑

s∈Jj+1,rK
1
2λ
∗
s e

is .

Then vj ∈ Dj
FL

(vj+1) and σPS(I)(v`) := 〈v0, . . . , v`〉 ∈ P (`)
S (I).

Let us see now how to construct σPS(I)(vk, vk+`).

• If vk ∈ Ok then there exist subindices 1 ≤ ik+1 < · · · < ik+` ≤ n such that
{ik+1, . . . ik+`} = 02(vk+`) ∩ 12(vk) and vk = vk+` +

∑
j∈Jk+1,k+`K µ

∗
je

ij ,

where µ∗j ∈ {±1}. From j = k+`−1 to j = k+1, let vj := vj+1+µ∗j+1 e
ij+1 .

• If vk+` ∈ Ek+` \ R, then there exist subindices 1 ≤ ik+1 < · · · < ik+` ≤ n
such that {ik+1, . . . ik+`} = 04(vk+`)∩24(vk) and vk = vk+`+

∑
j∈Jk+1,k+`K

λ∗je
ij , where λ∗j ∈ {±2}. From j = k + ` − 1 to j = k + 1, let vj :=

vj+1 + λ∗j+1 e
ij+1 .
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• Else, vk ∈ Ek \ R, and there exists unique wr ∈ Er, with r ∈ Jk, k + `K,
such that vk+` ∈ S(wr) and subindices 1 ≤ ik+1 < · · · < ir ≤ n and
1 ≤ ir+1 < · · · < ik+` ≤ n, such that {ik+1, . . . , ir} = 04(vk+`) ∩ 24(vk),
and {ir+1, . . . , ik+`} = 24(vk+`)∩24(vk). Then vk = wr+

∑
j∈Jk+1,rK λ

∗
je

ij

where λ∗j ∈ {±2}. From j = k + `− 1 to j = r, let vj := vj+1 + µj+1 e
ij+1

where µ ∈ {±1}. From j = r− 1 to j = k+ 1, let wj := wj+1 +λ∗j+1 e
ij+1 .

If wj ∈ Cj , let vj := wj . Else, vj := vr +
∑

s∈Jj+1,rK
1
2λ
∗
se

is .

Then vj ∈ Dj
FL

(vj+1)∩Aj
FL

(vk) and σPS(I)(vk, vk+`) := 〈vk, . . . , vk+`〉 ∈ P (`)
S(I).�

Proof of Procedure 7. Let ` ∈ J1, nK, v` ∈ C`, σ = 〈v0, . . . , v`−1, v`〉,
σ′ = 〈v′0, . . . , v′`−1, v`〉 in A(`)

PS(I)(〈v`〉). Let us prove property (P`): “there exists

a face-connected path π(σ, σ′) in A(`)
PS(I)(〈v`〉) joining σ and σ′”.

Initialization (` = 1): two different 1-simplices σ = 〈v0, v1〉 and σ′ = 〈v′0, v1〉 in

PS(I), with v1 ∈ C1 are joined by the path π(σ, σ′) := (σ, σ′) in A(1)
PS(I)(〈v1〉).

Heredity (` ∈ J2, nK): we assume that (Pm) is true for m ∈ J1, ` − 1K, let us

prove that (P`) is true. Let us define j ∈ J0, ` − 1K such that vj 6= v′j and for
any i ∈ Jj + 1, `− 1K, vi = v′i. Then, we have σ = 〈v0, . . . , vj , vj+1, . . . , v`〉 and
σ′ = 〈v′0, . . . , v′j , vj+1, . . . , v`〉. Now, vj+1 ∈ S(wr) for some r ∈ J0, j + 1K and
wr ∈ Er. Let λ, λ′ ∈ {±1,±2}, i, i′ ∈ 02(vj+1) and z, z′ ∈ {vj+1, wr} such that

vj = z + λei and v′j = z′ + λ′ei
′
. Then, the following cases hold:

(1) If i 6= i′, then we define v′′j−1 ∈ D
j−1
FL

(vj) ∩ Dj−1
FL

(v′j) and we deduce
σPS(I)(v

′′
j−1) := 〈v′′0 , . . . , v′′j−1〉 ∈ PS(I) by Proposition 40. We then define

α := 〈v′′0 , . . . , v′′j−1, vj , vj+1, . . . , v`〉, and α′ := 〈v′′0 , . . . , v′′j−1, v′j , vj+1,

. . . , v`〉. Then π(α, α′) := (α, α′) is a face-connected path in A(`)
PS(I)(〈v`〉).

By (Pj) where j < `, we know that there exists a path π(µ, µ′) joining

µ = 〈v0, . . . , vj−1, vj〉 and µ′ = 〈v′′0 , . . . , v′′j−1, vj〉 in A(j)
PS(I)(〈vj〉). From

this path, we can deduce a path π(σ, α) in A(`)
PS(I)(〈v`〉) joining σ and α.

Similarly, we obtain π(α′, σ′) ∈ A(`)
PS(I)(〈v`〉). By concatenation, we obtain

a face-connected path in A(`)
PS(I)(〈v`〉) joining σ and σ′.

(2) When i = i′, we define v′′j ∈ D
j
FL

(vj+1). We deduce σPS(I)(v
′′
j ) :=

〈v′′0 , . . . , v′′j 〉 ∈ PS(I) by Proposition 40, and define α := 〈v′′0 , . . . , v′′j , vj+1, . . . ,
v`〉 joining σ and α (respectively joining α and σ′). We can apply (1) to

obtain two face-connected paths π(σ, α) and π(α, σ′) in A(`)
PS(I)(〈v`〉), and

then a face connected path in A(`)
PS(I)(〈v`〉) joining σ and σ′.

By induction on `, the property (P`) is true for any ` ∈ J1, nK. �

Proof of Procedure 8. Let ` ∈ J2, nK, vk+` ∈ Ck+` and vk ∈ Dk
FL

(vk+`).
Let σ = 〈vk, . . . , vk+`〉 and σ′ = 〈vk, v′k+1, . . . , v

′
k+`−1, vk+`〉 be two `-simplices
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of A(`)
PS(I)(〈vk, vk+`〉). Let us prove property (P ′`): “there exists a face-connected

path π(σ, σ′) of `-simplices in APS(I)(〈vk, vk+`〉) joining σ and σ′”.
Initialization (` = 2): The 2-simplices σ = 〈vk, vk+1, vk+2〉 and σ′ = 〈vk, v′k+1,
vk+2〉 share the 1-face 〈vk, vk+2〉.
Heredity (` ∈ J3, nK): we assume that (P ′m) is true form ∈ J2, `−1K, and we want

to prove that (P ′`) is true. By hypothesis, we have the four following `-simplices:
σ = 〈vk, vk+1, . . . , vj−1, vj , vj+1, . . . , vk+`〉, α := 〈vk, v′′k+1, . . . , v

′′
j−1, vj , vj+1, . . . ,

vk+`〉, α′ := 〈vk, v′′k+1, . . . , v
′′
j−1, v

′
j , vj+1, . . . , vk+`〉, σ′ = 〈vk, v′k+1, . . . , v

′
j−1, v

′
j ,

vj+1, . . . , vk+`〉. Then α and α′ share an (` − 1)-face. Now, since j belongs to
Jk+1, k+`−1K then j−k ≤ `−1. From that, we can deduce by (P ′j−k) that the
(j − k)-simplices: µ := 〈vk, vk+1, . . . , vj−1, vj〉 and µ′ := 〈vk, v′′k+1, . . . , v

′′
j−1, vj〉

are joined by a face-connected path π(µ, µ′) in A(j−k)
PS(I)( 〈vk, vj〉). By rewriting

each ith element of π(µ, µ′) we can deduce the ith element of a new path π(σ, α)

in A(`)
PS(I)(〈vk, vk+`〉) joining σ and α. We proceed similarly with α′ and σ′ to

obtain π(α′, σ′) in A(`)
PS(I)(〈vk, vk+`〉). We finally obtain a face-connected path

joining σ and σ′ concatenating the previous paths.
By induction on ` ∈ J2, nK, (P ′`) is true for any ` ∈ J2, nK and k ∈ J0, n− `K. �

Proof of Proposition 42. First, since v` ∈ C`, there exists an `-simplex
〈v0, . . . , v`−1, v`〉 in PS(I) by Proposition 40. Second, since vn ∈ Ek ∩ R
and v′n ∈ AFJ

(vn), v′n ∈ Ek′ ∩ R for some k′ ∈ Jk + 1, nK and vn = v′n +∑
j∈Jk+1,kK λ

∗
je

i∗j , where λ∗j ∈ {±2} and {i∗k+1, . . . , i
∗
k′} ⊆ 04(v′n). There exist

subindices 1 ≤ ik′+1 < · · · < in ≤ n and 1 ≤ ik+1 < · · · < ik′ ≤ n such
that {ik′+1, . . . , in} = 24(v′n) and {ik+1, . . . , ik′} = 24(vn) ∩ 04(v′n). Now, since
v` ∈ DFL

(vn) ∩ DFL
(v′n):

• If v` ∈ O` then v` = v′n +
∑

j∈J`+1,nK µje
ij where: if ` ∈ J0, k − 1K then

µj ∈ {±1} when j ∈ J`+1, kK∪Jk′+1, nK and µj = 1
2λ
∗
j when j ∈ Jk+1, k′K;

if ` ∈ Jk, k′ − 1K then µj ∈ {±1} when j ∈ Jk′ + 1, nK and µj = 1
2λ
∗
j when

j ∈ J`+ 1, k′K; if ` ∈ Jk′, n− 1K then µj ∈ {±1} when j ∈ J`+ 1, nK.
From j = n− 1 to j = `+ 1, let vj := vj+1 + µj+1e

ij+1 .

• If v` ∈ E` then v` 6∈ R since ` < n. Therefore, ` ∈ J0, k − 1K and
v` = vn+

∑
j∈J`+1,kK λje

ij where λj ∈ {±2} when j ∈ J`+1, kK. Addition-

ally, there exist subindices 1 ≤ i1 < · · · < i` ≤ n such that {i1, . . . , i`} =
04(v`). For j ∈ J`+ 1, k − 1K, let wj := vn +

∑
s∈Jj+1,kK λ

∗
se

is , where λ∗s ∈
{±2}. Now, if wj ∈ Cj , then vj := wj . Else vj :=

∑
s∈J`+1,k′K

1
2λ
∗
se

is +∑
s∈Jk′+1,nK µse

is , where µs ∈ {±1}. For j ∈ Jk, k′ − 1K, let vj :=∑
s∈Jj+1,k′K

1
2λ
∗
se

is +
∑

s∈Jk′+1,nK µse
is where µs ∈ {±1}. For j ∈ Jk′, nK,

let vj :=
∑

s∈Jj+1,nK µse
is where µs ∈ {±1}.

Then 〈v0, . . . , v`−1, v`, v`+1, . . . , vn−1, vn〉 and 〈v0, . . . , v`−1, v`, v`+1, . . . , vn−1, v
′
n〉

are two n-simplices incident to v` in PS(I) sharing a common (n− 1)-face. �
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Proof of Proposition 43. Let wn−1 := 1
2 (wn +w′n). Then wn−1 ∈ En−1∩FL.

We have to consider two cases:
If wn−1 6∈ R then wn−1 ∈ Cn−1 and DFL

(wn−1) = DFJ
(wn−1). Following the

process given in Remark 24.(P1), one can compute an (n − 1)-simplex µ :=
〈v0, . . . , v`−1, v`, v`+1, . . . , vn−2, wn−1〉 ∈ PS(I). Then µ is shared by the two
n-simplices σ = 〈v0, . . . , v`−1, v`, v`+1, . . . , vn−2, wn−1, wn〉 and σ′ = 〈v0, . . . ,
v`−1, v`, v`+1, . . . , vn−2, wn−1, w

′
n〉 in APS(I)(〈v`〉).

If wn−1 ∈ R then wn−1 ∈ Cn. Therefore:

• There exist two n-simplices, σ (incident to wn) and µ := 〈v0, . . . , v`−1, v`,
v`+1, . . . , vn−1, wn−1〉 (incident to wn−1), in APS(I)(〈v`〉) sharing a com-
mon (n− 1)-face by Proposition 42.

• There exist two n-simplices, µ′ := 〈v′0, . . . , v′`−1, v`, v′`+1, . . . , v
′
n−1, wn−1〉

(incident to wn−1) and σ′ (incident to w′n), in APS(I)(v`) sharing a com-
mon (n− 1)-face by Proposition 42.

• By Remark 41, there exists a face-connected path of n-simplices (µ0 =

µ, µ1, . . . , µm−1, µm = µ′) in A(n)
PS(I)(〈v`, wn−1〉) joining µ and µ′.

Finally, the face-connected path joining σ (incident to wn) and σ′ (incident to

w′n) in A(n)
PS(I)(〈v`〉) is (σ, µ0 = µ, . . . , µm = µ′, σ′). �

Proof of Th. 44. Let v ∈ FL. We have v ∈ C` for some ` ∈ J0, nK. Let
us prove property (P): σ = 〈v0, . . . , v`−1, v, v`+1, . . . , vn〉 and σ′ = 〈v′0, . . . ,
v′`−1, v, v

′
`+1, . . . , v

′
n〉 are face-connected in A(n)

PS(I)(〈v〉). If ` = n then σ and σ′

are face-connected in A(n)
PS(I)(〈v〉) by Procedure 7. Else, ` ∈ J0, n− 1K:

• If v ∈ E` \R, then each w ∈ An
FL

(v) satisfies that w ∈ En \R. Therefore,
there exists a 2n-path π := (p0 := vn, p

1, . . . , pm−1, pm := v′n) inAn
FL

(v) ∩ (En \R)
joining vn and v′n. If v ∈ E` \R.
Since vn, v

′
n ∈ An

FL
(v) then vn ∈ Ek ∩ FJ and v′n ∈ Ek′ ∩ FJ for some

k, k′ ∈ J`+ 1, nK.
Therefore, there exist wn, w

′
n ∈ En ∩ FJ such that vn ∈ DFJ

(wn) and
v′n ∈ DFJ

(w′n). Then wn, w
′
n ∈ An

FJ
(v).

Since v ∈ E` \R then there exists a 2n-path π := (p0 := wn, p
1, . . . , pm−1,

pm := w′n) in An
FJ

(v) joining wn and w′n.
By Prop. 42, 43 and Remark 41, one can find a face–connected path in

A(n)
PS(I)(〈v〉) between σ and σ′.

• Else, v ∈ O`. Let `′ := Card(04(v)). Then vn ∈ Ek ∩ R, v′n ∈ Ek′ ∩ R
for some k, k′ ∈ J`′, nK and there exists unique w ∈ E`′ ∩ R such that
v ∈ S(w). Since v ∈ DFL

(vn)∩DFL
(v′n) then w ∈ D+

FJ
(vn)∩D+

FJ
(v′n). Let

π := (p0 := vn, p
1 := w, p2 := v′n).

Now, for i ∈ J1,mK:
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• If pi−1, pi are 2n-neighbors, then by Proposition 43 there exist simplices
σ(i−1,+) (incident to 〈pi−1〉) and σ(i,−) (incident to 〈pi〉) that are face-

connected in A(n)
PS(I)(〈v〉).

• If pi−1 ∈ DFJ
(pi)∩R or pi−1 ∈ AFJ

(pi)∩R then, by Proposition 42, there
exist simplices σ(i−1,+) (incident to 〈pi−1〉) and σ(i,−) (incident to 〈pi〉) in
APS(I)(〈v〉) sharing a common (n− 1)-face.

Finally, let σ(0,−) := σ and σ(m,+) := σ′. Then, each pair (σ(i,−), σ(i,+)) for

i ∈ J0,mK is face-connected in A(n)
PS(I)(〈v〉) by Remark 41. Since (P) is true for

any v in PS(I) and σ, σ′ in A(n)
PS(I)(〈v〉), then PS(I) is wWC. �
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Notation Definition/Explanation

|K| Underlying polyhedron of the cell complex K

A(`)
K (σ) Set of `-cells incident to the cell σ in K
σ ∗ σ′ Cone join of the simplices σ and σ′

NM (p) {i ∈ J1, nK : xi ≡ N mod M}
N2n(p)

{
p± 4ei : i ∈ J1, nK

}
N+(p)

{
p+

∑
j∈02(p) λje

j : λj ∈ {0,±1}
}

S-block S(p)
{
p+

∑
j∈24(p) λj e

j : λj ∈ {0,±1}
}

B(z,F) Block associated to the point z and the family of vectors F
I = (Zn, FI) An nD binary image (called picture when FI ⊂ 4Zn)

Q(I) Cubical complex associated to I
V The set of critical vertices in Q(I)

QS(I) The simplicial subdivision of Q(I)
PS(I) Weakly well-composed simplicial complex over the picture I

J = (Zn, FJ) nD binary image encoding the vertices of QS(I) (i.e, the cells of Q(I))
R The set of critical points in FJ (which encode the critical cells of Q(I))

L = (Zn, FL) nD binary image encoding the vertices of PS(I)
σK(p) simplex in K encoded by p (K = QS(I), p ∈ FJ ; or K = PS(I), p ∈ FL)
E` {p ∈ 2Zn : Card(04(p)) is `}, being ` ∈ J0, nK
O` {p ∈ Zn \ 2Zn : Card(02(p)) is `}, being ` ∈ J0, n− 1K
Cn (En ∩ FL) ∪R
C` ((E` \R) ∪ O`) ∩ FL, being ` ∈ J0, n− 1K

D+
FJ

(p)
{
p+

∑
j∈04(p) λj e

j : λj ∈ {0,±2}
}

encodes the faces of σQS(I)(p)

A+
FJ

(p)
{
p+

∑
j∈24(p) λj e

j : λj ∈ {0,±2}
}

encodes the simplices incident to σQS(I)(p)

D+
FL

(p) Set of points used for the construction of PS(I). See Definition 30

A+
FL

(p) Set of points used to prove that PS(I) is weakly well-composed. See Definition 34

X (p) X+(p) \ {p} for X ∈ {N ,DFJ
,AFJ

,DFL
,AFL

}
KDFJ

(p) Subcomplex of QS(I) formed by the simplices whose vertices lie in DFJ
(p)

KDFL
(p) Subcomplex of PS(I) formed by the simplices whose vertices lie in DFL

(p)

Table 1: Notations used throughout the paper.
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