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1 EPITA Research and Development Laboratory (LRDE)
{firstname.lastname}@lrde.epita.fr
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Abstract. The Tree of Shapes (ToS) is a morphological tree that pro-
vides a high-level, hierarchical, self-dual, and contrast invariant repre-
sentation of images, suitable for many image processing tasks. When
dealing with color images, one cannot use the ToS because its defini-
tion is ill-formed on multivariate data. Common workarounds such as
marginal processing, or imposing a total order on data are not satisfac-
tory and yield many problems (color artifacts, loss of invariances, etc.)
In this paper, we highlight the need for a self-dual and contrast invariant
representation of color images and we provide a method that builds a sin-
gle ToS by merging the shapes computed marginally, while guarantying
the most important properties of the ToS. This method does not try to
impose an arbitrary total ordering on values but uses only the inclusion
relationship between shapes. Eventually, we show the relevance of our
method and our structure through some illustrations on filtering, image
simplification, and interactive segmentation.
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1 Introduction

The Tree of Shapes (ToS) [6] is a hierarchical representation of an image in
terms of the inclusion of its level lines. Its powerfulness lies in the number of
properties verified by this structure. First, it is a morphological representation
based on the inclusion of the connected components of an image at the different
levels of thresholding. As such, a basic filtering of this tree is a connected filter,
i.e., an operator that does not move the contours of the objects but either keep
or remove some of them [16]. In addition, not only is it invariant by contrast
changes on the whole image but it is also robust to local changes of contrast
[2]. This property is very desirable in many computer vision applications where
we face the problem of illumination changes, e.g., for scene matching, object
recognition. . . In Fig. 1c, we show this invariance by simulating a change of illu-
mination directly in the ToS so we do have the exact same tree representation
as for the original image in Fig. 1a. Third, besides being contrast change in-
variant, the ToS is also a self-dual representation of the image. This feature
is fundamental in a context where structures may appear both on a brighter
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Fig. 1. On the need for contrast change/inversion invariance. (b) and (c) have been
generated from the original image. We have changed and/or inverted the contrast of
each channel for (b) and we have changed locally the contrast for (c) (to simulate a
change of illumination). The three images (a), (b), and (c) give the same CToS whose
level lines are shown in (d).

background or on a lighter one. Therefore, self-dual operators are particularly
well adapted to process images without prior knowledge on their contents. While
many morphological operators try to be self-dual by combining extensive and
anti-extensive operators (for instance, the Alternating Sequential Filters), many
of them actually depend on the processing order (i.e., on which filter comes first).
Self-dual operators have the ability to deal with both dark and light objects in
a symmetric way [12,17] (see Fig. 1b).

Despite all these wonderful features, the ToS is still widely under-exploited
even if some authors have already been using it successfully for image processing
and computer vision applications. In [9,21,22], an energy optimization approach
is performed on the ToS for image simplification and image segmentation, while
Cao et al. [2] rely on an a-contrario approach to select meaningful level-lines.
Some other applications include blood vessel segmentation [21], scene matching
extending the Maximally Stable Extremal Regions (MSER) through the Maxi-
mally Stable Shapes [6], image registration [6], and so on.

While the ToS is well-defined on grayscale images, it is getting more compli-
cated with multivariate data. Indeed, like in the case of the min and max-trees,
the ToS relies on an ordering relation of values which has to be total. If it is not,
the definition based on lower and upper threshold sets yield components that
may overlap and the tree of inclusion does not exist. To overcome this prob-
lem, most authors have focused on defining a total order on multivariate data.
However, from our point of view, the most important feature of morphological
trees lies in the inclusion of components/shapes. As a consequence, this paper
introduces a novel approach which does not intend to build a total order, but
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Fig. 2. An image (a) and its morphological component trees (b) to (d).

tries to build up a set of non-overlapping shapes from an arbitrary set of shapes
using the inclusion relation only.

The paper is organized as follows. In Section 2, we remind the basis about
the ToS and its formal definition. We also review some classical approaches to
handle multivariate data with morphological trees. In Section 3, we introduce
a new method to build a Color Tree of Shapes (CToS) by merging the shapes
issued from marginal ToS’s. In Section 4, we show some illustrations to highlight
the potential of the CToS and its versatility.

2 Background

2.1 The Tree of Shapes

Let an image u : Ω → E defined on a domain Ω and taking values on a set
E embedded with an ordering relation ≤. Let, [u < λ] (resp. [u > λ]) with
λ ∈ R be a threshold set of u (also called respectively lower cut and upper
cut) defined as [u < λ] = {x ∈ Ω, u(x) < λ}. We note CC(X), X ∈ P(Ω) the
set of connected components of X. If ≤ is a total relation, any two connected
components X,Y ∈ CC([u < λ]) are either disjoint or nested. The set CC([u < λ])
endowed with the inclusion relation forms a tree called the min-tree and its dual
tree, defined on upper cuts, is called the max-tree (see Figs. 2b and 2c). Given
the hole-filling operator H, we call a shape any element of S = {H(Γ ), Γ ∈
CC([u < λ])}λ ∪ {H(Γ ), Γ ∈ CC([u > λ])}λ. If ≤ is total, any two shapes are
either disjoint or nested, hence the cover of (S,⊆) forms a tree called the Tree of
Shapes (ToS) (see Fig. 2d). In the rest of the paper, we implicitly consider the
cover of (S,⊆) while writing (S,⊆) only. The level lines of u are the contours of
the shapes. Using the image representation in [11], one can ensure each level line
is an isolevel closed curve given that ≤ is a total order. Actually, the “totality”
requirement about ≤ comes from the definition of the level lines in terms of
contours of lower or upper sets. Note that the ToS encodes the shapes inclusion
but also the level lines inclusion that are the contours of the shapes. Without
loss of generality, we will consider E = Rn throughout this paper, and we will
note u for scalar images (n = 1) and u for multivariate ones (n > 1).

2.2 The Color Problem: Common Solutions and Related Works

The previous definitions of level lines (in terms of iso-level curves and as contour
of shapes) are both ill-formed when dealing with partial orders. Indeed, iso-level
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Fig. 3. Simplification issues with “classical” color image processing. (b) shows the
simplification on the luminance of the original image (198 regions) issuing leakage
problems because it does not allow to retrieve the whole geometric information. (c)
shows the marginal processing (123 + 141 + 136 regions) that introduces false colors.
(d) is the simplification with our method (158 regions). It retrieves correctly the main
contents of the image while preventing the introduction of false colors.

sets in colors do not form closed curves and the shapes issued from lower and
uppers cuts may intersect without being nested, i.e., (S,⊆) is a graph.

An unacceptable but widely used workaround for color image processing is
to get rid of colors and to process a gray-level version of the color image. This
workaround makes sense if we pretend that the geometric information is mainly
held by the luminance [5]. However, many images exist where edges are only
available in the color space (e.g. in document or synthetic images), emphazing
that the chrominance holds some geometric information as well (see Fig. 3b).

Another commonly used solution is processing the image channel-wise and
finally recombine the results. Marginal processing is subject to the well-known
false color problem: it usually creates new colors that were not in the original
images. False colors may or may not be a problem in itself (e.g. if the false
colors are perceptually close to the original ones) but for image simplification
it may produce undesirable color artifacts as shown in Fig. 3c. Also marginal
processing leads to several trees (each of them representing a single channel the
image) whereas we aim at producing a single representation of the image.



Since the pitfall of overlapping shapes is due to the partial ordering of colors,
some authors tend to impose an “arbitrary” total ordering or total pre-ordering
on values. They differ in the fact that a node may get associated with several
colors. The way of ordering a multivariate space has been widely studied to
extend gray-scale morphological operators. A non-extensive review of classical
way of ordering values can be found in [1]. Also more advanced strategies have
been designed to build a more “sensitive” total ordering that depends on the
image contents (see for example [19,20,13,8]).

Another approach introduced by [15] uses directly the partial ordering of val-
ues and manipulates the underlying structure, which is a graph. The component-
graph is still at a development level but has shown promising results for filtering
tasks [14]. However, the component-graph faces an algorithmic complexity issue
that compels the authors to perform the filtering locally. Thus, it is currently
not suitable if we want to have a single representation of the whole image.

In [4], we introduced an approach where instead of trying to impose a total
ordering on values, we compute marginally the ToS’s and merge them into a
single tree. The merge decision does not rely on values anymore but rather on
some properties computed in a shape space. However, the merging procedure
proposed in that paper shows a loss of “coherence” by merging unrelated shapes
together. In [3], inspired by the work of [15], we proposed the Graph of Shapes
(GoS) which merges the marginal ToS’s into a single structure in an efficient
way. We showed that this structure has a strong potential compared to the
methods that impose a total order on values. Yet, the method builds a graph
that prevents from using tools from the component tree framework (filtering,
object detection, segmentation methods, etc.) and complicates the processing.
The work presented here can be seen as a continuation of the ideas introduced
in [4] and [3] since the GoS is used as an intermediate representation to extract
a single tree from the marginal ToS’s.

3 Merging the Trees of Shapes

3.1 Overview and Properties

Let us first relax the definition of a shape. A shape X is a connected component
of Ω without holes (i.e., such that H(X) = X). Given a family of shape sets,
namelyM = {S1,S2, . . . ,Sn}, where each element (Si,⊆) forms a tree, we note
S =

⋃
Si the primary shape set. Note that (S,⊆) generally does not form a tree

but a graph since shapes may overlap. We aim at defining a new set of shapes
S such that any two shapes are either nested or disjoint. We do not impose the
constraint S ⊆ S. In other words, we do allow the method to build new shapes
that were not in the primary shape set. We note T : ΩRn → (P(P(Ω)),⊆) the

process that builds a ToS (S(u),⊆) from an image u ∈ (Rn)
Ω

.
A transformation ψ is said contrast change invariant if given a strictly in-

creasing function g : R→ R, g(ψ(u)) = ψ(g(u)). Moreover, the transformation is
said self-dual if it is invariant w.r.t. the complementation i.e. {(ψ(u)) = ψ({(u))
(for images with scalar values {(u) = −u). When ψ is both self-dual and contrast
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Fig. 4. Scheme of the proposed method to compute a Color Tree of Shapes (CToS).

change invariant, then for any strictly monotonic function G (i.e., either strictly
increasing or decreasing), we have G(ψ(u)) = ψ(G(u)). The ToS is actually a
support for many self-dual morphological operators and a representation T is
said self-dual and morphological if T (G(u)) = T (u).

More formally, we want the method T to produce T (u) = (S(u),⊆) having
the following properties:

(P1) Domain covering
(⋃

X∈S(u)X
)

= Ω

(a point belongs to one shape at least)
(P2) Tree structure ∀X,Y ∈ S(u), either X ∩ Y = ∅ or X ⊆ Y or Y ⊆ X

(any two shapes are either nested or disjoint)
(P3) Scalar ToS equivalence. If M = {S1} then S(u) = S1 (for scalar im-

ages, the tree built by the method is equivalent to the gray-level ToS).
(P4) If a shape X ∈ S(u) verifies:

∀Y 6= X ∈ S, X ∩ Y = ∅ or X ⊂ Y or Y ⊂ X
then X ∈ S(u) (any shape that does not overlap with any other shape should
exist in the final shape set).

(P5) Marginal contrast change/inversion invariance.
Let us consider G(u) = (G1(u1), G2(u2), . . . , Gn(un)), where Gi is a strictly
monotonic function, then T shall be invariant by marginal inversion/change
of contrast, that is, T (G(u)) = T (u).

3.2 Method Description

The method we propose is a 4-steps process (see Fig. 4). First, we start with com-
puting the marginal ToS’s T1, T2, . . . , Tn of u associated with the shape sets S1,
S2, . . .Sn that give a primary shape set S =

⋃
Si. The multiple trees provide

a representation of the original image and u can be reconstructed marginally
from them. However, handling several trees is not straightforward and they lack
some important information: how the shapes of one tree are related (w.r.t the
inclusion) to the shapes of the other trees. The graph G, the cover of (S,⊆),
is nothing more than these trees merged in a unique structure that adds the
inclusion relation that was missing previously. As a consequence, G is “richer”
than {T1, . . . , Tn} and because the transformation from {T1, . . . , Tn} to G is re-
versible, G is a complete representation of u (i.e. u can be reconstructed from
G). Moreover, G is also a self-dual, contrast invariant representation of u.
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Fig. 5. The method illustrated on an example. (a) A 2-channels image u and its shapes
(resp. in green and red). (b) The marginal ToS’s T1, T2 and the GoS. The depth appears
in gray near the nodes. (c) ω image built from G. (d) The max-tree Tω of ω.

The second part of the method tries to extract a tree from G verifying the
constraints (P1) to (P5). The major difficulty of this task is to get from G a new
set of shapes that do not overlap. The first observation is that for any decreasing
attribute ρ : P(Ω) → R (i.e. ∀A,B ∈ S, A ⊂ B ⇒ ρ(A) > ρ(B)), then (S,⊂)
is isomorphic to (S,R) where ARB ⇔ ρ(A) > ρ(B) and A ∩B 6= ∅. This just
means that the inclusion relationship between shapes that we want to preserve
can be expressed in terms of a simple ordering relation on R with the values on
a decreasing attribute. An example of such an attribute is the depth where the
depth of a shape in G stands for the length of the longest path of a shape A
from the root. Consider now the image ω(x) = maxx∈X,X∈S ρ(x). ω is an image
that associates for each point x, the depth of the deepest shape containing x
(see Figs. 5b and 5c). The latter may form component with holes so we consider
S(u) = H(C) and (S(u),⊆) as the final ToS Tω (see Fig. 5d). Note that in
the case where (S,⊂) is already a tree, we thus have C = {CC([ω ≥ h]), h ∈
R} = S. In other words, the max-tree of w reconstructed from ρ valuated on
a tree T yields the same tree (property P3) and more generally, if a shape A
do not overlap any other shape, it belongs to CC([ω ≥ h]) (property P4). From
a computational standpoint, the most expensive part is the graph computation
which is O(n2.H.N), where n is the number of channels to merge, H the maximal
depth of the trees, and N the number of pixels. Indeed, for each shape of one tree,
we need to track its smallest including shape in the other trees which is basically
an incremental least common ancestor attribute computation. The other steps
are either linear or quasi-linear with the number of pixels. In the next section,
we explain why we choose ρ to be the depth in G.

3.3 Computing the Inclusion Map

The 4th step of the method involves the choice of an attribute to be computed
over the GoS G. This is a critical step since it decides which shapes are going
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Fig. 6. Equivalence between the level lines of a gray-level image u and the level lines
of the distance maps ωTV and ωCV

to be merged or removed. In Section 3.2, the depth is used as the attribute to
merge the shapes, yet without justification. We now explain the rationale for
this choice. Consider the distance measure between two points (p, p′) in Ω:

dTV(p, p′) = min
Cpp′

∫ 1

0

|∇u(Cpp′(t)).Ċpp′(t)|.dt, (1)

where Cpp′(t) is a path in Ω from p to p′. Equation (1) is actually the minimum
total variation among the paths from p to p′. This measure has been used by [10]
for segmenting where the ToS helps to compute efficiently the level set distance.
Let ωTV(x) = dTV(∂Ω, x) the Total Variation distance map from the border. It
can be computed using the ToS by summing the variations from the root to the
nodes. Then, instead of considering the tree T of u level lines, one can consider
the max-tree Tω of equidistant lines. Both are equivalent in gray-level.

The problem with the Total Variation metric lies in that it depends on u,
i.e., ωTV is no contrast invariant. A contrast invariant counterpart would be to
only count the number of variation (CV), i.e., the minimum number of level
lines to traverse to get to p. Algorithmically speaking, building ωCV consists in
computing the depth attribute ρCV(A) = |{S ∈ S | A ⊂ S}| and reconstructing
ωCV(x) = max

X∈S, x∈X
ρCV(X). This process is shown on Fig. 6. Based on the

equivalence between level lines and equidistant lines for scalar images, we would
want to build such a distance map for color images as well. Once again, the idea
is to count the number of marginal level lines to traverse. More formally:

ρ(A) = max
φ∈ [Ω A)

|φ| and ωCV(x) = max
X∈S, x∈X

ρ(X)

where [Ω  A) stands for the set of paths from the root to A in G. ωCV(x)
actually counts the number of marginal level lines (that are nested) along the
path from the border to the deepest shape that contains x. ρ can be computed
efficiently from G using a basic shortest path algorithm.
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Fig. 7. Grain filters

4 Illustrations

4.1 Grain Filters

A grain filter [7] is an operator that removes the regions of the image which
are local extrema and whose area is below a given threshold. Using the ToS, a
grain filter is thus simply a pruning removing the nodes which do not pass the
size criterion. Grain filters allow to reveal the “correctness” of the tree in the
sense that a small grain size should filter out what we perceive as noise or details
while an high grain size should show the main objects and the structure of the
image. In Fig. 7, we show the inclusion map ω computed using our method and
the image reconstructed from the max-tree Tω. The reconstruction consists in
computing for each node the average color of the pixels it contains and then,
assigning this value to the pixels. Because Tω is not a reversible representation of
u, the latter cannot be recovered from Tω, however the reconstruction is close to
the original. This illustration is rather a “structure validation” experience and
does not aim at getting the best filtering results. In particular, we are in the
same case of preorder-based filters, where a node may be associated with many
color values. More advanced reconstruction strategies can be found in [18] that
limit the restitution artifacts. In Fig. 7d, we have applied size-increasing grain
filters that eliminate details in a “sensitive” way, and provide a reconstruction
with few color artifacts that validate the structure organization of our tree.

4.2 Image Simplification

To illustrate the ability of the CToS to represent the main structures of the
images, we tested the tree against image simplification. This assessment uses
the method proposed by [22] that minimizes the Mumford-Shah cartoon model



(a) 112 / 288k level lines selected (b) 1600 / 120k level lines selected

Fig. 8. Document simplification. Original images on top and simplified images below.

constrained by the tree topology. More formally, we have to select a subset of
shapes S ′ ⊂ S that minimizes the energy:

E(S ′) =
∑
S∈S′

∑
x∈S |Sx=S

||f(x)− f̄(S)||22 + λ|∂S|,

where Sx denotes the smallest shape containing x, f̄(S) is the average color of
the region and |∂S| the length of the shape boundary. In [22], the authors use a
greedy algorithm that removes the level lines sorted by meaningfulness until the
energy does not decrease anymore.

Figure 8 illustrates the need for contrast inversion invariance in the case of
document restoration. Here, the important point is that the CToS is able to
retrieve low-contrasted letters even in the presence of “show-through”. Since we
use a segmentation energy, we do not pretend that it is the perfect solution for
document binarization, however since the documents are largely simplified while
keeping all the objects of interest, it may serve as a pre-processing for a more
specific binarization method.

4.3 Interactive Object Segmentation

In [10], the authors introduced a method for interactive image segmentation
using the level set representation of the image. We extend basically the same
idea to the CToS. Given a set of markers B and F (both in P(E)), where B
stands for the background class B and F for the foreground class F , we aim at
classifying all the other pixels to one of these classes. We then use the Nearest
Neighbor classifier where the distance between two points x and y is the minimal
total variation along all the all paths from x to y (see Eq. (1)). The ToS allows
a fast computation of the distance between any two points x and y by summing
up the variations along the paths of Sx and Sy to their least common ancestors.



Fig. 9. Interactive segmentation using the CToS. original images with the markers on
the top line and the segmentation below.

As a consequence, instead of working at the pixel level, the classification can be
done equivalently with the ToS by computing the influence zones of the shapes
having a marker pixel using the tree topology. With the CToS, a node may
contain pixels of different colors, so we consider that the distance between a
shape and its parent is simply the L2-distance of their average color (in RGB,
or better in the La*b* space).

A strong advantage of the method is its ability to recover large regions of
interest with very few markers (see Fig. 9) whereas many other methods using
statistics require larger markers for a better learning accuracy. We did not show
the results using the ToS computed on the luminance only but the same problems
(so the same remarks) stand as for the simplification.

5 Conclusion and Perspectives

We have presented a method to extend the ToS on multivariate images. Contrary
to standard approaches, our CToS does not rely on any choice of multivariate
total ordering but is only based on the inclusion relationship of the shapes and
outputs a tree which is marginally both self-dual and contrast change invariant.
In this paper, we have tried to highlight why those properties are important
for image processing and computer vision tasks. Eventually, we have shown the
versatility and the potential of our representation. As perspectives, we will focus
on some other kinds of multivariate data such as hyperspectral satellite images
or multimodal medical images to validate the contributions of our approach to
the processing of such data. Moreover, we also plan to compare the CToS to
other hierarchical representations such as hierarchies of partitions (quasi-flat
zones hierarchy, binary partition trees. . . ) to further study the pros and cons of
our method.
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