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Abstract In this paper, we define a new flavour of well-composedness, called
strong Euler well-composedness. In the general setting of regular cell com-
plexes, a regular cell complex of dimension n is strongly Euler well-composed
if the Euler characteristic of the link of each boundary cell is 1, which is the
Euler characteristic of an (n− 1)-dimensional ball. Working in the particular
setting of cubical complexes canonically associated with nD pictures, we for-
mally prove in this paper that strong Euler well-composedness implies digital
well-composedness in any dimension n ≥ 2 and that the converse is not true
when n ≥ 4.

Keywords Digital topology · Discrete geometry · Well-composedness ·
Cubical complexes · Manifolds · Euler characteristic.

1 Introduction

The concept of well-composedness of a digital set (also called picture) was
first introduced in [14] for two-dimensional (2D) pictures and extended later
in [15] for three-dimensional (3D) pictures: a well-composed picture satisfies
that its continuous analog has a boundary surface that is a manifold. The con-
cept is described in terms of forbidden subsets (also called critical configura-
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tions) for which the picture is not well-composed. 3D well-composed pictures
may have some computational advantages regarding the application of sev-
eral algorithms in computer vision, computer graphics and image processing
[19, 2]. For example, the topology of a given 2D picture can be preserved by
rigid transformations thanks to well-composedness; topology-preserving front
propagation can lead to well-composed segmentation; Euler numbers of 2D
pictures can be computed locally thanks to well-composedness; well-composed
Jordan curves are known to separate the digital plane; the boundary of the
continuous analog of a well-composed 3D picture is a manifold. Furthermore,
numerous applications related to well-composed pictures exist: the Marching
Cubes Algorithm [18] has no ambiguous cases on well-composed pictures (no
hole problem occurs), we can obtain thin topological maps on pictures thanks
to well-composedness [17] and the tree of shapes is well-defined [9]. Regarding
the new flavour of strong Euler well-composedness introduced in this paper,
there is not known application so far. Nevertheless, since strong Euler well-
composedness can be defined on regular cell complexes and because it implies
DWCness on cubical grids, we think that this flavour of well-composedness
could be used in wider applications such as, for example, the computation of
thin topological maps on regular cell complexes.

In general, pictures are not a priori well-composed. Nevertheless, there are
several “repairing” methods for turning them into well-composed pictures (see,
for example, [1, 6, 13, 16, 18, 20]).

In [6], the concept of well-composedness and critical configuration was ex-
tended to any dimension n ≥ 2. Then, an nD picture is continuously well-
composed if its continuous analog has a boundary surface that is an (n− 1)D
manifold, whereas an nD picture is digitally well-composed if it does not con-
tain any critical configuration.

Equivalences between different flavours of well-composedness have been
studied in [2], namely: continuous well-composedness (CWCness), digital well-
composedness (DWCness), well-composedness in the Alexandrov sense (AWC-
ness), well-composedness based on the equivalence of connectivities (EWC-
ness) and well-composedness on arbitrary grids (AGWCness). More specifi-
cally, it is well-known that AWCness, CWCness, DWCness and EWCness are
equivalent in 2D. In 3D, only AWCness, CWCness, and DWCness are equiv-
alent. No link between AGWCness and other flavours of well-composedness is
known. For pictures of dimension n ≥ 4, our knowledge of the logical relation-
ships between CWCness, DWCness and EWCness is very incomplete, though
it has been shown that AWCness is equivalent to DWCness (see [7]) and that
DWCness implies EWCness (see [6]). Recently, in [5], a counterexample in 4D
has been given to prove that DWCness does not imply CWCness, which the
authors consider to be an important result since it breaks with the idea that
all the different flavours of well-composedness are equivalent.

In [10, 11, 3], we defined another flavour of well-composedness called self-
dual weak well-composedness (swWCness) that extends the notion of DWC-
ness to any regular cell complex. Roughly speaking, a regular cell complex
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Fig. 1 A 4D counter-example showing that χWCness does not imply DWCness in 4D.

is a topological space made up of a collection of k-cells (homeomorphic1 to
k-dimensional balls) glued together by their boundaries. A regular cell com-
plex satisfying that any of its k-cell is a k-dimensional cube is referred to as
a cubical complex. A cubical complex Q(I) can always be associated with
any nD picture I (we will see later how to construct Q(I) from I). We say
that a regular cell complex K(I) is a cell complex over I if there exists a de-
formation retraction from K(I) to Q(I). Besides, K(I) is said to be weakly
well-composed if, for each vertex v on the boundary of K(I), the set of n-cells
of K(I) incident to v are face-connected. In [10, 11, 3], we also developed a
topological method for repairing the cubical complex Q(I) canonically asso-
ciated with an nD picture I not being DWC. Such a method constructs a
“simplicial decomposition”

(
PS(I), PS(bI)

)
of I, where bI is I’s complement

(an nD picture that is precisely defined in Definition 1), and where PS(I) and
PS(bI) satisfy the following conditions:

(1) PS(I) is a cell complex over I, PS(bI) is a cell complex over bI, and
(2) PS(I) and PS(bI) are weakly well-composed, that is,

(
PS(I), PS(bI)

)
is

self-dual weakly well-composed.

As it is shown in [3], in the setting of cubical complexes canonically associated
with nD pictures, swWCness is equivalent to DWCness for all n ≥ 2. Our
ultimate goal is to prove that our topological reparation method provides
CWC regular cell complexes.

Since, according to us, such a goal is not reachable yet, in [4], we proposed
an intermediary flavour of well-composedness, called Euler well-composedness
(χWCness). The cell complex K(I) over I is χWC if the Euler characteristic
of the link of each vertex of the boundary of K(I) is equal to 1, which is the
Euler characteristic of an (n − 1)-dimensional ball. Although partial results
regarding χWCness for nD pictures (in the case of n = 2, 3, 4) were given in
[4], we have observed that, in general, χWCness does not imply DWCness. For
example, consider the 4D picture I in Figure 1, whose foreground is the set of
points FI = {(0, 1, 0, 0), (0, 0, 0, 0), (0, 0, 1, 0), (1, 0, 1, 0), (1, 1, 1, 0), (0, 2, 0, 0),
(0, 2, 1, 0), (1, 2, 1, 0)}. Clearly, I contains the 2D critical configuration {p, p′}
where p = (0, 1, 0, 0) and p′ = (1, 1, 1, 0), while it can be shown that Q(I)

1 Two topological spaces are homeomorphic if there exists a biyective bicontinuous func-
tion between them.
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is χWC. This is established below in the proof of Lemma 3. That proof also
shows that Q(bI) is χWC. It follows from the χWCness of Q(I) and Q(bI) in
this example that Theorem 4 of [4] is actually incorrect – its computer-assisted
“proof” was unfortunately flawed. The fact that a 4D picture I need not be
DWC even if both of Q(I) and Q(bI) are χWC is a significant weakness of the
concept of χWCness.

Accordingly, the present paper will introduce a new flavour of well-compo-

sedness called strong Euler well-composedness (
+
χWCness), which is a concept

more restrictive than the one of χWCness given in [4], with the aim of proving

that
+
χWCness implies DWCness in any dimension n ≥ 2, even though the

converse is not true in any dimension n ≥ 4. The authors are convinced that

CWCness implies
+
χWCness, but do not have a rigorous proof of this at the

moment. In such a case,
+
χWCness would be an effectively computable property

useful to detect cases in which the cubical complex canonically associated with
a DWC picture is not CWC.

The plan is the following: Section 2 recalls the background needed to un-
derstand the rest of the paper. Section 3 introduces the concept of strong Euler
well-composedness. Section 4 shows that strong Euler well-composedness im-
plies digital well-composedness. Section 5 shows that the converse is not true.
Finally, Section 6 concludes the paper.

2 Background

First, let us introduce the concept of n-dimensional digital sets (also called nD
pictures), taken from the field of digital geometry.

Definition 1 (nD picture) Let n ≥ 1 be an integer and Zn the set of points
with integer coordinates in Rn. An nD picture is a pair I = (Zn, FI), where
FI is a subset of Zn. The set FI is called the foreground of I and the set
Zn \FI the background of I. The complement of I is defined as the nD picture
bI = (Zn,Zn \ FI).

We say that a property P of nD pictures is self-dual if an nD picture I has
property P whenever the picture bI has property P .

In [6], the concept of block was introduced to extend the notion of DWC-
ness to any dimension. Given a point z ∈ Zn and a family of vectors F =
{f1, . . . , fk} ⊆ B (where B = {e1, . . . , en} is the canonical basis of Zn), the
k-block associated with the pair (z,F) is the set defined as:

B(z,F) =

z +
∑

i∈J1,kK

λi f
i : λi ∈ {0, 1}, ∀i ∈ J1, kK

 .

Thus, a 0-block is a point, a 1-block is a set of two points in Zn on an unit
edge, a 2-block is a set of four points on a unit square, and so on. A subset
B ⊂ Zn is called a block if there exists a couple (z,F) ∈ Zn × P(B) (where
P(B) represents the set of all the subsets of B), such that B = B(z,F).
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Definition 2 (antagonists) Two points p, q belonging to a block B are said
to be antagonists in B if their distance is equal to the maximum distance using
the L1-norm2 between two points in B, that is, ‖p − q‖1 = max

{
‖r − s‖1 :

r, s ∈ B
}

.

Remark 1 The antagonist of a point p in a block B containing p exists and is
unique.

Notice that when two points (x1, . . . , xn) and (y1, . . . , yn) in Zn are antagonists
in a k-block with k ∈ J0, nK then there is a set {i1, . . . , ik} ⊆ J1, nK such that
|xi − yi| = 1 for i ∈ {i1, . . . , ik} and xi = yi otherwise.

Definition 3 (critical configuration) Let I = (Zn, FI) be an nD picture
and B a k-block with k ∈ J2, nK. We say that I contains a critical configuration
in the block B if FI ∩ B = {p, p′} or FI ∩ B = B \ {p, p′}, with p, p′ being
antagonists in B.

The above concept of critical configuration is used to define the notion of
DWCness, based on local patterns, in any dimension.

Definition 4 (digital well-composedness) An nD picture is said to be
digitally well-composed (DWC) if it does not contain any critical configuration
in any block.

Notice that the above definition of digital well-composedness is self-dual.
Roughly speaking, an nD cubical complex Q is a special kind of regular

cell complex made up of a collection of n-dimensional cubes glued together by
their boundaries (faces). If a k-dimensional cube (k-cell) µ ∈ Q is a face of an
`-dimensional cube (`-cell) σ ∈ Q and k < ` then µ is said to be a proper face
of σ and σ a proper coface of µ. A maximal cell of Q is not a proper face of
any other cell of Q. The next definition states how an nD cubical complex can
always be associated with an nD picture.

Definition 5 (cubical complex canonically associated with an nD pic-
ture) The cubical complex Q(I) canonically associated with an nD picture
I = (Zn, FI) is the nD cubical complex whose maximal cells are n-dimen-
sional unit cubes centered at each point in FI and whose (n − 1)-faces are
(n− 1)-dimensional unit cubes parallel to the coordinate hyperplanes.

Figure 2 shows, from left to right, the cubical complexes canonically associated
with a 2D picture and a 3D picture that each have two foreground points.

Notice that each cell in the cubical complex Q(I) is uniquely determined
by the coordinates of its barycenter. This way, each n-dimensional cube can be
encoded by its barycenter, which is a point p ∈ Zn; its (n− 1)-faces by points
under the form p± 1

2e
i, with ei ∈ B = {e1, . . . , en}; in general, its k-faces can be

encoded by points under the form p+
∑
i∈{i1,...,in−k} λi e

i, where {i1, . . . , in−k}

2 The L1-norm of a vector α = (α1, . . . , αn) is ||α||1 =
∑

i∈J1,nK |αi|.
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Fig. 2 Top figures: A 2D cubical complex (left) and a 3D cubical complex (right) whose
maximal cells are centered at the foreground points of the pictures shown below the com-
plexes. Points in red correspond to the foreground of the pictures whereas points in blue
belong to the foreground of the complement of the pictures.

Fig. 3 Left: a 2-dimensional cube and its faces (edges in red and vertices in blue). Right: a
3-dimensional cube and its faces (square faces in green, edges in red and vertices in blue).

is a set of n− k different indices in J1, nK and λi ∈ {± 1
2}. That is, k-cells are

represented by points with k integer coordinates and n − k coordinates that
are odd multiples of 1

2 .

Remark 2 In the sequel, we will identify a k-cell of Q(I) with its barycenter,
if no confusion may arise. Besides, from now on, when needed and for the sake
of simplicity, a point p in Rn will be expressed as Cartesian products of its
coordinates:

p = (p1, . . . , pn) = (p1, . . . , pi)× (pi+1, . . . , pn) = · · · = (p1)× · · · × (pn).

Besides, when a coordinate is repeated k times, we will write (p1, k. . ., p1) =
(p1)k. These notations could be combined. For example:

(p1, p2, p3, p4, p4) = (p1, p2, p3)× (p4)2,

{(p1, p2, 0, p4, p4), (p1, p2, 1, p4, p4)} = {(p1, p2, x) : x ∈ {0, 1}} × (p4)2,

{(p1, p2, 0, 0), (p1, p2, 0, 1), (p1, p2, 1, 0), (p1, p2, 1, 1)} = (p1, p2)× {(0), (1)}2.

The boundary surface of an nD cubical complex Q, denoted by ∂Q, is the
(n− 1)D cubical complex composed by the (n− 1)-dimensional cubes that are
proper faces of exactly one maximal cell of Q, together with all their faces.
See Fig. 3 for toy examples.

The underlying space of an nD cubical complex Q, i.e., the union of the
n-dimensional cubes of Q as subspaces of Rn, will be denoted by |Q|. An nD
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cubical complex Q is said to be (continuously) well-composed (CWC) if |∂Q|
is an (n−1)D manifold, that is, each point of |∂Q| has a neighborhood in |∂Q|
homeomorphic to Rn−1.

3 Introducing the concept of strong Euler well-composedness

In this section, we introduce a new concept of Euler well-composedness that
is more restrictive than the one given in [4].

Definition 6 (Euler characteristic) Let S be a finite set of cells. Let ak
denote the number of k-cells of S. The Euler characteristic of S is defined as:

χ(S) =

∞∑
k=0

(−1)kak.

Recall that the Euler characteristic of a regular cell complex depends only on
its underlying space’s homotopy type [12, p. 146].

Although the following concepts could be defined on regular cell complexes
without problem, we will define them in terms of nD cubical complexes, since
that will be our context.

Definition 7 (star and link) [8] Let σ be a cell of a given nD cubical
complex Q. Then,

– The closure of σ, denoted Cl (σ), is the set of cells having σ as a coface3.
By extension, the closure of a set of cells is the union of the closure of each
cell in the set.

– The star in Q of σ, denoted StQ(σ), is the set of cells of Q having σ as a
face4. By extension, the star in Q of a set of cells is the union of the star
in Q of each cell in the set.

– The link in Q of σ, denoted LkQ(σ), is the closure of the star in Q of σ
minus the star in Q of the closure of σ, that is, Cl StQ(σ) \ StQCl (σ). In
other words, LkQ(σ) is the set of cells in Q that share a coface but no face
with σ.

We need now to extend the notion of χ-critical vertex given in [4] to the
notion of χ-critical cell.

Definition 8 (χ-critical cell) Let Q be an nD cubical complex, n ≥ 2. A
cell σ ∈ ∂Q is χ-critical for Q if:

χ
(
LkQ(σ)

)
6= χ(Bn−1) = 1,

where Bn−1 is an (n− 1)-dimensional ball.

3 Observe that σ ∈ Cl (σ) since σ is considered to be a coface of itself.
4 Observe that σ ∈ StQ(σ) since σ is considered to be a face of itself.
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For example, in all the cases of Figure 4 except for case (c), the vertex v is a
χ-critical vertex for Q(I). Nevertheless, in case (c), the edge e is χ-critical for
Q(I).

Remark 3 Let Q(I) be the cubical complex canonically associated with an nD
picture I, n ≥ 1. Let v be a vertex (0-cell) of Q(I). Then, χ(Cl StQ(I)(v)) =
1 since |Cl StQ(I)(v)| is contractible5. Besides, StQ(I)Cl (v) = StQ(I)(v) ⊆
Cl StQ(I)(v) since Cl v = {v}. Therefore,

χ
(
LkQ(I)(v)

)
= χ

(
Cl StQ(I)(v)

)
− χ

(
StQ(I)(v)

)
= 1− χ

(
StQ(I)(v)

)
. (1)

The result below extends Remark 3 to k-cells with k ≥ 0.

Lemma 1 Let Q(I) be a cubical complex canonically associated with an nD
picture I and let σ be a k-cell of Q(I) with k < n, then:

χ
(
LkQ(I)(σ)

)
= 1− (−1)kχ

(
StQ(I)(σ)). (2)

Proof We will proceed by induction. If k = 0, then Eq. (2) coincides with
Eq. (1). Let k > 0. Using the notation given in Remark 2, we can assume,
without loss of generality, that

σ = (0)k × ( 1
2 )n−k.

Let I0 be the picture such that FI0 = FI ∩ ((0)×ZN−1). Then FI0 = (0)×FJ
for some (n− 1)D picture J . Let

σ′ = (0)k−1 × ( 1
2 )n−k.

Then σ = (0)× σ′ and σ′ is a (k − 1)-cell of Q(J). Now,

StQ(I)(σ) =
(
(0)k × {( 1

2 ), (0), (1)}n−k
)
∩Q(I)

and StQ(I0)(σ) = StQ(I)(σ). Similarly,

StQ(J)(σ
′) =

(
(0)k−1 × {( 1

2 ), (0), (1)}n−k
)
∩Q(J).

Then, it is satisfied that StQ(I)(σ) = (0)× StQ(J)(σ
′), which indicates that

χ(StQ(I)(σ)) = −χ(StQ(J)(σ
′)).

Now, let us prove that χ
(
LkQ(I)(σ)

)
= χ

(
LkQ(J)(σ

′)
)
. Readily,

Cl StQ(I)(σ) = {(0), ( 1
2 ), (− 1

2 )} × Cl StQ(J)(σ
′).

Besides, Cl (σ) = {(0), ( 1
2 ), (− 1

2 )} × Cl (σ′) and then

StQ(I)Cl (σ) =
(
{(0), (− 1

2 ), ( 1
2 ), (−1), (1)} × StQ(J)Cl (σ′)

)
∩Q(I),

5 A topological space is contractible if it is homotopy equivalent to a point [12, p. 2].



Strong Euler Well-Composedness 9

from which we conclude that LkQ(I)(σ) = {(0), ( 1
2 ), (− 1

2 )}×LkQ(J)(σ
′). Then,

χ
(
LkQ(I)(σ)

)
= −χ

(
LkQ(J)(σ

′)
)

+ χ
(
LkQ(J)(σ

′)
)

+ χ
(
LkQ(J)(σ

′)
)

= χ
(
LkQ(J)(σ

′)
)
.

Now, assuming by induction that χ
(
LkQ(J)(σ

′)
)

= 1 − (−1)k−1χ
(
StQ(J)(σ

′))
then

χ
(
LkQ(I)(σ)

)
= χ

(
LkQ(J)(σ

′)
)

= 1− (−1)k−1χ
(
StQ(J)(σ

′))
= 1− (−1)k−1

(
− χ

(
StQ(I)(σ))

)
= 1− (−1)kχ

(
StQ(I)(σ)),

concluding the proof. ut
It follows from Lemma 1 that a cell σ ∈ ∂Q(I) is χ-critical for Q(I) if and

only if:

χ
(
StQ(I)(σ)

)
6= 0.

Notice that, following the same arguments as in the proof of Lemma 1,
we can express the star and the link of any k-cell σ of Q(I) (0 < k < n) in
terms of the star and the link of a vertex v of Q(J), where J is an (n − k)-
dimensional “slice” of I and we have that χ

(
StQ(I)(σ)

)
= (−1)kχ

(
StQ(J)(v)

)
and, therefore, χ

(
LkQ(I)(σ)

)
= χ

(
LkQ(J)(v)

)
.

Remark 4 Let Q(I) be the cubical complex canonically associated with an nD
picture I, n ≥ 2. Then, for any vertex v ∈ ∂Q(I), there exist 2k

(
n
k

)
k-cells in

StQ(I)∪Q(bI)(v). Hence,

χ
(
StQ(I)∪Q(bI)(v)

)
=

n∑
k=0

(−1)k 2k
(
n

k

)
= (−1)n.

Besides, since χ
(
StQ(I)(v)

)
= χ

(
StQ(I)∪Q(bI)(v)

)
−χ
(
StQ(I)∪Q(bI)(v)\StQ(I)(v)

)
then:

χ
(
StQ(I)(v)

)
= (−1)n − χ

(
StQ(I)∪Q(bI)(v) \ StQ(I)(v)

)
.

Moreover, if σ is an r-cell of ∂Q(I) then for 0 ≤ k ≤ n − r the number of
(r + k)-cells in StQ(I)∪Q(bI)(σ) is 2k

(
n−r
k

)
, and

χ
(
StQ(I)∪Q(bI)(σ)

)
=

n−r∑
k=0

(−1)r+k 2k
(
n− r
k

)
= (−1)n.

Then,

χ
(
StQ(I)(σ)

)
= (−1)n − χ

(
StQ(I)∪Q(bI)(σ) \ StQ(I)(σ)

)
.

Definition 9 (strong Euler well-composedness) An nD cubical complex
is Euler well-composed (χWC) if it has no χ-critical vertices [4]. It is strongly

Euler well-composed (
+
χWC) if it has no χ-critical cells.
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Fig. 4 Different cases of a vertex v on the boundary of the cubical complex Q(I) canon-
ically associated with an nD picture I. LkQ(I)(v) is drawn in grey. a) A 2D case of a

χ- critical vertex v, with χ
(
LkQ(I)(v)

)
= 2. b) A 3D case of a χ-critical vertex v, with

χ
(
LkQ(I)(v)

)
= 2. c) A 3D case of a vertex v on the boundary that is not a χ-critical

vertex, since χ
(
LkQ(I)(v)

)
= 1. d) Complementary configuration of case c) in which v is a

χ-critical vertex, with χ
(
LkQ(I)(v)

)
= 0.

Observe that the definition of
+
χWCness is more restrictive than the defi-

nition of χWCness given in [4] in the sense that we do not only check if there
are χ-critical vertices (or 0-cells) but we also check if there are χ-critical k-

cells for any k ∈ Z. With the following lemma, we can conclude that
+
χWCness

and DWCness are equivalent when we deal with cubical complexes canonically
associated with nD pictures for n = 2, 3.

Lemma 2 Let Q(I) be the cubical complex canonically associated with an nD
picture I for n = 2, 3. Then Q(I) has no χ-critical cells if and only if I is
DWC.

Proof We have verified by computer search that there are no counterexamples
to this lemma. ut

With the following result, we can conclude that the definition of sχWCness

given in [4] is weaker than the definition of
+
χWCness given in this paper for

nD pictures with n ≥ 4, that is, sχWCness does not imply
+
χWCness for nD

pictures with n ≥ 4.

Lemma 3 The fact that neither Q(I) nor Q(bI) has χ-critical vertices does
not imply that Q(I) has no χ-critical cells for any nD picture I with n ≥ 4.

Proof Let us compute a counterexample for the statement presented above.
Consider the cubical complex Q(I) canonically associated with an nD picture
I = (Zn, FI) with n ≥ 4, such that FI = {(0, 1, 0), (0, 0, 0), (0, 0, 1), (1, 0, 1), (1, 1, 1),
(0, 2, 0), (0, 2, 1), (1, 2, 1)} × (0)n−3 (see Figure 1). Then, the set of n-cells of
Q(I) incident to the (n− 3)-cell

σ = ( 1
2 ,

1
2 ,

1
2 )× (0)n−3

is: {
(0, 1, 0), (0, 0, 0), (0, 0, 1), (1, 0, 1), (1, 1, 1)

}
× (0)n−3
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Fig. 5 An example of a 4D picture whose canonically associated cubical complex has the χ-
critical cell ( 1

2
, 1
2
, 1
2
, 0). The five red points constitute the foreground of the picture. Observe

that the 4D picture of Figure 1 can be obtained from this 4D picture by a reflection in the
hyperplane x2 = 1.

(see Figure 5). Observe that σ ∈ ∂Q(I) and StQ(I)(σ) is the set:{
σ
}
∪
{

(x, 12 ,
1
2 ), ( 1

2 , x,
1
2 ), ( 1

2 ,
1
2 , x) : x ∈ {0, 1}

}
× (0)n−3

∪
{

(x, y, 12 ), ( 1
2 , x, y) : x, y ∈ {0, 1}

}
× (0)n−3

∪
{

(0, 12 , 0), (0, 12 , 1), (1, 12 , 1)
}
× (0)n−3

∪
{

(0, 1, 0), (0, 0, 0), (0, 0, 1), (1, 0, 1), (1, 1, 1)
}
× (0)n−3.

Then,

χ
(
StQ(I)(σ)

)
= (−1)n−3 + 6(−1)n−2 + 11(−1)n−1 + 5(−1)n = (−1)n+1 6= 0.

Therefore, σ is a χ-critical (n − 3)-cell for Q(I) (with n − 3 ≥ 1), so Q(I) is

not
+
χWC.

Now, let us prove that none of the vertices of ∂Q(I) are χ-critical for Q(I)
or Q(bI). That is, let us prove that if v ∈ ∂Q(I) then χ

(
StQ(I)(v)

)
= 0 =

χ
(
StQ(bI)(v)

)
.

First, let us see that χ
(
StQ(I)(v)

)
= 0.

Let xn be the last coordinate of v (then xn = ± 1
2 ). Let

A = {σ = (y1, . . . , yn) ∈ StQ(I)(v) : yn = 0}

and

B = {σ = (y1, . . . , yn) ∈ StQ(I)(v) : yn = xn}.

Then, StQ(I)(v) = A t B. Let f : A → B such that f(σ) = (y1, . . . , yn−1, xn)
for each σ = (y1, . . . , yn−1, 0) ∈ A. Then, χ({f(σ)}) = −χ({σ}) for any σ ∈ A
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Fig. 6 A drawing of the vertices of the cubical complex Q(I) canonically associated with
the nD picture I defined in the proof of Lemma 3. Each colored point represents a set of
2n−3 vertices of ∂Q(I) that have the same first three coordinates; the point’s color indicates
the isometry class of StQ(I)∪Q(bI)(v) \ StQ(bI)(v) for every vertex v in that set. That is,
StQ(I)∪Q(bI)(v) \ StQ(bI)(v) is isometric to A1 if the point is red, isometric to A2 if it is
green, isometric to A3 if it is blue, and isometric to A4 if it is purple (A1, A2, A3, and A4

are defined in the proof of Lemma 3).

since the dimension of f(σ) is one less than the dimension of σ. Therefore,

χ
(
StQ(I)(v)

)
= χ(A) + χ(B) =

∑
σ∈A

χ({σ}) +
∑
σ∈A

χ({f(σ)}) = 0.

Second, let us see that χ
(
StQ(bI)(v)

)
= 0.

Let us observe that StQ(I)∪Q(bI)(v) \ StQ(bI)(v) is isometric to one of the fol-
lowing sets:

A1 =
{

(0, 0, 0)
}
× (0)n−3,

A2 =
{

(0, 0, 0), (0, 0, x) : x ∈ { 12 , 1}
}
× (0)n−3,

A3 =
{

(0, 0, 0), (0, 0, x), (x, 0, 1) : x ∈ { 12 , 1}
}
× (0)n−3,

A4 =
{

(0, 0, 0), (0, 0, x), (x, 0, 1), (0, x, 0), (1, x, 1) : x ∈ { 12 , 1}
}
× (0)n−3.

An intuition of this last assertion can be obtained by looking at Figure 6
where each colored point represents a set of 2n−3 vertices of ∂Q(I) that have
the same first three coordinates, and for every vertex v in that set the point’s
color indicates which set Ai the set StQ(I)∪Q(bI)(v) \ StQ(bI)(v) ⊂ StQ(I)(v) is
isometric to. In all cases,

χ
(
StQ(I)∪Q(bI)(v) \ StQ(bI)(v)

)
= (−1)n.

Finally, by Remark 4,

χ
(
StQ(bI)(v)

)
= (−1)n − χ

(
StQ(I)∪Q(bI)(v) \ StQ(bI)(v)

)
= 0.

Definition 10 (self-dual strong Euler well-composedness) The cubical
complex Q(I) canonically associated with an nD picture I is self-dual strongly

Euler well-composed (s
+
χWC) if both Q(I) and Q(bI) are

+
χWC.
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Lemma 4 If Q(I) is s
+
χWC then, for any vertex v of ∂Q(I), the following

equation is satisfied:

χ
(
Lk∂Q(I)(v)

)
= χ(Sn−2) = 1 + (−1)n−2

or, equivalently,

χ
(
St∂Q(I)(v)

)
= 1− χ(Sn−1) = (−1)n−1.

Proof Let us assume that

χ
(
LkQ(I)(v)

)
= 1 = χ

(
LkQ(bI)(v)

)
,

that is,

χ
(
StQ(I)(v)

)
= 0 = χ

(
StQ(bI)(v)

)
.

Now, since

χ
(
StQ(I)∪Q(bI)(v)

)
= χ

(
StQ(I)(v)

)
+ χ

(
StQ(bI)(v)

)
− χ

(
St∂Q(I)(v)

)
then, using Remark 4, we conclude that:

χ
(
St∂Q(I)(v)

)
= (−1)n−1.

ut
Nevertheless, the converse is not true.

Lemma 5 The fact that χ
(
St∂Q(I)(v)

)
= (−1)n−1 for any vertex v ∈ ∂Q(I)

does not imply that Q(I) is χWC nor that I is DWC.

Proof Case (b) of Figure 4 is a simple counterexample. In that case, we have
that χ

(
St∂Q(I)(v)

)
= (−1)n−1 but χ

(
StQ(I)(v)

)
= −1 6= 0. Besides, case (b)

of Figure 4 is not DWC. ut
In the next section, we will prove our main result, that is,

+
χWCness implies

DWCness in any dimension n ≥ 2 although the converse is not true when

n ≥ 4. Therefore, in principle, we do not need the concept of self-dual
+
χWCness

for our purpose. We end this section with the open question of whether self-
dual strong Euler well-composedness is in fact equivalent to strong Euler well-
composedness.

4 Strong Euler well-composedness implies digital
well-composedness

Let us now see one of the two main results of the paper, stating that
+
χWCness

implies DWCness for any nD picture with n ≥ 2.

Theorem 1 Strong Euler well-composedness implies digital well-composedness
in nD for n ≥ 2.
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Proof Let us prove that not DWCness implies not
+
χWCness. Let I = (Zn, FI)

be an nD picture with n ≥ 2, and let k be an integer in J0, n− 2K. Let {p, p′}
be two antagonists in an (n − k)-block B that yields a critical configuration
for I.
Let us assume, first, that FI ∩B = {p, p′}, that is, it is a critical configuration.

Then p+p′

2 encodes a k-cell σ in ∂Q(I). Let us prove that σ is a χ-critical
cell for Q(I), that is, let us prove that χ

(
LkQ(I)(σ)

)
6= 1. First, observe that

LkQ(I)(σ) = L(p) t L(p′) where, for q = p, p′,

L(q) = {µ ∈ LkQ(I)(σ) : µ is a face of the n-cell centered at q}.

Now, since χ(L(p)) = χ(L(p′)), then

χ
(
LkQ(I)(σ)

)
= χ(L(p) t L(p′)) = χ(L(p)) + χ(L(p′)) = 2χ(L(p)) 6= 1

and then σ is χ-critical for Q(I). In the other case, where B\FI = {p, p′}, when

σ is the k-cell centered at p+p′

2 , the set StQ(I)∪Q(bI)(σ)\StQ(I)(σ) consists just

of the two n-cells centered at p and p′. Hence, χ
(
StQ(I)∪Q(bI)(σ)\StQ(I)(σ)

)
=

2(−1)n and, by Remark 4,

χ
(
StQ(I)(σ)

)
= (−1)n − χ

(
StQ(I)∪Q(bI)(σ) \ StQ(I)(σ)

)
= (−1)n − 2(−1)n,

so χ
(
StQ(I)(σ)

)
= (−1)n+1 6= 0 and then σ is χ-critical for Q(I). ut

5 Digital well-composedness does not imply (strong) Euler
well-composedness

Let us see next, an example of an nD picture (n ≥ 4) that is digital well-
composed but not Euler well-composed, showing that DWCness does not imply

χWCness and, therefore, DWCness does not imply
+
χWCness.

Theorem 2 DWCness does not imply χWCness for any dimension n ≥ 4.

Proof Let us fix n ≥ 4. We will give an example of an nD picture In = (Zn, FIn)
(see Figure 7) such that In is DWC but Q(In) is not χWC. Let

FIn =
{

(0, 0, 0, 0), (0, 0, 0, 1), (0, 0, 1, 1), (0, 1, 1, 1),

(1, 1, 1, 1), (1, 1, 1, 0), (1, 1, 0, 0), (1, 0, 0, 0)
}
× {(0), (1)}n−4.

To prove that In is DWC we only have to check that it does not contain any
critical configuration. This has been checked in [4] when n = 4 and the same
reasoning can be extended to nD for n > 4.
Now, observe that the set of n-cubes of Q(In) encoded by FIn are incident to
the vertex v = ( 1

2 )n ∈ ∂Q(I). Then, to prove that Q(In) is not χWC, it is
enough to check that χ

(
StQ(In)(v)

)
6= 0.

Let us see that the counterexample works in 4D. In that case, v = ( 1
2 ,

1
2 ,

1
2 ,

1
2 )

and the hypercubes in StQ(I4)(v) are encoded by the points (0, 0, 0, 0), (0, 0, 0, 1),
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Fig. 7 As explained in Theorem 2, for n ≥ 4, there exists a family of DWC pictures In
such that Q(In) are not χWC. This picture corresponds to the case n = 4.

(0, 0, 1, 1), (0, 1, 1, 1), (1, 1, 1, 1), (1, 1, 1, 0), (1, 1, 0, 0) and (1, 0, 0, 0). Then, it
is easy to check that χ

(
StQ(I4)(v)

)
= 1 − 8 + 24 − 24 + 8 = 1 6= 0, so Q(I4)

is not χWC. Another way to see that Theorem 2 holds when n = 4 is that
StQ(I4)∪Q(bI4)(v)\StQ(I4)(v) = AtB where A is composed by the eight 3-cells
centered at the barycenters of the eight edges that joint two gray points of
Figure 7 and B is composed by the eight 4-cells centered at the eight grey
points. Then,

χ
(
StQ(I4)∪Q(bI4)(v) \ StQ(I4)(v)

)
= χ(A) + χ(B) = 8− 8 = 0

and hence, by Remark 4,

χ
(
StQ(I4)(v)

)
= (−1)4−χ

(
StQ(I4)∪Q(bI4)(v)\StQ(I4)(v)

)
= (−1)4−0 = 1 6= 0.

Consider the general case n > 4. Let d ∈ J0, nK. Let us denote by a(d,n) the
number of d-cells incident to v in the nD cubical complex Q(In). Then,

a(0,n) = 1,
a(d,n) = 2a(d−1,n−1) + a(d,n−1) for d ∈ J1, n− 1K because a d-cell in Q(In)
is constructed by adding an extra coordinate of 0 or 1 at the end to the
list of coordinates of a point encoding a (d− 1)-cell in Q(In−1) or adding
the coordinate 1

2 at the end of the list of coordinates of a point encoding a
d-cell in Q(In−1),
a(n,n) = 2a(n−1,n−1).
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Therefore,

χ
(
StQ(In)(v)

)
=

∑
d∈J0,nK

(−1)da(d,n) = 1 +
∑

d∈J1,nK

(−1)da(d,n)

= 1 + 2
∑

d∈J1,nK

(−1)da(d−1,n−1) +
∑

d∈J1,n−1K

(−1)da(d,n−1)

= 1− 2
∑

d∈J0,n−1K

(−1)da(d,n−1) +
∑

d∈J1,n−1K

(−1)da(d,n−1)

= 1− 2χ
(
StQ(In−1)(v)

)
+ χ

(
StQ(In−1)(v)

)
− 1

= −χ
(
StQ(In−1)(v)

)
.

Since χ
(
StQ(I4)(v)

)
= 1 then

χ
(
StQ(In)(v)

)
= (−1)n 6= 0.

So, Q(In) is not χWC. ut

Corollary 1 DWCness does not imply
+
χWCness for any dimension n ≥ 4.

We finish this section with a table summarising the main results obtained so

far regarding the concepts of DWCness and
+
χWCness:

n = 2, 3 DWCness ←→ +
χWCness

n ≥ 4 DWCness 9←−
+
χWCness

6 Conclusions and future works

In this paper, we have provided a new flavour of well-composedness, called
strong Euler well-composedness, that is more restrictive than the definition of
Euler well-composedness given in [4]. We have proven two fundamental proper-
ties: first, strong Euler well-composedness implies digital well-composedness in
any dimension n ≥ 2; second, the converse is not true: digital well-composedness
does not imply strong Euler well-composedness as soon as we are in dimension
n ≥ 4.

As a future work, we plan to prove that the definition of
+
χWCness provided

in this paper is robust to cubical barycentric subdivisions. Observe that a
cubical barycentric subdivision of Q(I) is the nD cubical complex canonically
associated with the linear interpolation of the nD picture I in all the possible
directions ei, being {e1, . . . , en} the canonical basis of Zn. This is another
reason why we believe that it is a better choice to define well-composedness
based on χ-critical cells and not only on χ-critical vertices as it was done in
[4].
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We also plan to prove that if we apply the reparation method given in
[10, 11, 3] to any χ-critical cell, then PS(I) (i.e., the simplicial subdivision of

the “repaired complex” P (I)) is
+
χWC, going a step forward to our ultimate

goal that is to prove that P (I) is a CWC regular cell complex.

Data availability

The datasets generated during the current study are available in the github
repository, https://github.com/Cimagroup/Strong-Euler-Well-Composed.
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