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Abstract. This paper proposes, in the context of brain tumor study, a
fast automatic method that segments tumors and predicts patient overall
survival. The segmentation stage is implemented using two fully convo-
lutional networks based on VGG-16, pre-trained on ImageNet for nat-
ural image classification, and fine tuned with the training dataset of
the MICCAI 2019 BraTS Challenge. The first network yields to a bi-
naty segmentation (background vs lesion) and the second one focuses
on the enhancing and non-enhancing tumor classes. The final multiclass
segmentation is a fusion of the results of these two networks. The pre-
diction stage is implemented using kernel principal component analysis
and random forest classifiers. It only requires a predicted segmentation
of the tumor and a homemade atlas. Its simplicity allows to train it with
very few examples and it can be used after any segmentation process.

Keywords: glioma · tumor segmentation · fully convolutional network
· random forest · survival prediction.

1 Introduction

1.1 Motivation

Gliomas are the most common brain tumors in adults, growing from glial cells
and invading the surrounding tissues [10]. Two classes of tumors are observed.
The patients with the more aggressive ones, classified as high-grade gliomas
(HGG), have a median overall survival of two years or less and imply immedi-
ate treatment [13, 16]. The less aggressive ones, the low-grade gliomas (LGG),
allow an overall survival of several years, with no need of immediate treatment.
Multimodal magnetic resonance imaging (MRI) helps pratitioners to evaluate
the degree of the disease, its evolution and the response to treatment. Images
are analyzed based on qualitative or quantitative measures of the lesion [8, 22].
Developing automated brain tumor segmentation techniques that are able to
analyze these tumors is challenging, because of the highly heterogeneous ap-
pearance and shapes of these lesions. Manual segmentations by experts can also
be a challenging task, as they show significant variations in some cases. Despite



the relevance of glioma segmentation, this segmentation is challenging due to
the high heterogeneity of tumors. The development of an algorithm that can
perform fully automatic glioma segmentation and overall prediction of survival
would be an important improvement for patients and practitioners. During the
past 20 years, different algorithms for segmentation of tumor structures has been
developed and reviewed [1, 6, 7]. However, a fair comparison of algorithms im-
plies a benchmark based on the same dataset, as it has been proposed during
MICCAI BraTS Challenges [15] [5].

1.2 Context

The work proposed in this article has been done in the context of the MICCAI
2019 Multimodal Brain Tumor Segmentation Challenge (BraTS)1. The overall
goal of this challenge is to establish a fair comparison between state-of-the-art
methods, and to release a large annotated dataset. The objective of the work
conducted within the scope of BraTS challenge is three-fold:

Task 1 providing a fully automated pipeline for the segmentation of the glioma
from multimodal MRI scans without any manual assistance,

Task 2 predicting the patient overall survival from pre-operative scans,
Task 3 estimating the uncertainty in segmentation results provided within the

scope of Task 1. Note that, unlike the two previously mentioned tasks which
were already established in the former BraTS challenges, Task 3 is exclusive
to the 2019 BraTS challenge.

We received data of 335 patients, with associated masks to develop our method.
The data, avalaible online, have been annotated and preprocessed [2–4]. The
volumes given are T1, T1ce, T2 and FLAIR. Our method is then evaluated on
new volumes:

- a validation set composed of 125 patients, released by the organizers without
the manual segmented masks (these masks will not be released), to obtain
preliminary results.

- a test set comprising 166 patients, used for the challenge evaluation. In that
case, our team was asked to process those data and send the corresponding
results in the expected formats within 48h after receiving the data.

1.3 Related works

In the framework of BraTS 2018 challenge, we carried out the tumor segmen-
tation task thanks to a fully convolutional network (FCN) approach [17]. The
used network was VGG (Visual Geometry Group) [20], pre-trained on the Ima-
geNet dataset and fine-tuned to the BraTS challenge dataset thanks to transfer
learning strategy. As VGG expects 2D color images as input images (thus, 2D

1 http://braintumorsegmentation.org/

http://braintumorsegmentation.org/


images with 3 RGB channels), we made use of the “pseudo-3D” strategy, origi-
nating from [23]. Initially applied to the segmentation of 3D brain MR volumes,
the pseudo-3D idea consists in creating a series of RGB images of the 3D in-
put volume by selecting the (n − 1)th, nth and (n + 1)th slices (with n sliding
through the 3D volume) as the R, G and B channels, respectively. This pseudo-
3D idea proved to be also successful for left atrium segmentation [18]. Note that
in [17], this pseudo-3D idea was actually used in a multimodality fashion since
the (n − 1)th and (n + 1)th slices were extracted from the T1ce modality while
the nth slice was selected in the T2 modality.
However, this method yielded poor results for the tumor segmentation task of
BraTS 2018 challenge. Thus, we decided to improve our approach, still using
VGG and 3D-like images, but with a two-stage segmentation scheme, as de-
tailed in the following section 2.1. Based on those poor quality tumor segmenta-
tions, we nevertheless reached the second place for the survival prediction task of
BraTS 2018 challenge [17]. We also attempt to improve our survival prediction
algorithm, as exposed in section 2.2.

2 Proposed methodology

2.1 Tumor segmentation

Overall FCN architecture As for the BraTS 2018 Challenge [17], our FCN
architecture for the segmentation task relies on the 16-layer VGG network [20],
which was pre-trained on ImageNet for image classification purposes [11]. We
keep only the first 4 convolutional stages, and we discard the fully connected
layers at the end of VGG network. Each stage is composed of convolutional
layers, followed by Rectified Linear Unit (ReLU) layers and a max-pooling layer,
correponding to four fine-to-coarse feature maps. Inspired by the work in [12,14],
we add specialized convolutional layers (with a 3 × 3 kernel size) with K (e.g.
K = 16) feature maps after the last convolutional layer of each stage. All these
specialized layers are then rescaled to the original image size, and concatenated
together. We add a last convolutional layer with kernel size 1×1 at the end. This
last step combines linearly the fine-to-coarse feature maps in the concatenated
specialized layers, and provide the final segmentation result. The parameters of
the network are the same than in [17].

This FCN architecture is depicted in its generic form in Fig 1, where it accepts
as input a RGB image and outputs its corresponding segmentation map.

Pre-processing Let n,m be respectively the minimum non-null and maximum
gray-level value of an input 3D volume. For each patient, we first requantize all
voxel values using a linear function so that the gray-level range [n,m] is mapped
to [−127, 127].

For our application, the question amounts to how to prepare appropriate
inputs (RGB input images) given that a brain MR image is a 3D volume. To
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Fig. 1. Proposed FCN generic architecture, based on the pre-trained VGG network.

that aim, we propose to stack 2D slices of different modalities according to the
segmentation classes studied.

Precisely, to form an input artificial color image for the pre-trained network
to segment the ith slice, we defined the input image this way:

– in the channel green, put the slice i of modality 1
– in the channel red, put the slice n− x of modality 2
– in the channel blue, put the slice n + x of the modality 3

The x parameter, namely the “offset”, can bring 3D information for 2D segmen-
tation while the choice of modalities (modality 1, 2 and 3 can be the same) can
bring information from one to three modalities. For the challenge, we use the
slice i of one volume modality in the green channel, the slice i of an other modal-
ity for the blue and red channels, and the offset x is set to 0. These parameters
(modalities and x) have been selected after testing all the combinations.

Segmentation During our experiments, we noticed that our network confuses
the background with the edema, and the necrotic and non-enhancing tumor core
with the enhancing tumor. Hence, we decided to performed the segmentation
in two steps: the first step is a binary segmentation of the whole tumor (vs.
background), and the second is a multi-label segmentation of two parts of the
tumor (necrotic and non-enhancing tumor core vs. enhancing tumor). The final
segmentation resulted of the fusion of these two results, as depicted in Fig. 2.

As the different modalities enhance different structures, we decided to take
the advantage of each modality for a specific task. For the segmentation of the
whole tumor vs. background, we put the T2 modality in the green channel of
our RGB input image and the FLAIR in the blue and red channels. For the
segmentation of necrotic and non-enhancing tumor core vs. enhancing tumor,
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Fig. 2. Workflow of our procedure for the segmentation task.

we put the T2 modality in the green channel of our RGB input image and the
T1ce in the blue and red channels.

Post-processing The output of our process for one slice during the inference
phase is two 2D segmented slice: one for the tumor vs. background, and one for
the inner parts of the tumor. We first fused the two segmentation results: we
kept the segmentation of the inner parts of the tumor as classes necrotic and
non-enhancing tumor core and enhancing tumor. The last class, the oedema is
the non-zero part of the whole tumor that was not detected as an other class in
the tumor part segmentations.

After treating all the slices of the volume, the segmented slices are stacked to
recover a 3D volume with the same shape as the initial volume, and containing
only the segmented lesions. A spatial regularization is processed to ensure 3D
cohesion, and we remove the 3D connected components that have as label only
oedema.

2.2 Patient survival prediction

The second task of the MICCAI 2019 BraTS challenge is concerned with the
prediction of patient overall survival from pre-operative scans (only for sub-
jects with gross total resection (GTR) status). As precognized by the evaluation
framework, the classification procedure is conducted by labeling subjects into
three classes: short-survivors (less than 10 months), mid-survivors (between 10
and 15 months) and long-survivors (greater than 15 months). For post-challenge
analyses, prediction results are also compared in terms of mean and median
square error of survival time predictions, expressed in days. For that reason, our
proposed patient survival prediction algorithm is organized in two steps:



1 We first predict the overall survival class, i.e. short-, mid- or long-survival
(hereafter denoted by class/label 1, 2 and 3, respectively).

2 We then adjust our prediction within the predicted class by means of linear
regression, in order to express the survival time in days.

Definition and extraction of relevant features Extracting relevant features
is critical for classification purposes. Here, we re-use the features implemented
by our team in the framework of the patient survival prediction task of MICCAI
2018 BraTS challenge, which ranked tie second [17]. Those features were chosen
after in-depth discussions with a practicioner and are the following:

feature 1: the patient age (expressed in years).
feature 2: the relative size of the necrosis (labeled 1 in the groundtruth) class

with respect to the brain size.
feature 3: the relative size of the edema class (labeled 2 in the groundtruth)

with respect to the brain size.
feature 4: the relative size of the active tumor class (labeled 4 in the groundtruth)

with respect to the brain size.
feature 5: the normalized coordinates of the binarized enhanced tumor (thus

only considering necrosis and active tumor classes).
feature 6: the normalized coordinates of the region that is the most affected

by necrosis, in a home made brain atlas.

For the training stage, features 2, 3 and 4 are computed thanks to the patient
ground truth map for each patient. As this information is unknown during the
test stage, the segmented volumes predicted by our Deep FCN architecture are
used instead. In any case, these size features are expressed relatively to the total
brain size (computed as the number of voxels in the T2 modality whose intensity
is greater than 0).
In addition, we also re-use the home-made brain atlas that we also developed
for the 2018 BraTS challenge. This atlas is divided into 10 crudely designed
regions accounting for the frontal, parietal, temporal and occipital lobes and the
cerebellum for each hemisphere (see [17] for more details regarding this atlas
and how it is adjusted to each patient brain size). Feature 6 is defined as the
coordinates of the centroid of the region within the altas that is the most affected
by the necrosis class (i.e., the region that has the most voxels labeled as necrosis
with respect to its own size). Note that this feature, as well as feature 5, is
then normalized relatively to the brain bounding box. This leads to a feature
vector with 10 components per patient (since both centroids coordinates are
3-dimensionals).

Training phase For the training phase, we modified our previous work [17] in
the following way: while we maintained the final learning stage through random
forest (RF) classifiers [21], we replaced the principal component analysis (PCA)
transformation, acting as preprocessing step for the learning stage, by its kernel
counterpart (kPCA) [19]. The rationale is that we hope to increase the RFs
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Fig. 3. Workflow of the proposed class-based training procedure. The information
stored after the training phase (necessary for the test phase) is written in red or encir-
cled in dashed red.

performances in terms of classification/prediction as the input features are highly
non-linear in terms of survival labels.
More specifically, the training stage of our prediction algorithm is as follows:

1. The feature vector xi ∈ R10 of each of the N patients in the training set is
extracted as described in the previous section 2.2. All those feature vectors
are then stacked in a N × 10 feature matrix Xtrain

2. A kPCA is performed on Xtrain, yielding the N × N matrix XkPCA. This
matrix is obtained through the computation, normalization and diagonaliza-
tion of the so-called kernel matrix which represents the dot product between
the N features vectors when mapped in the feature space through a kernel
function (here defined as a polynomial kernel with degree d = 3).

4. The N × Nf matrix Ytrain is defined from Xtrain by retaining the first Nf

columns (corresponding to the leading Nf features in the feature space, here
set to Nf = 10). NRF RF classifiers [21] are finally trained on all rows of
Ytrain to learn to predict the survival class of each training patient using the
true label vector ylabel as target values. The used RF parameters (number
of decision trees per RF, splitting criterion, total number of RFs NRF) are
defined as in [17].

5. Three linear regressors (one per survival class) are finally trained using the
patient age and its whole tumor size (relatively to its brain size) as explana-
tory variables and its true survival time (expressed in days) as measured
variable.

Steps 1. to 4. are depicted by the workflow in Fig.3. In addition to the three linear
regressors, we also store (for the test phase) the training feature matrix Xtrain,
the eigenvector matrix VkPCA and eigenvalues EkPCA of the kernel matrix, and
the number of retained features Nf after kPCA.

Test phase The test phase is conducted in a similar fashion as the training
phase. Given some input test patient, its overall survival class is first predicted,
before being refined and expressed in terms of number of days. More specifically:

1. The features vector xtest of the test patient is retrieved as described previ-
ously.



pat ⇒ xtest = [. . . ]1×10

Xtrain,EkPCA,VkPCA

kPCA
projection

xkPCA = [. . . ]1×N ytest = xkPCA[1:N f ]1×Nf

RF1

RF2

...

RFi

...

RFNRF

y1

y2

yi

yNRF

predict

predict

predict

predict

Majority
Voting

ypred

Fig. 4. Workflow of the proposed test procedure.

2. This feature vector is then projected onto the principal axes learnt by the
kPCA during the training phase. For that purpose, a new kernel matrix is
computed and centered (hence the need for Xtrain) before proper projection
(through VkPCA) and scaling (with EkPCA).

3. This results in the projected vector xkPCA ∈ RN from which the first Nf

features are retained, yielding the test vector ytest. This vector is then fed to
the NRF RF classifiers, leading to NRF independent class label predictions.
The final label prediction ypred (1, 2 and 3 for short-, mid- and long-survivors,
respectively) is eventually obtained by majority voting.

4. Once the survival class has been established, the final patient survival rate
is predicted by means of the appropriate learnt linear regressor.

Steps 1. to 3. are illustrated by the worflow in Fig.4.

2.3 Quantification of uncertainty in segmentation

The third task of MICCAI 2019 BraTS challenge focuses on the estimation of
the uncertainty in segmentation results provided within the scope of Task 1. For
that purpose, we focused on the study of a lightweight technique which estimate
uncertainty by considering the instability at the spatial boundary between two
regions predicted to belong to different classes. We believe that such approach
can be complementary to approaches based on the stability of the prediction
under perturbations like Monte Carlo Dropout [9] which tend to be computa-
tionally demanding.
The resulting indicator assigns a maximal uncertainty (100) at the boundary be-
tween two regions, and linearly decreases this uncertainty to the minimal value
(0) at a given distance from the boundary. This distance defines the (half) width
of an “uncertainty border” between two regions. It is calibrated independently
for each class, and was estimated according to the 95th percentile of the Haus-
dorff distance metric reported in Table 1 for our segmentation method for this
particular class. In practice, we used a half-width of 9 voxels for the whole tumor
(WT), a half-width of 12 voxels for the tumor core (TC) and a half-width of 7
voxels for the enhancing tumor (ET).
To compute this indicator, we first compute the Boundary Distance Transform
BDT = max(DT(R),DT(R)) using the Distance Transform DT to the given
sub-region R and its complement R. Then, we invert, shift and clip the BDT
such that the map is maximal on the boundary and have 0 values at a distance



Table 1. Dice and Haussdorf distance metrics for the proposed segmentation method
on the test data set.

Metric Dice ET Dice WT Dice TC HD95 ET HD95 WT HD95 TC

Mean 0.750 0.854 0.800 3.084 7.047 5.961

StdDev 0.230 0.129 0.247 4.320 7.609 8.847

Median 0.821 0.897 0.891 2 5.099 3.606

25quantile 0.733 0.838 0.821 1.414 3.742 2

75quantile 0.877 0.919 0.936 3.162 7.071 6.224

Table 2. Classification metrics of the proposed survival prediction method for the
validation (with comparison with [17]) and test data sets.

Data set Accuracy MSE medianSE stdSE SpearmanR

Previous
work [17]

Validation 0.379 131549 72900 169116 0.235

Proposed
Validation 0.517 127727 40645 191729 0.429

Test 0.523 428641 59539 1162454 0.36

greater or equal to the half-width of the border. We finally scale the resulting
map so its values are comprised between 0 (far from the boundary) and 100
(on the boundary). The resulting uncertainty map for a given class exhibits a
triangular activation shape on the direction perpendicular to the boundary of
the objects detected by the segmentation stage.

3 Experiments and Results

Task 1: tumor segmentation Table 1 presents the results obtained for the
segmentation task by our proposed method. Overall, we perform better in terms
of Dice coefficient on the whole tumor (Dice WT column) than on the enhanced
tumor (Dice ET, corresponding to the active tumor class) and the tumor core
(Dice TC, corresponding to the necrosis class). Visual inspection on the seg-
mentation infered on the training data set indicated that our method sometimes
indeed tends to confuse those two classes together. This is confirmed by the fact
that the median Dice is significantly higher than the mean Dice on the whole test
data set, implying that eventhough it performs well on most cases, our method
seems to really fail in the segmentation of necrosis and enhanced tumor classes
on a few cases.
Regarding the Haussdorf distance metric, our method however performs bet-
ter on the enhanced tumor and tumor core. We believe that this is due to the
regularization step performed on the segmented infered by the used FCN archi-
tecture, which smoothes the external contours of the edema class, thus impacting
the shape of the whole tumor but not the enhanced tumor and tumor core.



Table 3. Performance reported by the automated evaluation platform for uncertainty
estimation for our method on the validation data set.

Class WT TC ET

DICE AUC (%) ↑ 89.7 72.5 61.7

FTP Ratio AUC (%) ↓ 48.3 71.6 70.6

Task 2: survival prediction Table 2 presents the various classification perfor-
mance metrics, namely the class-based accuracy, the mean, median and standard
deviation square errors and Spearman R coefficient for survival predictions ex-
pressed in days, for the proposed prediction algorithm for the validation data set
and the test data set. For comparison purposes, results obtained by our previous
work [17] applied on the validation data set are also presented. The validation
and test data sets are comprised of N = 27 and N = 107 patients, respectively.
As it can be seen on Table 2, replacing the conventional PCA (as done in [17])
by the kPCA does indeed improve the class-based classification accuracy since
it increases from 0.379 to 0.517 on the validation data set. This accuracy also
remains stable when going from the validation data set to the test data set
(slightly increasing from 0.517 to 0.523). This notably validates the capacity of
kPCA to RFs performances in terms of class-wise prediction with respect to clas-
sical PCA. Metrics devoted to the evaluation of the survival prediction in days
(namely the mean and median square errors) however do not allow to conclude
with respect to the soundness of the final linear regression step for the validation
data set when comparing [17] with the currently proposed algorithm.

Task 3: uncertainty quantification As summarized by Table 3, our un-
certainty estimation method produces encouraging results for the whole tumor
(WT) class as it permits to efficiently filter false positives and increase the over-
all confidence from an original DICE score of 88.0%, as show by the DICE
AUC metric. This, however, comes with the price of a large filtering of true
positives, as shown by the FTP Ratio AUC metric. Regarding the tumor core
(TC) and enhancing tumor (ET) classes, the results are less promising as the
DICE score degrades from original DICE scores of 74.6% (TC) and 70.1% (ET),
mainly because of an over-aggressive filtering. Those results let us believe that
this uncertainty estimation method is better suited for cases were the underlying
segmentation method already performs quite well. Because of its simplicity and
its fast computation, it may be a natural baseline for more complex methods to
be compared against.

4 Conclusion

In this article, we present the work submitted for the MICCAI Challenge BraTS
2019, for the segmentation, prediction and uncertaincy tasks.



– The segmentation procedure is performed using two VGG-based segmenta-
tion networks;

– The prediction procedure relies on feature extraction and random forests;
– The uncertainty procedure uses the results of the segmentation and gives a

confidence score to each pixel based on its distance to the background.

The strength of this method is its modularity and its simplicity. It is easy to
implement and fast. From the obtained segmentation result, we propose a simple
method to predict the patient overall survival, based on Random Forests, based
on the same procedure than during the BraTS 2018 Challenge where we reached
the 2nd place. This method only needs as input a segmentation, a brain atlas
and a brain volume for atlas registration. It means that our method is robust to
the different acquisitions, does not need a special modality or setting, yielding
to a method robust to inter-base variations.
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