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A B S T R A C T

Nowadays, the demand for multi-scale and region-based analysis in many computer
vision and pattern recognition applications is obvious. No one would consider a pixel-
based approach as a good candidate to solve such problems. To meet this need, the
Mathematical Morphology (MM) framework has supplied region-based hierarchical
representations of images such as the Tree of Shapes (ToS). The ToS represents the image
in terms of a tree of the inclusion of its level-lines. The ToS is thus self-dual and contrast-
change invariant which make it well-adapted for high-level image processing. Yet, it is
only defined on grayscale images and most attempts to extend it on multivariate images -
e.g. by imposing an “arbitrary” total ordering - are not satisfactory.

In this dissertation, we present the Multivariate Tree of Shapes (MToS) as a novel
approach to extend the grayscale ToS on multivariate images. This representation is a mix
of the ToS’s computed marginally on each channel of the image; it aims at merging the
marginal shapes in a “sensible” way by preserving the maximum number of inclusion.
The method proposed has theoretical foundations expressing the ToS in terms of a
topographic map of the curvilinear total variation computed from the image border;
which has allowed its extension on multivariate data. In addition, the MToS features
similar properties as the grayscale ToS, the most important one being its invariance to
any marginal change of contrast and any marginal inversion of contrast (a somewhat
“self-duality” in the multidimensional case).

As the need for efficient image processing techniques is obvious regarding the larger
and larger amount of data to process, we propose an efficient algorithm that can build
the MToS in quasi-linear time w.r.t. the number of pixels and quadratic w.r.t. the number
of channels. We also propose tree-based processing algorithms to demonstrate in practice,
that the MToS is a versatile, easy-to-use, and efficient structure.

Eventually, to validate the soundness of our approach, we propose some experiments
testing the robustness of the structure to non-relevant components (e.g. with noise or
with low dynamics) and we show that such defaults do not affect the overall structure of
the MToS. In addition, we propose many real-case applications using the MToS. Many of
them are just a slight modification of methods employing the “regular” ToS and adapted
to our new structure. For example, we successfully use the MToS for image filtering,
image simplification, image segmentation, image classification and object detection.
From these applications, we show that the MToS generally outperforms its ToS-based
counterpart, demonstrating the potential of our approach.

Keywords: Tree of Shapes, connected operators, mathematical morphology, level sets,
hierarchies, multivariate images, color images.
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R É S U M É

De nombreuses applications issues de la vision par ordinateur et de la reconnaissance des

formes requièrent une analyse de l’image multi-échelle basée sur ses régions. De nos jours,
personne ne considérerait une approche orientée « pixel » comme une solution viable
pour traiter ce genre de problèmes. Pour répondre à cette demande, la Morphologie
Mathématique a fourni des représentations hiérarchiques des régions de l’image telles
que l’Arbre des Formes (AdF). L’AdF représente l’image par un arbre d’inclusion de ses
lignes de niveaux. L’AdF est ainsi auto-dual et invariant au changement de contraste, ce
qui fait de lui une structure bien adaptée au traitements d’images de haut niveau.

Néanmoins, il est seulement défini aux images en niveaux de gris et la plupart des ten-
tatives d’extension aux images multivariées (e.g. en imposant un ordre total « arbitraire »)
ne sont pas satisfaisantes.

Dans ce manuscrit, nous présentons une nouvelle approche pour étendre l’AdF scalaire

au images multivariées : l’Arbre des Formes Multivarié (AdFM). Cette représentation est
une « fusion » des AdFs calculés marginalement sur chaque composante de l’images. On
vise à fusionner les formes marginales de manière « sensée » en préservant un nombre
maximal d’inclusion. La méthode proposée a des fondements théoriques qui consistent
en l’expression de l’AdF par une carte topographique de la variation totale curvilinéaire
depuis la bordure de l’image. C’est cette reformulation qui a permis l’extension de l’AdF
aux données multivariées. De plus, l’AdFM partage des propriétés similaires avec l’AdF
scalaire ; la plus importante étant son invariance à tout changement ou inversion de
contraste marginal (une sorte d’auto-dualité dans le cas multidimensionnel).

Puisqu’il est évident que, vis-à-vis du nombre sans cesse croissant de données à traiter,
nous ayons besoin de techniques rapides de traitement d’images, nous proposons un
algorithme efficace qui permet de construire l’AdF en temps quasi-linéaire vis-à-vis du
nombre de pixels et quadratique vis-à-vis du nombre de composantes. Nous proposons
également des algorithmes permettant de manipuler l’arbre, montrant ainsi que, en
pratique, l’AdFM est une structure facile à manipuler, polyvalente, et efficace.

Finalement, pour valider la pertinence de notre approche, nous proposons quelques
expériences testant la robustesse de notre structure aux composantes non-pertinentes (e.g.

avec du bruit ou à faible dynamique) et nous montrons que ces défauts n’affectent pas la
structure globale de l’AdFM. De plus, nous proposons des applications concrètes utilisant
l’AdFM. Certaines sont juste des modifications mineures aux méthodes employant d’ores
et déjà l’AdF scalaire mais adaptées à notre nouvelle structure. Par exemple, nous
utilisons l’AdFM à des fins de filtrage, segmentation, classification et de détection d’objet.
De ces applications, nous montrons ainsi que les méthodes basées sur l’AdFM surpassent
généralement leur analogue basé sur l’AdF, démontrant ainsi le potentiel de notre
approche.
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Keywords : Arbre des Formes, opérateurs connexes, morphologie mathématique,
ensemble de niveaux, hiérarchies, images multivariées, images couleur.
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R É S U M É L O N G

résumé

L’Arbre des Formes (AdF) est un arbre morphologique qui fournit une représentation

hiérarchique de l’image auto-duale et invariante par changement de contraste. De ce

fait, il est adapté à de nombreuses applications de traitement d’images. Néanmoins, on

se heurte à des problèmes avec l’AdF lorsqu’on doit traiter des images couleurs car sa

définition tient uniquement en niveaux de gris. Les solutions les plus courantes sont

alors d’effectuer un traitement composante par composante (marginal) ou d’imposer

un ordre total. Ces solutions ne sont généralement pas satisfaisantes et font survenir

des problèmes (des artefacts de couleur, des pertes de propriétés. . . ) Nous insistons ici

sur la nécessité d’une représentation à la fois auto-duale et invariante par changement

de contraste et nous proposons une méthode qui construit un arbre unique, l’Arbre

des Formes Multivarié (AdFM), en fusionnant des formes issues des composantes

marginales tout en préservant les propriétés intrinsèques de l’arbre. Cette méthode

s’affranchit de tout relation d’ordre totale en utilisant uniquement la relation d’inclu-

sion entre les formes et en effectuant une fusion dans l’espace des formes. Finalement,

nous montrerons la pertinence de notre méthode et de la structure en les illustrant à

travers diverses applications de vision par ordinateur.

1 introduction

L’AdF [32, 28] est une représentation hiérarchique de l’image témoignant de l’inclusion
de ses lignes de niveaux. L’efficacité de cette structure pour le traitement d’images réside
dans ses propriétés. D’abord, c’est une représentation morphologique (donc invariante
par changement de contraste) basée sur l’inclusion des composantes connexes de l’image
obtenues à différents niveaux de seuillage. En conséquent, un filtrage basique de cet arbre
est un filtre connexe, c’est-à-dire un filtre qui ne déplace pas les contours des objets mais
se contente de supprimer ou préserver certains d’entre eux [112]. Ensuite, non seulement
cette structure est invariante par changement de contraste global mais elle l’est aussi
localement [21]. Cette propriété est très importante dans de nombreuses applications de
vision par ordinateur où la robustesse au changement d’illumination est un véritable
challenge, e.g. pour la mise en correspondance de scènes ou la reconnaissance d’objets.
La fig. 1d montre cette invariance en simulant un changement d’illumination directement
avec l’AdF, on a donc la même représentation arborescente sur cette image que sur
l’image d’origine montrée sur la fig. 1b. Enfin, au delà de son invariance au changement
de contraste, l’AdF est aussi une représentation auto-duale de l’image. Cette propriété est
fondamentale dans un contexte où les structures peuvent apparaître à la fois sur un fond
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(a)

(b) (c) (d) (e)

Figure 1: (a) A propos du besoin d’invariance au changement et inversion de contraste
(quelques exemples de changement et/ou inversion de contraste sur Lena). (b)
Image originale. (c) Changement et/ou inversion de contraste indépendant
sur chaque canal de (b). (d) Changement de contraste local sur (b) (simulation
d’un changement d’illumination). (e) Quelques « lignes de niveaux » de l’Arbre
des Formes Multivarié (AdFM). Les trois images (b), (c), (d) ont le même arbre
des formes dont les lignes de niveaux sont montrées sur (e).

plus clair ou plus foncé. C’est pourquoi les opérateurs auto-duaux sont particulièrement
bien adaptés pour le traitement des images où l’organisation du contenu n’est pas connu
a priori. Alors que des opérateurs morphologiques tentent d’être auto-duaux (e.g. les
filtres séquentiels alternés) en combinant des filtres extensifs et non-extensifs, certains
dépendent en fait de l’ordre d’application (i.e. de quel filtre est appliqué en premier). Les
filtres auto-duaux ont la capacité de traiter réellement de manière symétrique les objets
foncés et clairs au même titre [53, 117] (voir la fig. 1c).

Malgré ces puissantes propriétés, l’AdF est encore largement sous-exploité, même
si quelques auteurs l’ont d’ores et déjà utilisé efficacement dans des applications de
traitement d’images et de vision par ordinateur. Dans [43, 13, 139, 142], les auteurs
utilisent une approche par optimisation d’énergie sur la hiérarchie de l’AdF pour la
simplification et la segmentation d’images en sélectionnant les lignes de niveaux signifi-
catives. D’autres applications incluent la segmentation de vaisseaux sanguins [144], le
réglage d’images [28] et la mise en correspondance de scènes en étendant les MSER aux
« Maximally Stable Shapes »[28] et aux « Tree-Based Morse Regions » [143].

Alors que l’AdF est bien défini sur les images à niveaux de gris, cela se complique sur
les données multivariées. En effet, comme la plupart des arbres morphologiques (e.g. le
min- et max-tree), l’AdF repose sur une relation d’ordre sur les valeurs qui doit être totale.
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Figure 2: Représentations arborescentes basées sur le principe de décomposition.

Dans le cas contraire, les composantes connexes de coupes inférieures et supérieures se
chevauchent et l’arbre d’inclusion est mal formé. Pour résoudre ce problème, on s’est le
plus souvent concentré à définir un ordre total sur les données multivariées. Cependant,
de notre point de vue, le concept le plus important dans les arbres morphologiques
reste l’inclusion des formes. Par conséquent, on introduit une nouvelle approche qui
s’affranchit de la nécessité d’un ordre total mais essaye de construire un ensemble de
formes qui ne se chevauchent pas à partir d’un ensemble de formes quelconque en se
basant uniquement sur la relation d’inclusion.

2 l’arbre des formes et les problèmes liés à la couleur

2.1 L’arbre des formes : définition et propriétés

Soit u : Ω→ E, une image définie sur un domaine Ω et prenant ses valeurs dans E muni
d’une relation d’ordre ≤. Les lignes de niveaux de u sont la collection des ensembles
de points {x | u(x) = λ, λ ∈ E}. En utilisant la représentation de [1], on peut s’assurer
que ces ensembles forment des courbes fermées lorsque ≤ est un ordre total. En fait,
l’ordre doit être total dû à la définition des lignes de niveaux en termes de contours
de coupes inférieures ou supérieures. Soit [u ≤ λ] (resp. [u ≥ λ]) une coupe inférieure
(resp. supérieure) de u définie par [u ≤ λ] = {x, u(x) ≤ λ}. On note CC(X), X ∈ P(E)

l’ensemble des composantes connexes de X. Si ≤ est total, deux composantes connexes
X, Y ∈ CC([u < λ]) sont disjointes ou incluses. L’ensemble CC([u < λ]) muni de la
relation d’inclusion est un arbre appelé min-tree et son arbre dual, défini sur les coupes
supérieures, est le max-tree (voir les figs. 2b and 2c). Soit l’opérateur de bouchage de trou
H, on appelle une forme un élément de S = H([u ≤ λ]) ∪H([u ≥ λ]). Si ≤ est total, là
encore deux formes seront disjointes ou incluses et donc la couverture de (S ,⊆) forme
un arbre : l’Arbre des Formes (AdF) (voir la fig. 2d). Dans le reste de ce papier, par abus
de notation, on considère implicitement la couverture de (S ,⊆) lorsqu’on écrit (S ,⊆).
Notons aussi que l’AdF traduit à la fois l’inclusion des formes et l’inclusion des lignes de
niveaux puisque celles-ci sont les frontières des formes. Enfin, sans perte de généralité,
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(a) Image d’origine u (b) Simplification sur une version en niveaux
de gris de u (198 régions)

(c) Simplification avec un traitement marginal
(123 + 141 + 136 régions)

(d) Simplification avec notre approche (158 ré-
gions)

Figure 3: Les problèmes liés à la simplification avec les approches « standard » pour
traiter la couleur. (b) montre le problème de fuite lorsque la luminance n’est
suffisante pour obtenir complètement l’information géométrique. (c) montre le
problème de fausses couleurs dues au traitement marginal. (d) Notre méthode
récupère correctement le contenu principal de l’image sans introduire d’artefact
visuel.

on considère E = Rn tout au long de ce papier et on notera u pour les images scalaires
(n = 1) et u pour les images multivariées.

2.2 Le problème des données multivariées : solutions standard et travaux connexes

Les définitions précédentes des lignes de niveaux (en termes d’ensemble d’iso-niveau
ou en tant que contour de formes) sont toutes deux mal formées en présence d’un
ordre partiel. En effet, les ensembles d’iso-niveau ne forment pas des courbes fermées
et les formes issues des coupes inférieures et supérieures peuvent se chevaucher, i.e.,
(S ,⊆) forme un graphe. Un moyen largement utilisé mais peu acceptable de résoudre le
problème est de traiter l’image en niveaux de gris uniquement (e.g. la luminance). Cette
approche reste plausible si on prétend que l’information géométrique est principalement
contenue par la luminance [29]. Cependant, il n’est pas rare de rencontrer des images où
les contours des objets n’existent qu’à travers la composante chromatique (notamment
sur les images de document ou de synthèse). Ces exemples contredisent cette supposition
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et montrent que la chrominance contient également l’information géométrique (voir la
fig. 3b).

Une autre solution communément employée est le traitement de l’image canal par
canal, puis la recombinaison des résultats individuels. Le traitement marginal est sujet au
problème connu des fausses couleurs puisqu’il permet de créer des couleurs qui n’étaient
pas présentes dans l’image d’origine. Les fausses couleurs peuvent être un problème
ou pas (par exemple si les fausses couleurs sont suffisamment proches des couleurs
d’origines pour ne pas être distinguées), mais dans le cas de la simplification, il produit
des artéfacts de couleurs indésirables comme montrés sur la fig. 3c. Aussi, le traitement
marginal produit au final plusieurs arbres (un pour chaque canal de l’image) alors que
nous souhaitons obtenir une structure unique de l’image. Dans [2], nous avons proposé
des idées préliminaires sur la manière d’obtenir un arbre unique à partir de plusieurs
arbres.

Puisque le problème des formes qui se chevauchent est dû à l’ordre partiel des couleurs,
des auteurs ont tenté d’imposer arbitrairement un ordre ou un pré-ordre total. Ils diffèrent
en le fait qu’un nœud de l’arbre puisse être associé à une ou plusieurs valeurs. La manière
d’ordonner un espace multivarié a été largement étudiée pour étendre les opérateurs
morphologiques. [14] classifie les méthodes en quatre groupes : les ordres marginaux
(M-ordering), les ordres conditionnels (C-ordering), les ordres partiels (P-ordering) et
les ordres réduits (R-ordering). Alors que la première classe mène à un ordre partiel, les
trois autres donnent un ordre ou un préordre total. Les ordres conditionnels visent à
organiser les vecteurs en donnant des priorités à certaines (ou toutes) composantes du
vecteur. L’ordre lexicographique, bien connu, appartient à cette classe et est la méthode
la plus commune pour étendre l’AdF aux couleurs [36]. Les ordres réduits visent à
projeter des données vectorielles sur un espace réel à travers une fonction de rang. Les
fonctions de rang bien connues sont par exemple la norme l1, la luminance dans un
espace couleur donné, ou la distance à un ensemble de couleurs de référence. Elles ont
été appliquées dans [123, 104, 89] pour la compression d’image et pour la détection
d’objets astronomiques en utilisant les min ou max-trees mais l’idée est transposable
pour l’AdF [3]. Des stratégies plus avancées ont été conçues pour donner naissance
à un ordre total plus « sensé » où celui-ci dépend du contenu de l’image. Velasco-
Forero et Angulo [127, 126] utilisent l’apprentissage automatique pour obtenir un
P-ordering basé sur le partitionnement de l’espace, puis établissent une distance entre
ces regroupements. Dans [74], l’apprentissage de variétés est utilisé pour inférer une
fonction de rang sur les couleurs et dans [72], un ordre total est calculé localement sur
une fenêtre spatiale glissante. Une liste non-exhaustive pour inférer un ordre total sur les
données multivariées peut être trouvée dans [9].

Une autre approche introduite par Passat et Naegel [102] utilise directement l’ordre
partiel des valeurs et manipule la structure sous-jacente qui est un graphe. Le graphe
des composantes est encore à l’état de développement mais a montré des résultats
prometteurs dans le cadre de filtrage [90]. Néanmoins, le graphe des composantes fait
face à un problème de complexité algorithmique qui oblige les auteurs à effectuer le
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filtrage localement. De ce fait, le graphe des composantes est à l’heure actuelle non
adapté si l’on veut une représentation de l’image entière.

Dans [2], nous avons introduit une nouvelle approche où, au lieu d’essayer d’imposer
un ordre total sur les valeurs, nous calculons marginalement les AdFs et les fusionnons
en un arbre unique. Le procédure de fusion ne dépend pas d’un ordre total sur les valeurs
mais sur des propriétés calculées dans l’espace des formes. Néanmoins, la stratégie de
fusion proposée dans ce papier souffre d’un manque de « cohérence » car elle fusionne
ensemble des formes sans liaisons apparentes. Dans [3], inspiré par le travail de Passat et
Naegel [102], nous avons proposé le graphe des formes qui fusionne les AdFs marginaux
en une seule structure et de façon efficace. Nous avons montré que cette structure
avait un fort potentiel comparée aux approches standard qui imposent un ordre total.
Cependant, la méthode construit un graphe, ce qui est une limitation puisque nous ne
pouvons plus utiliser les outils fournis par l’état de l’art sur les arbres de composantes
(filtrage, détection d’objets, méthodes de segmentation. . . ) Le travail présenté ici peut
être vu comme la poursuite des idées introduites dans [2] et [3] puisque le Graphe des
Formes (GdF) est utilisé comme une représentation intermédiaire pour extraire un arbre
unique depuis les formes issues des AdFs marginaux.

3 l’arbre des formes couleur

3.1 Contraintes et propriétés de l’arbre des formes couleur

Commençons d’abord par relâcher la définition de forme. Une forme X est une composante
connexe de Ω sans trous (i.e.telle que H(X) = X). Soit une famille d’ensemble de formes
M = {S1, S2, . . . , Sn} où chaque élément (Si,⊆) forme un arbre. On note S =

⋃ Si

l’ensemble initial de formes. Notons que (S ,⊆) ne forme généralement pas un arbre
mais un graphe puisque des formes peuvent se chevaucher. On cherche a définir un
nouvel ensemble de formes S ′ tel que deux formes soient disjointes ou incluses. On ne
se limite pas aux ensembles S ′ ⊆ S . En d’autres termes, on autorise la méthode à créer
de nouvelles formes qui n’étaient pas présentes dans l’ensemble de formes d’origine. On
note T(u) : ΩRn → (P(P(Ω)),⊆), le processus qui construit un arbre des formes (S ′,⊆)
à partir d’une image u ∈ ΩRn

.
Plus formellement, on souhaite que la méthode T produise (S ′,⊆) avec les propriétés

suivantes :

• (R1) La couverture du domaine (
⋃

X∈S ′ X) = Ω (tout point appartient à au moins une
forme)

• (R2) Une structure arborescente ∀X, Y ∈ S ′, soit X ∩ Y = ∅ ou X ⊆ Y ou Y ⊆ X

(deux formes sont disjointes ou incluses)

Et on impose également les contraintes suivantes :
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• (R3) L’équivalence avec l’AdF scalaire. Si M = {S1} alors S ′ = S1 (si l’image est
scalaire, alors la méthode doit produire le même arbre que l’AdF calculé sur l’image
d’origine).

• (R4) Pour chaque forme X ∈ S telle que pour chaque autre forme Y ∈ S , X∩Y = ∅

ou X ⊆ Y ou Y ⊆ X alors, X ∈ S ′ (une forme qui ne chevauche aucune autre forme
doit exister dans l’arbre final).

• (R5) L’invariance par changement et inversion de contraste Une transformation ψ est
dite morphologique (i.e. invariante par changement de contraste) si pour une
fonction croissante g : R → R, g(ψ(u)) = ψ(g(u)). De plus, la transformation
est dite auto-duale si elle est invariante par complémentation ∁(u) = −u i.e.
∁(ψ(u)) = ψ(∁(u)). Soit une fonction monotone F : R → R telle que ∀x, y ∈ R,
x < y ⇒ F(x) < F(y) ou F(x) > F(y), ψ est à la fois auto-duale et invariante
par changement de contraste si F(ψ(u)) = ψ(F(u)). L’AdF est un support pour
certains opérateurs morphologiques auto-duaux et une représentation T est dite
auto-duale et morphologique si T(F(u)) = T(u). Pour l’extension au multivarié
de cette propriété, notons F l’ensemble de toutes les fonctions monotones, T est
dit invariant par changement et inversion de contraste si pour F ∈ F n, F(x) =

(F1(x1), F2(x2), . . . , Fn(xn)), alors T(F(u)) = T(u).

3.2 Description de la méthode

AdF T1

AdF T2

AdF T3

GoS G

0

1

2

3

2

1 1

2

3

2

Calcul de ρ
sur G

42

26

100

78

51

97

62

90

3

Reconstruction
de ω

T (u) = Tω

Maxtree bouché
de ω

Calcul du graphe Construction de l’arbre

Figure 4: Les 5 étapes de la méthode proposée. (1) L’image d’entrée u est décomposée
en ses différentes composantes u1, u2, . . . un, (2) l’AdF est calculé sur chaque
composante, (3) les AdFs sont fusionnés en une unique structure : le GdF,
(4) une image scalaire ω est calculée en utilisant la profondeur des nœuds
auxquels les points appartiennent. (5) un arbre est calculé à partir de ω.

La méthode que nous proposons est un processus en 5 étapes (voir la fig. 4). Tout
d’abord, u est décomposé en ses composantes individuelles u1, u2, . . . , un sur lesquelles
on calcule les AdFs T1, T2, . . . , Tn associés aux ensembles de formes S1, S2, . . .Sn. On note
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S =
⋃ Si, on appelle le GdF G la couverture de (S,⊆), i.e. c’est le graphe d’inclusion des

toutes les formes issues de coupes marginales. Soit ρ : P(Ω)→ N un attribut de forme
algébrique decroissant i.e. ∀A, B ∈ S , A ⊂ B⇒ ρ(A) > ρ(B)

Un exemple d’un tel opérateur est l’attribut de profondeur. La profondeur d’une forme
A de G est la longueur du chemin le plus long de la racine vers A. ω Soit ω : Ω → R

défini par :
ω(x) = max

X∈S ,x∈X
ρ(X) (1)

ω est une image scalaire qui associe en chaque point de x, la profondeur de la forme la
plus profonde qui le contient (voir les figs. 5b and 5c) Soit C = {CC([ω ≥ h]), h ∈ R}.
(C,⊆) est en fait le max-tree de ω. Ce dernier pouvant donner lieu à des composantes
avec des trous, on considère donc S ′ = H(C) et (S ′,⊆) pour l’AdF final Tω (voir
la fig. 5d).

Intuition. On explique maintenant l’intuition de cette démarche. D’abord, nous com-
mençons par calculer les AdFs marginaux de u qui nous donnent un ensemble de
formes initial. Les différents arbres (ensemble) fournissent une représentation de l’image
d’origine et u peut être reconstruite marginalement depuis ces arbres. Cependant, la
manipulation simultanée des différents arbres est délicate et il manque une information
capitale : comment les formes d’un arbre donné sont liées (au sens de l’inclusion) aux
formes des autres arbres. Le graphe G n’est rien de plus que ces arbres fusionnés en une
unique structure et ajoute la relation d’inclusion qui manquait précédemment. Par consé-
quence, G est plus « riche » que {T1, . . . , Tn} parce que la transformation de {T1, . . . , Tn}
à G est réversible ; G est une représentation complète de u (u peut être reconstruite
depuis G). De plus, G est invariant par changement et inversion de contraste marginal
de u car {T1, . . . , Tn} le sont.

La seconde partie de la méthode tente d’extraire un arbre depuis G vérifiant les
contraintes données dans la section 3.1. Le problème majeur est d’obtenir un nou-
vel ensemble de formes depuis G qui ne se chevauchent pas. Notons d’abord que
pour n’importe quel attribut décroissant ρ, on a (S ,⊂) qui est isomorphe à (S,R) où
AR B⇔ ρ(A) > ρ(B) and A ∩ B 6= ∅. En termes plus simples, la relation d’inclusion
entre deux formes que nous voulons conserver peut s’exprimer en terme de valeurs
d’attributs dans R. Supposons maintenant que (S ,⊂) est un arbre et considérons l’image
ω(x) = maxx∈X,X∈S ρ(x), on a ainsi C = {CC([ω ≥ h]), h ∈ R} = S . Dit autrement, le
max-tree de l’image ω reconstruite à partir de l’attribut ρ évalué sur un arbre T donne
exactement le même arbre T (pré-requis R3). Plus généralement, si une forme A ne
chevauche aucune autre forme de S alors elle appartiendra à CC([ω ≥ h]) (pré-requis
R4). Dans la section qui suit, nous allons maintenant justifier le choix de la profondeur
comme attribut pour ρ.
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Figure 5: Schéma illustrant le fonctionnement de la méthode

3.3 Le calcul de la carte d’attribut ω

La 4e étape de la méthode consiste à choisir un attribut à évaluer sur le GdF G. C’est
une étape critique qui décide de quelle forme va être fusionnée ou supprimée. Nous
expliquons maintenant pourquoi nous utilisons la profondeur comme attribut pour
fusionner les formes.

Considérons la distance entre deux points (p, p′) dans Ω définie par

dTV(p, p′) = min
C(p,p′)

∫ 1

0
|∇u(C(t)).Ċ(t)|.dt (2)

où C(t) est un chemin dans Ω de p à p′. L’eq. (2) est en fait la variation totale (TV) du
chemin minimisant la TV parmi tous les chemins de p vers p′. Cette mesure a par exemple
été utilisée par Dubrovina et al. [44] à des fins de segmentation où l’AdF est utilisé
comme support pour le calcul efficace de la distance. Soit ωTV(x) = dTV(∂Ω, x), la carte
de distance de variation totale depuis la bordure de l’image. Celle-ci peut être calculée
par simple calcul d’attribut sur l’arbre : il suffit de sommer les variations absolues le long
du chemin de la racine vers un nœud. Ainsi, au lieu de considérer l’arbre T des lignes de
niveaux de u, on peut considérer à la place le max-tree Tω des lignes équidistantes de TV.
Les deux arbres sont équivalents en niveaux de gris. Le problème avec la variation totale
est qu’elle n’est pas invariante au changement de contraste de u. Une distance invariante
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(d) Les lignes de niveaux de ωCV

Figure 6: Équivalence entre les lignes de niveaux de l’image en niveaux de gris u et des
lignes de niveaux des cartes de distances ωTV et ωCV.

par changement de contraste de u serait simplement de compter le nombre de variation,
i.e., le nombre minimum de ligne de niveaux à traverser pour atteindre p :

dCV(p, p′) = min
C(p,p′)

∫ 1

0
1{∇u(C(t)).Ċ(t)}.dt (3)

Algorithmiquement parlant, construire ωCV consiste à calculer l’attribut de profondeur
ρCV(A) = |{X ∈ S | A ⊂ X}| et reconstruire ωCV(x) = max

X∈S ,x∈X
ρCV(X) (voir la fig. 6).

Basé sur l’équivalence entre les lignes de niveaux et les lignes « d’équidistances »
en niveaux de gris, on peut étendre cette idée en couleur. Comme dans l’eq. (3), on
souhaite compter le nombre minimum de lignes de niveaux marginales à traverser. Plus
formellement :

ρ(A) = max
φ∈ [Ω A)

|φ| and ωCV(x) = max
X∈S ,x∈X

ρ(X)

où [Ω A) désigne l’ensemble de tous les chemins de la racine vers A dans G. On
compte ainsi le nombre de formes qui s’incluent à traverser pour atteindre la forme la
plus profonde contenant x. ρ peut être calculé efficacement depuis G en utilisant un
algorithme classique de plus court chemin.

4 applications

4.1 Filtres de grains

Le filtre de grain [29, 108] est un opérateur qui suppriment les régions de l’image qui
sont des extrema locaux dont l’aire est inférieure à un certain seuil. En ce sens, il est



4 applications xix

16

6

3 2

1 8

7

4 1 1
λ < 4

16

6

3 2

1 8

7

4 1 1

Elagage de l’arbre

Figure 7: Schéma du processus de filtrage de grain.

(a) Original (b) Image de profondeur ω (c) Reconstruction depuis Tω

(d) Filtres de grain 10, 100 et 500

Figure 8: Filtres de grains

lié aux extreme filters mais assure un traitement complétement symétrique des minima
et maxima, i.e., il est auto-dual. Avec l’AdF, un filtre de grain est un simple élagage de
l’arbre, supprimant tous les nœuds qui ne passent pas un certain critère de taille. Le
processus est illustré schématiquement dans la fig. 7. On assigne à chaque nœud la taille
de la composante qu’il représente et on supprime les nœuds de taille inférieure à 4, i.e.,
tous les nœuds en dessous de la courbe rouge. Les pixels qu’ils contiennent sont ensuite
rattachés au plus proche ancêtre encore « vivants ». Malgré sa simplicité, nous montrons
la puissance de ce filtre à travers la simplification et l’extraction de canevas de document.

Simplification d’images

Les filtres de grain permettent de révéler la « validité » de l’arbre dans le sens où une
petite taille de grain doit supprimer ce que nous percevons comme bruit ou détail, alors
qu’une grande taille de filtrage doit montrer les objets principaux et la structure de
l’image. Dans la fig. 8, nous montrons la carte d’inclusion ω calculée par notre méthode
et l’image reconstruite depuis le max-tree Tω. La reconstruction consiste en le calcul, pour
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chaque nœud, de la couleur moyenne de ses pixels, puis en l’affectation de cette valeur
aux pixels. Puisque Tω n’est pas une représentation inversible de u, cette dernière ne
peut pas être reconstruite depuis Tω. Néanmoins, la reconstruction est proche de l’image
d’origine. Dans la fig. 8d, nous avons appliqué des filtres de grain de tailles croissantes
qui suppriment les détails de manière « sensée » et fournit une reconstruction avec peu
d’artefacts de couleur, ce qui valide l’organisation structurelle de notre arbre.

Extraction du canevas de document

Figure 9: Filtrages pour la extraction de canevas de document. Première ligne : images
d’origine ; seconde ligne : résultats des filtres de grain.

Nous utilisons un filtre de grain pour extraire les boîtes de texte et les parties gra-
phiques du document. En effet, les parties textuelles sont composées de lettres qui sont
de petites composantes si l’AdFM est bien-formé. Au contraire, les boîtes de texte et le
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Figure 10: Schéma de la méthode de segmentation interactive.

contenu graphique sont de larges composantes qui persistent après le filtrage. Figure 9

montre l’extraction de contenu non-textuel où l’auto-dualité est fondamentale puisque le
texte peut être au dessus d’un fond plus clair ou plus foncé. Comme chacun peut le voir,
les images filtrées ne contiennent que les graphiques et les boîtes de texte alors que les
lettres sont dans le résidu.

4.2 Segmentation interactive

Le problème de segmentation interactive peut être résumée comme suit. Étant donné
deux ensembles disjoints de points F et B dans P(Ω) représentant les marques rentrées
par l’utilisateur, on souhaite annoter chaque point de Ω avec une des deux classes.

On considère la mesure entre deux points (p, p′) de Ω :

dTV(p, p′) = min
Cpp′

∫ 1

0
|∇u(Cpp′(t)).Ċpp′(t)|.dt, (4)

où Cpp′(t) est un chemin dans Ω de p vers p′, on peut calculer la distance entre un
point x et les marqueurs F et B puis affecter à x l’étiquette de la classe la plus proche.
Cette approche a été employée par [107, 12]. Néanmoins, dans [44], les auteurs ont montré
que le calcul exact de cette distance nécessite une approche par ensemble de niveaux et
requiert l’AdF.

Ainsi, l’idée fondamentale de la méthode est d’utiliser la représentation de l’image
par l’AdFM de l’image au lieu de travailler directement sur son domaine d’origine. On
applique ensuite le même principe que précédemment (une classification au plus proche
voisin) mais en utilisant la topologie de l’arbre en lieu et place de la topologie de l’espace
2D. La segmentation finale est obtenue en reconstruisant l’image depuis l’arbre où tous
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ses nœuds auront été annotés. La méthode peut donc se résumer aux étapes suivantes
(voir aussi la fig. 10) :

1. Calculer l’AdFM T(u) de l’image u,

2. Valuer les arrêtes de T(u) par la distance inter-nœuds (distance euclidienne entre
les couleurs moyennes).

3. Étiqueter les nœuds de T(u) depuis les marques entrées par l’utilisateur. On obtient
ainsi deux ensembles de nœuds marqués pour F et B,

4. Affecter tous les autres nœuds à l’une des classes F or B en calculant leur distance
aux nœuds marqués (en utilisant la topologie de l’arbre), puis en assignant la classe
du nœud le plus proche.

5. Reconstruire l’image depuis l’arbre annoté,

6. Nettoyer : conserver seulement les composantes connexes objet significatives (sup-
pression des régions isolées de petite taille).

Figure 11: Segmentation intéractive avec notre méthode. Les marques rouges et bleues
définissent respectivement le fond B et l’objet F . La ligne blanche est la
frontière F/B calculée par notre méthode

Des exemples de résultat de notre méthode sont présentés dans la fig. 11.
Un avantage certain de travailler dans l’espace de formes est la capacité de récupérer

de larges régions d’intérêts qui ne sont pas marqués par l’utilisateur. Cette propriété est
intéressante pour les objets composés d’autres objets. Une forme étant une composante
sans trous, il est suffisant de sélectionner la partie frontalière de l’objet englobant pour
récupérer tous les objets.
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Un second avantage de l’approche est qu’elle ne requiert aucune modélisation statis-
tique de la région. Elle utilise uniquement les ensembles de niveau ce qui permet de
récupérer de larges composantes avec peu de marques. La quantité de marques requises
dépend en fait du nombre de lignes de niveau qui séparent le fond de l’objet.

4.3 Détection de documents dans les vidéos

Dans le cadre de la compétition ICDAR Smartphone Document Capture and OCR (SmartDoc-

2015) [19], on souhaite détecter automatiquement les documents dans des vidéos acquises
par téléphones intelligents. La base de données couvre différents types de document
(textuel et/ou avec un contenu graphique) et différents problèmes d’analyse de scène
(changement d’illumination, bruit de déplacement, changement de perspective, etc.).
Une nouvelle fois, la méthode que nous proposons s’appuie sur l’AdFM de l’image. Dit
simplement, on cherche à identifier des nœuds dans l’arbre qui remplissent des critères
de forme de document. Ceux-ci sont exprimés en tant qu’énergie à deux termes :

1. À quel point la bordure de la forme correspond à un quadrilatère. Pour chaque
forme A, on calcule le meilleur quadrilatère QA correspondant à la forme et on
mesure le ratio : E1(A) = |A|/|QA|.

2. Quelle est la quantité de bruit dans l’objet. On s’attend à un document avec du
texte qui se traduit par du bruit au niveau du document. Soit LA = {X ∈ S | X ⊂
A et X est une feuille } l’ensemble des feuilles du sous-arbre enraciné en A alors :

E2(A) =
∑X∈LA

(d(X)− d(A))

|LA|

où d(X) est la profondeur du nœud X

On cherche ensuite la forme qui minimise l’énergie E1(X) + E2(X). Notons, que pour
une meilleur précision de E2, nous commençons par pré-traiter l’image avec un filtre de
petit grain pour réduire l’effet du bruit naturel d’acquisition de l’image. Des exemples de
résultats de notre méthode sont présentés dans la fig. 12.

Cette méthode (légèrement modifiée pour permettre le tracking de document entre
les images vidéo) a obtenu la première place du concours. L’évaluation était basée sur
le score Jaccard qui mesure la similarité entre l’ensemble des points attendus dans la
vérité terrain et ceux retournés par la méthode. Celle-ci a obtenu un score moyen de
0.9716, variant entre 0.9710 et 0.9721 sur la base entière [19], ce qui montre la robustesse
de l’approche proposée.

5 conclusion

Nous avons présenté une méthode qui étend l’AdF sur les images multivariées. Contrai-
rement aux approches standards, notre AdFM s’affranchit du choix d’un ordre total
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Figure 12: Compétition ICDAR sur la détection de document. Ces images montrent la
robustesse de notre méthode au flou et aux effets spéculaires de lumière qui
déplacent des frontières des objets. Des vidéos sont disponibles en tant que
matériel supplémentaire [24].

sur ces données et repose uniquement sur la relation d’inclusion entre les formes. Elle
produit ainsi un arbre qui est invariant par changement et inversion de contraste mar-
ginal de l’image. Nous avons tenté de mettre en évidence en quoi ces propriétés sont
fondamentales en traitement d’images et en vision par ordinateur. Pour y parvenir, nous
avons illustré AdFM à travers des applications de simplification, de segmentation et de
détection d’objet, montrant des résultats déjà prometteurs et mettant ainsi en avant la
versatilité et le potentiel de notre approche.
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1
I N T R O D U C T I O N

When image processing meets a higher level of understanding to become pattern recognition

or computer vision, it is no longer sufficient to work at the pixel level. To retrieve some
relevant information from images, e.g. for object detection, one needs to consider a local
context (patch) or a region, generally at different scales. One may also need to know
how these objects are related together, e.g. in scene understanding applications. Long
story short, we require a representation of the image that renders its content and its
organization. This one should enable:

• a multi-scale analysis of the image objects

• a spatial analysis of the image organization (in terms of objects inclusion or adja-
cency)

In this context, the Mathematical Morphology (MM) framework proposes tree-based
image representations that fulfill previous requirements and feature also other interesting
properties. They are typically of two kinds: hierarchies of segmentation and trees based
on the threshold decomposition. They represent two different semantics. Hierarchies
of segmentation render the adjacency of components, while component-trees describe
how objects are included in each other. We are particularly interested in this second class
because of their properties.

There are actually three kinds of trees based on the threshold decomposition: min-trees,
max-trees, and Tree of Shapes (ToS). The min- and max-trees are the support for contrast
invariant and morphological connected operators. In other words: 1. they are based on
the inclusion of connected components, so filtering these trees is a connected operation
that does not move the object boundaries [112]; 2. they are invariant by any contrast
change. Yet, they are not invariant to illumination change but robust to local change of
contrast as we expect the components to remain globally the same. The ToS [32, 28] (also
known as tree of level lines) features the same properties as the min- and max-tree but
it is also invariant by inversion of contrast. It can actually be seen as the “merge” of
information hold by both min- and max-trees. This feature implies that: 3. it is a self-dual
representation of the image. This is fundamental in a context where structures may
appear both on a brighter background or on a lighter one or if we cannot (do not want)
make any assumption about the object/background layout. Self-dual operators have the
ability to deal with both dark and light objects in a symmetric way [53, 117]; 4. it allows
a simple multiscale analysis of the image since the shapes are organized in a tree w.r.t.
their inclusion; 5. the level lines describe object boundaries in a non-local way. Contrary
to many key-point detectors which rely on local information, level lines may be large
Jordan close curves, orthogonal to the gradient, and fitting object contours [20].

1



2 introduction

Hierarchies of segmentation and threshold-decomposition-based trees are both widely
used in the MM community and the choice of one representation versus another is
application-dependant. In other words, our matter is not to say that a representation is
better than the other (experts have to choose the right tool for their problems), but we
aim at studying their ability to handle non-standard images. In particular, when the data
to process is not a simple grayscale image.

With the wide variety of acquisition devices comes a wide range of different types of
images to process. We focus on images where pixels are not scalar. In the following, we
restrict ourselves on 2D images; yet everything presented in this report naturally applies
to nD images. A well-known case of non-grayscale images is natural images acquired
by cameras. Standard cameras output 24-bits 3-channel RGB images; one channel for
each type of its red, green, and blue sensors. In computer graphics, it is also common
to have an extra Alpha channel for transparency so that we are working on 4-channel
RGB-A images. More recently, new devices such as Kinects allowed to render 3D spaces
through a Depth component. Such devices produce 4-channel RGB-D images where the
quantization of the depth channel is generally higher than for color channels. In medical
imaging, the same object may be acquired with different type of scanners, e.g. PET and
CT scans, yielding bi-modal or multi-modal images. To finish, another example can be
found in the field of satellite imaging and remote sensing, where experts have to analyze
images at multiple wavelengths of electromagnetic radiation (multispectral imaging).
Some devices also produce images which narrow spectral bands over a continuous
spectral range (hyperspectral and ultraspectral imaging). Through these examples, we
see the need for hierarchical representations of multivariate images.

On the one hand, hierarchies of segmentation, which belong to the large class of
hierarchical clustering methods, can easily be extended on multivariate data. Indeed, they
rely on the notion of distances between pixels (or regions of pixel) in order to merge them
incrementally into groups. There exist many distance functions between vectors that
make sense, even if they actually depend of the image data type. For example, the ∆E

distance, defined in the La*b* colorspace, is a rather “correct” measure between different
colors as it is close to our “human” way of perceiving colors.

On the other hand, component-trees based on the threshold decomposition principle
require a total ordering of values. Indeed, they rely on the inclusion of lower and upper
level sets, which are nested only if the ordering is total.

As a consequence, many authors have been involved in defining a sensible total
ordering on multivariate data. There exists a large amount of literature about the way of
ordering colors (or more generally vectors). We distinguish two kind of approaches: the
ones that try to get an ordering of the whole vector space and the others that only try to
order the co-domain of the image (i.e., only the set of values taken by the image). In the
first group, the best-known total orderings are the lexicographical ordering, orderings
based on the distance to a reference vector (or a reference sets of colors), or space-filling
curves. Any method in this category is actually subject to the following problem: there
will always exist two close points in the original high-dimensional space with a strong
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discontinuity once projected on the 1D curve. That is why, some authors have investigated
the second class of approaches: image-dependant total ordering. For example, Lezoray et
al. [74] use manifold learning for dimensionality reduction in order to get best projection
curve fitting the data; Chevallier and Angulo [35] use the same idea but with a clustering
approach, etc. The problem with these approaches lies in the loss of some algebraic
properties of the morphological operators built from them (e.g., idempotence or duality).
It motivates the fact we should not impose an “arbitrary” total order.

Passat and Naegel [102] were the first to investigate component-trees with a partial
order. Actually, (except if the partial order is actually a lower or upper piece-wise total
order), this partial order yields a much more complex structure which is no longer a
tree but a graph. Apart from being expensive to compute, it also implies new filtering
algorithms, new reconstructions strategies, and so on. In other words, it requires to
adapt the whole component-tree framework (i.e., segmentation, simplification, object
detection methods. . . ) to this new component-graph structure. It motivates the desire to
manipulate a tree than a graph.

Problem statement

Once a total ordering is defined on values, the ToS can be computed, but we would lack
some properties depending on the ordering used. Moreover, there is no actual consensus
in the community about which total ordering makes the most“sense”. On the other hand,
with the same idea of Passat and Naegel [102], the component-graph could be extended
to the ToS by considering every partial cut but we would then get a graph. In order to
take part of the large literature about methods working on component-trees, we really
prefer manipulating a tree instead of the graph.

The problem and the subject of this dissertation is how to get a tree for multivariate

images which shares the properties with the ToS and without imposing any “arbitrary” total

ordering?

Solution and contribution

The solution we propose is the Multivariate Tree of Shapes (MToS). Instead of defining a
new total order, our method tries to merge some shapes computed marginally in the most
“sensitive” way so that they finally form a tree. To that aim, an intermediate structure
is introduced, the Graph of Shapes (GoS), from which the MToS is extracted using the
graph topology only. The large context of our work is thus graph-based morphological
representations of images, as reviewed in [93]. Our MToS features similar properties as
the grayscale ToS. In particular, it is invariant to any marginal inversion or change of
constrast of the image. Consequently, the contributions of this work are:
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• a new hierarchical structure, the MToS, extending the ToS to multivariate images
which features similar properties to the grayscale ToS, and, in particular, the
invariance to any marginal inversion or change of constrast of the image;

• the proofs and the theoretical validity of our approach;

• efficient algorithms that enable to compute the MToS in quasi-linear time w.r.t. the
number of pixels (and quadratics in the number of channels);

• the practical validity of our approach through applications covering different
fields of image processing and computer vision, including: image filtering, object
detection, image simplification, interactive and automatic segmentation, satellite
image classification.

manuscript organization

This dissertation is divided into three main parts. Part i introduces the main concepts
of the work presented here: the hierarchical representations available with the MM
framework and how they are related to multivariate data handling.

• Chapter 2: Hierarchical Clustering Approaches. This chapter is a quick review of
the first type hierarchical representation offered by the MM framework, namely
the hierarchies of segmentation. We discuss in this chapter the best-known structures,
i.e., the α-tree [118], the Binary Partition Tree (BPT) [111], and the hierarchical
watershed [16]. We also highlight why they are interesting by describing some
advanced manipulations available on those hierarchies, in particular, hierarchy
re-weighting [52] and energy optimization on hierarchies [62].

• Chapter 3: Trees Based on the Threshold Decomposition. This chapter is a review
of morphological hierarchies based on the threshold decomposition principle: the
min- and max-trees [59] and the Tree of Shapes (ToS) [31], and highlights the
difference in semantics with the hierarchies of segmentation. In this chapter, we also
present the different strategies for filtering and reconstructing from these trees [114,
124].

• Chapter 4: Morphological Trees Extended to Multivariate Images. In this chapter,
we review the classical approaches for extending the ToS on multivariate images.
Since the problem lies in the lack of total orderings on the data, we review the
“standard” approaches to impose a total ordering on vectors and their limitations.
When the ordering relation lacks the anti-symmetry (i.e., a preorder), the corre-
sponding component trees and ToS may have nodes associated with different colors
(vectors). This fact makes the reconstruction process more difficult as there is not a
unique filtering value. As a consequence, we also review the different reconstruction
strategies in the case of preorders.
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• Chapter 5: Component Graphs. In this chapter, we review the new approach of
Passat and Naegel [102] about the component-graph. They are the first to propose an
extension of component-trees to partial orders. Their new structure, the component-

graph can be easily transposed for the ToS as well. We also discuss in this chapter
about the extra-complexity (both in terms of computational efficiency and ease-of-
use) involved in manipulating a graph instead of a tree for the construction, the
filtering and the reconstruction.

Part ii of this dissertation is the fundamental contribution of this work. It introduces
our new approach to adapt the ToS on multivariate images.

• Chapter 6: The Multivariate Tree of Shapes (MToS). In this chapter, we introduce
our new structure: the Multivariate Tree of Shapes (MToS). We present in this
chapter an in-depth description of the method and the rational of the construction
process.

• Chapter 7: Properties of the MToS. The MToS has properties similar to the gray-
scale ToS, in particular, it is invariant to any marginal change or inversion of contrast
of the image; which is what we consider as “self-duality” in the multivariate case. In
this chapter, we prove that the method delivers a tree with the expected properties.

• Chapter 8: MToS Computation Algorithm. This chapter is dedicated to the al-
gorithms involved in the computation of the ToS. We also provide a complexity
analysis of the algorithms, as well as optimization tricks that makes the construction
of the MToS in quasi-linear time w.r.t. the number of pixels and quadratics in the
number of channels.

• Chapter 9: Empirical validation of the MToS. This chapter is an empirical valida-
tion of our structure. In particular, we compare our approach with other “standard”
approaches extending the ToS on multivariate data in the case of image simpli-
fication. This chapter also provides some experiments about the validity of the
structure in the presence of noise or when mixing channels with different dynamics,
showing the robustness of the MToS to these “defaults”.

In part iii, we show some applications using the MToS that validate practically the
merits of our approach.

• Chapter 10: Image filtering. In this chapter, we propose to use the ToS for filtering
purposes. We show how basic tree processing such as grain filters can be used for
image simplification and document layout extraction. We have also applied the
recent work of Xu et al. [144] about shapings that enables advanced type of filtering
in a simple framework. This work has been applied in the context of filament
filtering in bronchial cytology images.
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• Chapter 11: Image Segmentation and Classification. In this chapter, we propose
to use the MToS for image segmentation and classification. Three applications are
depicted. The first one is an interactive image segmentation method where the
user has to add some scribbles to the image to tag background and foreground
areas, and the segmentation is done through tags propagation on the MToS. An
automatic segmentation method is also proposed as an extension, as well as a
way to get hierarchies of segmentation from the MToS. The second application
is the document detection in videos in the scope of the ICDAR competition on
Smartphone Document Capture and OCR. Our method, based on object filtering
in the MToS obtained the first place of the challenge. The last application is the
classification of hyperspectral images based on attributes profiles computed over
the MToS.

In Chapter 12: Conclusion and perspectives., we conclude this dissertation by a
quick review of our novel approach extending the ToS on multivariate images, and the
applications developed with it. We also present some possible improvements and future
research on these applications. Eventually, we also give some suggestions for additional
studies about algebraic aspects of the MToS.
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2
H I E R A R C H I C A L C L U S T E R I N G A P P R O A C H E S

The Mathematical Morphology (MM) framework offers two types of tree-based image
representation: trees based on the threshold decomposition of the image and, hierarchies
of segmentation also known as hierarchies of partition and pyramids [58]. The former
will be discussed in chapter 3 while the later is the topic of this chapter. While hierarchies
of segmentation are not new in image processing (the quadtree has been popularized
in the 70’s [57, 121]), they have recently got a regain of interest due to recent advances
on energy optimization on hierarchies [52, 62, 116]. It has been shown to be useful for
many applications such as simplification, segmentation [10, 22], image compression for
thumbnail creation [111], etc.

A partition π of an image u : Ω → F is a set of components {C1, . . . , Cn} such that
∪Ci = Ω and any two components are disjoint. We say that πi is a refinement of πj

(and we note πi ⊑ πj) if ∀A ∈ πi, ∃B ∈ πj such that A ⊆ B. Then, given the family
H = {πi, 0 ≤ i ≤ n | πi ⊑ πi+1}, H forms a hierarchy. The finer partition π0 is the leaves
and πn = {Ω } is the root. Thus, the family H forms a chain of fine to coarse partitions.
This is illustrated in fig. 13 where the hierarchy is represented by a dendrogram. In fact,
the hierarchy provides a reduced search space for candidate regions of interest that might
be useful for object spotting applications.

In this chapter, we will review in section 2.1 the classical hierarchies of segmentation
used in MM. We will see that they share a same scheme; they are bottom-up clustering
methods and that they have no troubles in dealing with multivariate data. In section 2.2,
we will review some standard processings with those hierarchies.

2.1 well-known hierarchies of segmentations

In this chapter, we will consider the image in a graph framework. An image is a
vertex/edge-weighted graph (V, E) where V, the set of vertices, stands for the pix-
els of the image and E, the set of edges, stands for the connection (4- or 8- connectivity).
The weight of the vertex p is u(p) (the original pixel value), and edges are weighted by a
dissimilarity measure ∆(p, q) between two vertices p and q.

Because the clustering algorithms we will present only require a total ordering on the
edges’ weights and not on vertices’, working with multivariate data is not a real issue.
Any sensible distance between colors (or vectors) would fit perfectly (e.g. the CIE ∆E on
the La*b* space).

9
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{a} {b}

{c}

{d}
{e}

{g}

{f}

{h}

{j}

{i}

{k}

Ω

{a} {b} {c} {d} {e} {f} {g} {h} {i} {j} {k}

The family H of partitions is:

π0 {{a}, {b}, {c}, {d}, {e}, { f }, {g}, {h}, {i}, {j}, {k}}
π1 {{a, b}, {c, d}, {e}, { f , g}, {h, i}, {j, k}}
π2 {{a, b}, {c, d, e}, { f , g}, {h, i, j, k}}
π3 {{a, b, c, d, e}, { f , g, h, i, j, k}}
π4 {Ω}

Figure 13: Example of a hierarchy of segmentation represented with a dendrogram.
(Illustration from [62])

2.1.1 α-tree and minimum spaning tree

The α-tree [98], also known as quasi-flat zone hierarchy [84], relies on the notion of
α-connectivity (or quasi-flat zone) to build a hierarchy [118]. We say that two vertices p

and q are α-connected if there exists a path P from p to q such that max(p,q)∈P ∆(p, q) ≤ α.
It is straightforward that the α-connectivity defines an equivalence relation since it is
reflexive, symmetric and transitive. We can then define α-connected components (α-CC)
which are the equivalence classes issued from the α-connectivity, i.e., the maximal sets of
points that are α-connected.

When α grows, two quasi-flat zones of lower α may merge to form a single region.
As a consequence, the chain of partitions produced by the alpha-connected components
forms a hierarchy. This is illustrated on fig. 14. The measure used to weigh edges is
∆(p, q) = |u(p)− u(q)|. As one can see, there is a refinement from the 3-CC which is the
whole image to the partition of 0-CC which is the partition of flat zones. The quasi-flat
zones can thus be organized in a tree as shown in fig. 14e.

Note that when two regions A and B merge into AB, the distance from AB to another
region C is the minimum of the distances of the subgroups to C (the edges other than
the one of minimal weight are actually useless). This is why in the machine learning
community, the α-tree is more commonly called single-linkage clustering and from
an implementation point of view, it is closely related to the Kruskal’s algorithm for



2.1 well-known hierarchies of segmentations 11

1 0 4 6

1 0 3 5

3 3 6 2

0 0 5 2

(a) 0-CC

1 0 4 6

1 0 3 5

3 3 6 2

0 0 5 2

(b) 1-CC

1 0 4 6

1 0 3 5

3 3 6 2

0 0 5 2

(c) 2-CC

1 0 4 6

1 0 3 5

3 3 6 2

0 0 5 2

(d) 3-CC

A B

C

D

E

F

G

H

I

J

K

Ω

A B I J C D E F K G H

α

0-CC

1-CC

2-CC

3-CC

(e) Finest partition of flat zones (left) and the associated α-tree (right).

Figure 14: The hierarchy of quasi-flat zones illustrated on a 4× 4 image.

minimum spanning trees which iteratively selects the edge of minimal weight to merge
components [95].

The hierarchy of quasi-flat zones is well-known to have two major problems. The first
one is the chaining-effect in regions with low gradients (e.g., in blue sky) which makes
the clusters grow fast and lead to heterogeneous regions even at the bottom of the tree.
The second problem arises on noisy images. Because noise has a strong gradient with
the surrounding region, it merges lately in the hierarchy and creates isolated, small
regions in the segmentation. The same problem arises on region boundaries where the
transitions are not sharp enough and edge pixels are isolated as well. For these reasons,
a segmentation produced from the α-tree needs a bit of post-processing to remove those
small regions.

2.1.2 Binary Partition Tree (BPT)

The α-tree presented in section 2.1.1 is actually a particular case of the BPT where the
distance between two regions is the minimum of the gradient along the boundary of
those regions. In the Binary Partition Tree (BPT) construction process, proposed by [111],
one can introduce other merging criteria, for example, the homogeneity of two regions,
or their shapes. The construction of the tree is thus driven by the merging criterion, and
so by the final objective. Indeed, two important aspects of the method lie in the merging
order and the region model, thus it depends on the application (see [129, 113]).
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(c) Step by step clustering. Red edges are the minimal weights indicating the regions that are
going to be merged in the next step. The merging order is: A/B, C/D, E/F, G/H, CD/EF,
CDEF/GH, CDEFGH/I, CDEFGHI/K, CDEFGHIK/J, CDEFGHIJK/AB.

Figure 15: The Binary Partition Tree (BPT) illustrated on an example.

Just like the α-tree, the BPT starts from an initial partition of the image (partition from
the flat-zones or computed by a super-pixel algorithm). However, the α-tree does not
require to update weights and distances during the link step of the algorithm, whereas
the BPT generally does. The difference with the α-tree is illustrated on fig. 15. We use
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the same original image as for fig. 14. We start from the initial partition given by the
flat-zones and valuate edges with the variance as a cost to merge two regions. As for the
Kruskal’s minimum spanning tree algorithm, we iteratively select the edges of minimal
weight, but once two regions merge, we have to update the value of the edges connecting
with the neighbors by computing the new variance (see fig. 15c).

2.1.3 Hierarchies of watershed

The watershed transformation [17] is the best-known morphological method for image
segmentation. The basic idea behind this method is to consider the image as a topo-
graphical surface and picturing water falling on it. Each drop of water will end in a
catchment basin which are the local minima of the image. Each catchment basin thus has
an influence area which attracts the drops. It defines a partition of the image in terms of
those influence areas.

There exist many formulations of the problem as “watershed” denotes actually a class
of algorithms. For example, Vincent and Soille [131] use an algorithm computing the
geodesic influence zone of the catchment basins, Meyer [83] uses an immersion algorithm
that expands the set of minima while keeping the same number of connected components
as the number of minima. More recently the topological watershed [38, 39] has been
introduced to overcome some issues related to the placement of the watershed lines
separating two catchment basins. More precisely, one would like to have the pass value
(the level when two basins merge) to be on the contour of the regions. As noted in [92],
this property is important to compute some measure of contrast between the basins,
which is at the basis of hierarchical watersheds.

Beucher [16] introduced the first hierarchy of segmentation based on watersheds.
Given an initial partition of the image (given by a watershed transform algorithm), they
successively simplify the partition by removing the mimima of the image. The order of
removal of the minima actually implies the merging order of the catchment basins and
defines a hierarchical clustering, so one needs to define a “persistence” measure of each
minimum.

In [16], the authors use the dynamics [49] of the basin as the merging criterion.
Basically, the dynamics of a minimum is the elevation distance that one must climb to
reach another catchment basin, i.e., this is the passing value minus the level of the current
local minimum. In [92], other criteria are proposed such as the volume or the area (they
have shown better performance in [105]), but any other attribute could be used. An
example of hierarchies of segmentation based on the watershed is depicted in fig. 16

through saliency maps, i.e., the region boundaries are weighed by their level of merging
in the hierarchy. Just like with the dendrogram representation, any cut in the saliency
map yields a partition of the image. Figure 16 also shows the importance of the criterion
chosen to build the hierarchy. Indeed, the flooding by dynamics fails to correctly segment
the ducks in the coarsest partition which splits the background into two parts. On the
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contrary, flooding by area and volume give the ducks as the most salient objects, so they
merge lately with the background in the hierarchy.

Figure 16: Hierarchies of watershed. Top left: original, top right: flooding by dynamics,
bottom left: flooding by area, bottom right: flooding by volume. Hierarchies
are represented through their saliency map.

2.2 processing and transforming hierarchies

2.2.1 Horizontal and non-horizontal cuts

Given a hierarchy H = {π0, . . . , πn }, any partition of π = {C1, . . . , Cn} defines a cut
on the hierarchy, if every Ci is a class of H . If π ∈ H, the cut is said to be “horizontal”
as it means cutting the hierarchy at a given level (or equivalently, thresholding the
corresponding saliency map). On the other hand, the partition may be associated with
several components from different πi so that different levels of the hierarchy may be
involved. This is illustrated on fig. 17. The horizontal green cut gives the partition π2

which was originally in the family H (see fig. 13) while the non-horizontal red cut gives
a new partition that was not in H and grows the size of the search space for possible
segmentation.
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(b) Left: finest partition. Middle: partition from the green cut. Right: partition from the red cut.

Figure 17: Horizontal and non-horizontal cut on a hierarchy.

2.2.2 Reweighing and energy optimization on hierarchies

We have seen in section 2.1.3 that some merging criteria (flooding by area, volume,
dynamics. . . ) could affect the quality of the resulting hierarchy of watershed. This can be
seen as a way of reweighing the hierarchy.

In section 2.1.1, we have introduced a hierarchical structure based on the notion
of quasi-flat zones, namely the α-tree. In [118], the authors proposed the constrained-
connectivity, as well as a way to modify the original hierarchy indexed by α to a new
hierarchy indexed by the bounded variation ω of the component to limit the linking effect.
More formally, the bounded variation BV is defined as:

BV(Γ) = max
x∈Γ

u(x)−min
x∈Γ

u(x)

The ω-connected components do not form a partition of the image as they may overlap.
Their idea is thus to limit themselves to α-connected components but constrained with
the bounded variation ω. In other words, they are the largest α-connected components of
bounded variation less than ω:

ω-CC = Maximal elements of
⊆

{Γ, Γ ∈ α-CC | BV(Γ) ≤ ω}

From now, any horizontal cut on the new ω-indexed hierarchy corresponds to a non-
horizontal cut on the old α-indexed hierarchy. This is illustrated on fig. 18. The α-tree
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given as an example in fig. 14 has been reweighed with the bounded variation. In other
words, we compute the ω value of each region and reindex the hierarchy with these
values. As one can see, it changes the topology of the tree and the horizontal green cut in
the new hierarchy is related to a the non-horizontal red one in the original hierarchy.
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(a) Hierarchy indexed by α. Blue labels are the
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(b) Hierarchy indexed by ω

Figure 18: α-tree hierarchy reweighed by ω. The horizontal green cut in (b) is equivalent
to a non-horizontal cut in (a).

Energy optimization on hierarchies has been further studied in [51, 52] and later in [62].
Given a partition π = {C1, . . . , Cn } of the image, Guigues et al. [52] were interested in
optimizing separable energies of the form:

Eλ(π) = ∑
Ci∈π

C(Ci) + λD(Ci) (2.1)

where C is typically a fidelity term and D a term standing for the level of complexity
of the model. The term C increases as the image simplifies while the term D decreases as
the complexity of the model lowers. These classes of energy are well-known in image
processing as they are used for simplification and segmentation (e.g. the Mumford-Shah
energy [87], L1 + Total Variation), or for image compression [111] (optimization on the
rate/distortion trade-off). The way to solve this energy optimization and retrieve the best
cut on hierarchies by dynamic programming has already been proposed in [111]. The
novelty introduced by Guigues et al. [52] was to re-index the hierarchy in terms of the
regularization parameter λ so that we do not have to choose a priori the simplification
strength but rather choose it after the hierarchy has been re-indexed. Yet, the re-indexation
is a single bottom-up traversal solving a dynamic programming formulation of the
problem. For each node x (partial partition) of the hierarchy, we need to compute λ∗(x)

which is the value for which it becomes more valuable to merge the sub-regions of x into
a single region. More formally, let Eλ(x) = C(x) + λD(x) denotes the energy of x, then:

λ∗(x) = min{ λ | Eλ(x) ≤ ∑
child y of x

Eλ(y) }

In their recent work, Kiran and Serra [62] wondered what kind of energies can be
optimized this way on hierarchies. In particular, they focused on the composition law that
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makes the framework valid. For example, in [52], the Mumford-Shah energy is additive
as the energy of partition is the sum of the energies of its regions (see eq. (2.1)). On the
contrary, in [118], the energy based on the bounded variation, is sup-generated:

BV(π) =
∨

Ci∈π

BV(Ci)

The authors came out with climbing energies which must verify singularity and h-
increasingness, i.e., the energy of any node x must differ from the energy of any partition
of x and for any two partial partitions π1 and π2 of x such that π1 ⊏ π2, and a disjoint
partial partition π0:

E(π1) ≤ E(π2)⇒ E(π1 ∪ π0) ≤ E(π2 ∪ π0)

This generalization to climbing energies and the study of new composition rules have
enabled the introduction of new optimization constraints such as the number of classes
in the simplification [61].

2.3 conclusion

In this chapter, we have seen some tree representations of the image belonging of a wide
class of hierarchies used in MM: the hierarchies of segmentation. The literature about
this subject is quite large, and we have seen the keys ideas about the way to process,
transform and optimize energies on those structures. From this chapter, there are two
important points one should keep in mind before introducing the next chapter. First,
these hierarchies of segmentation are based on clustering principles, so one basically
has to define a distance or a cost function between pixels or regions. So there is no
challenge about extending those hierarchies to multivariate images as sensible distances
between vectors or colors already exist. The second point is that because they are based
on clustering, the main information they encode is the adjacency and the level of disparity
between adjacent regions. In the chapter 3, we will introduce another class of hierarchical
representations based on the inclusion relation rather than the adjacency. We will see that
their extension to multivariate images is not as straightforward.
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T R E E S B A S E D O N T H E T H R E S H O L D D E C O M P O S I T I O N

In this chapter, we review the three classical trees based on threshold decomposition of
the image, namely, the min-tree, the max-tree and the Tree of Shapes (ToS). Min- and
max- trees were introduced by Jones [59] and popularized by Salembier et al. [114] who
found in them an efficient image representation adapted for shape recognition and image
filtering. Max- and min-trees are dual, in the sense that the first one supposes that objects
are lights regions over dark background and the other supposes the contrary. They will
be reviewed in section 3.1, as well as the ways to process them. The ToS was introduced
by [31] as a self-dual representation that merges min- and max-trees in a single structure.
It is also known as topographic map as it encodes the level lines of the image and will be
reviewed in section 3.2.

A

B C D
E

(a) Original

Ω

A B C D E

(b) α-tree

Ω

BCDE

E

(c) Min-tree

Ω

BDEC

EC
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(d) ToS

Figure 19: The different semantic of the component trees vs. the hierarchy of segmenta-
tion.

These trees are fundamentally different from the ones we have exposed in chapter 2.
First, any cut in a hierarchy of segmentation yields a partition; while in trees based
on the threshold decomposition, a cut yields a partial partition. Second, hierarchies of
segmentation renders the adjacency of regions while component trees and the ToS render
the inclusion of objects. The different semantics are illustrated in fig. 19. Figure 19a
represents the following scene (in a schematic way): “A gray belt with a black belt buckle
over a white shirt”. Figures 19b to 19d shows how the trees understand the scene.

• The α-tree does not see the belt as a whole but as three disjoint pieces of gray
materials, separated by the buckle. They are adjacent to a white background.

• The min-tree sees the scene correctly. The gray belt contains of a black buckle and
is over the white shirt.

19
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• The ToS has one additional piece of information compared to the min-tree. It says
that the buckle has one object inside, yet we do not know that this is the belt which
shown through it.

3.1 min and max-trees

Component trees were introduced by Jones [59, 60] as efficient image representations that
enable the computation of advanced connected filters in a simple way. Connected filters
play an important role in Mathematical Morphology, because they preserve object bound-
aries. In the binary case, a connected filter preserves only the connected components that
pass a given criterion, e.g., components that are large enough or that have a given shape.
The same principle applies in gray-level through the notion of threshold decomposition. By
thresholding the image with every level λ, we get a stack of binary image: the threshold
sets. Binary connected operators are extended to gray-scale images by applying the
filter on every threshold set and then recomposing the results. The component trees
are actually hierarchical structures that encode the threshold sets and their inclusion
relationship and allow efficient implementations of such gray-scale connected operators
[114, 91, 15, 135, 133, 26].

3.1.1 Definition

Let u an image from Ω → F where F is endowed with an ordering relation ≤. We
note the lower (resp. upper) threshold sets [u ≤ λ] = {x, u(x) ≤ λ} (resp. [u ≥ λ] =

{x, u(x) ≥ λ}). We note CC(X), X ∈ P(Ω) the set of connected components of X,
Γ−λ = {X, X ∈ CC([u ≤ λ]) } and Γ+

λ = {X, X ∈ CC([u ≥ λ]) } are the upper/lower
peak components at level λ and finally, Γ− =

⋃
λ Γ−λ , Γ+ =

⋃
λ Γ+

λ denote the sets of
lower and upper connected components. If the relation ≤ is total, any two connected
components X, Y ∈ Γ− are either disjoint or nested. The set Γ− endowed with the
inclusion relation forms a tree called the min-tree and its dual tree, defined on Γ+, is
called the max-tree.

In a min-tree (resp. max-tree), a node represents a lower (resp. upper) connected
component, i.e., a set of points and the level of the threshold set. In fact, from the
implementation point of view, the node N representing Γ ∈ Γ+

λ only stores the points at
the level λ and Γ is actually the whole subtree rooted in N (see fig. 20).

3.1.2 Filtering and reconstruction

image reconstruction Using the decomposition principle, the image u can be recon-
structed from its threshold sets by the equations:
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Figure 20: An image and its component trees.

u(x) =
∧
{λ ∈ F | λ ≥ u(x)} =

∧
{λ ∈ F | Γ ∈ Γ−λ , x ∈ Γ}

u(x) =
∨
{λ ∈ F | λ ≤ u(x)} =

∨
{λ ∈ F | Γ ∈ Γ+

λ , x ∈ Γ} (3.1)
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Algorithmically speaking, the reconstruction using component trees is straightforward
since each pixel gets valued with the level of the node it belongs to.

filtering the component-trees Component trees provide a high-level repre-
sentation of the image and describe the organization of the connected components in
a hierarchical way. Thus, they enable us to perform advanced connected filtering in a
simple way. For example, one can express the objects to be filtered out through an at-
tribute (a criterion) that tells the components to be preserved and the ones to be removed.
This attribute can be increasing (e.g., the size of the component, the dynamic. . . ) or
non-increasing (e.g., the perimeter, the inertia. . . ).

In the first case, it leads to an attribute opening or closing (depending on the tree we
are working with), in the second case it leads to an attribute thinning/thickening. More
formally, let C be an increasing Boolean criterion. The trivial opening C(X) : P(Ω) →
{∅, X} is just X if X meets C and the emptyset otherwise. Trivial openings allow the
definition of attribute openings ρC(u) and attribute closings φC(u):

φC(u)(x) =
∧
{λ ∈ F | x ∈ C(Γ), Γ ∈ Γ−λ }

ρC(u)(x) =
∨
{λ ∈ F | x ∈ C(Γ), Γ ∈ Γ+

λ } (3.2)

It is straightforward that ρ and φ are increasing and idempotent because the criterion
C is. One may prove that φ and ρ are respectively extensive and anti-extensive, which
make them effectively openings and closings. In terms of tree processing, these operators
are equivalent to pruning some branches. As soon as a node does not pass the criterion,
the subtree rooted in that node is removed and its points are attached to the parent node.

If the criterion is non-increasing, eq. (3.2) leads to attribute thinnings and thickenings as
ρ and φ are not increasing anymore. Salembier et al. [114] and later Urbach and Wilkinson
[124] have defined specific filtering and restitution rules in the case of non-increasing
attributes that can be categorized in two groups: pruning and non-pruning strategies.
Pruning strategies involve preserving or removing some sub-branches of the tree, thus
some nodes failing the criterion have to be kept while some others passing the test have
to be discarded.

min A node is kept if it passes the criterion and all of its ancestors are kept.

max A node is kept if it passes the criterion or any of its descendants is kept.

viterbi The selection of the nodes is based on an optimization problem where we have
to compute the minimal path cost for each leaf (see [114]).

direct A node is kept if it passes the criterion. The other nodes are discarded. When a
node is discarded, the points are set to the level of the deepest alive ancestor, which
is equivalent to the reconstruction formula given in eq. (3.2).

subtractive Same as the direct rule but the gray level difference ∆ between a discarded
node and its parent is passed to the descendants. This rule aims at preserving the
same contrast between the remaining components in the residue image.
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Figure 21: Illustrating the restitution process with pruning and non-pruning strategies.

Figure 21 illustrates the differences between the min, max, direct and substractive
strategies on the min-tree from fig. 20c. We used the criterion:
“C(X) = number of holes in the component X ≤ 2” so that the node A is the only one
that fails the criterion. Filtering with such a criterion is actually a “shape filter” in the
sense of [124] since it is scale, rotation, and translation invariant and idempotent. Min
and max rules are pruning strategies as they preserve or remove whole sub-trees as
opposed to the direct and subtractive strategies which can remove nodes anywhere in the
tree.

3.2 the tree of shapes (tos)

The Tree of Shapes (ToS), also known as topographic map is a hierarchical representation
of a gray-level image in terms of the inclusion of its level lines [32, 85].

Every node of the ToS represents a connected component whose border is a level line
and, typically, the number of nodes is close to the number of pixels for a non-degenerated
image. The ToS of an image thus offers a description of the image contents as a collection
of connected components, structured as a tree thanks to the inclusion of these components.
Surprisingly this rich structure can be computed efficiently [46, 40], and can be also
efficiently stored in memory [26].

It is linked to the min and max-trees introduced previously as it can be seen as the
result of merging the pair of these dual component trees into a single tree. Since it is
self-dual, it makes no assumption about the contrast of objects (either light object over
dark background or the contrary). We only have one structure that represents the image
contents so we do not have to juggle with the couple of dual trees. The ToS intrinsically
eliminates the redundancy of information contained in those trees.
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Figure 22: The ToS and its differences with the Min and Max-Trees

3.2.1 Definition and notation

Let a set X ⊂ Ω, we note ∂X the border of X and X̄ the complementary of X. Let
H : P(Ω)→ P(Ω) denote the hole-filling operator as defined:

H(X) = Ω \ CC(X̄, ∂Ω)

where CC(X̄, ∂Ω) is the connected component of X̄ connecting with the image border.
Given that hole-filling operator, we call a shape any element of S = {H(Γ), Γ ∈ Γ−λ }λ ∪
{H(Γ), Γ ∈ Γ+

λ }λ. If F is totally ordered, any two shapes are either disjoint or nested,
hence the cover of (S ,⊆) forms a tree called the Tree of Shapes (ToS) (in the following, as
a matter of simplicity, we implicitly consider the cover of (S ,⊆) while writing (S ,⊆)
only).

We see by this definition that the shapes are hole-filled connected components of the
lower and upper threshold sets and so that the ToS can be seen as a “merge” of the Min
and Max-trees. However, the hole-filling operation creates shapes that belong neither to
the min-tree nor to the max-tree as shown in fig. 22.

Using the image representation in [46], one can ensure each level line is an isolevel
closed curve given that the co-domain is totally ordered. Actually, the “totality” require-
ment comes from the definition of the level lines in terms of contours of lower or upper
threshold sets and the level lines of u are actually the contours of the shapes. This way,
the ToS encodes not only the inclusion of shapes but also the level lines inclusion.

Given S and a shape A ∈ S , we will note A↑ = {X ∈ S , A ⊆ X}.

3.2.2 Reconstruction from the ToS

Caselles and Monasse [28, chap. 2.4] proposed two formulas for reconstructing the image
from the ToS. The direct reconstruction which basically says that ũ(x) is the level of the
smallest shape containing x and the indirect reconstruction which first recovers the level
sets from the shapes and uses eq. (3.1) to build the image. While the authors argue that
the first formulation is not satisfactory as in the continuous case the smallest shape does
not necessarily exist, it is sufficient in our case (discrete and with a finite number of
shapes) and is closer to the algorithmic reconstruction process.
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Consider the relation E on P(E)× F defined as (X1, λ1)E (X2, λ2) iff X1 = X2 ∧ λ1 ≤
λ2. Let G be the shape set S augmented by the level of the shape:

G = Max. elements of
E

{(H(Γ), λ), Γ ∈ Γ−λ }λ

⋃
Min. elements of

E
{(H(Γ), λ), Γ ∈ Γ+

λ }λ

and the ordering � s.t. (S1, λ1) � (S2, λ2)⇔ S1 ⊆ S2

Then, the image can be reconstructed using:

ũ(x) = λ : (X, λ) =
�∧

(S,λ)∈G,x∈S

(S, λ) (3.3)

Again, as for the Min and Max-trees, the reconstruction using the ToS is straightforward
since each pixel is stored in the smallest component it belongs to and so, gets valued
with the level of its node.

3.2.3 Filtering the ToS

The same filtering strategies exposed in section 3.1.2 can be applied on the ToS. However,
in the case of non-increasing criteria, the direct rule can lead to a reconstructed image
that does not correspond to the tree from which the reconstruction was based. As a
workaround, Caselles and Monasse [28, chap. 2.4] suggest to prevent the suppression of
extremal shapes in monotone section of the tree if they have a child node of different
type. Another strategy might be to use the subtractive strategy proposed by [124] for
component trees as it preserves the contrast between the remaining level lines. This is
illustrated in fig. 23. When removing the shape B by the direct rule, it creates a connection
between A and C at the same level and changes the tree’s topology. On the other hand,
the subtractive strategy increases the level of D, E and F by the same amount of B and
the topology is preserved.
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Figure 23: Non-pruning strategies illustrated on the ToS. The direct rule leads to a recon-
structed image that differs from its original ToS.
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M O R P H O L O G I C A L T R E E S E X T E N D E D T O M U LT I VA R I AT E
I M A G E S

Mathematical morphology (MM) offers a non-linear image processing framework which
is both simple and efficient. It has been widely used in many image processing tasks
as for filtering, object detection, segmentation. . . Behind the scenes, MM operators rely
on an ordering relation on values which must form a lattice. Those operators usually
apply to binary and grayscale images, even if there are many attempts to deal with color
images [8].

We have seen in chapter 3 a particular class of MM operators, named connected operators,
that have been widely investigated thanks to their contour-preserving properties. These
operators can be efficiently computed using component trees: min-tree, max-tree and
ToS.

While most MM filters rely on a partial ordering relation only, component-trees and the
ToS need the ordering to be total. The latter requirement hinders the extension of these
structures to color images. In this chapter, we review the most important strategies to
extend morphological tree processings to multivariate data, highlighting their problems
w.r.t. self-duality and basics requirements of morphological filters.

4.1 problem statement

As seen in chapter 3, the ToS (and component trees in general) relies on an ordering
relation ≤ that needs to be total. On multivariate data, no natural total order exists,
the “natural” product order is partial. As a consequence, the shapes from lower and
upper sets may overlap without being nested. This is illustrated in fig. 24. Here, the cuts
[u ≤ (0.5, 0, 0)] and [u ≤ (0, 0.5, 0)] intersect (via [u ≤ (0, 0, 0)]) without being nested.

(0.5, 0, 0) (0, 0.5, 0)

(0, 0, 0)

(1, 1, 1)

Original image.

(1, 1, 1)

(0.5, 0, 0) (0, 0.5, 0)

(0, 0, 0)

Hass diagram of the shape inclusion.

Figure 24: Problem with the ToS on a partial order. It leads to shapes that overlap without
being nested.

27
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(a) Original image (b) Iso-levels at three points on
a gray level version of (a).

(c) Iso-colors at the three same
points on (a).

Figure 25: Level lines problem on Rn.

Another way to see the problem, from a level lines standpoint, is that on Rn (n>1), level
lines do not form closed curves as shown in fig. 25. We have selected three random points
a, b, c and drawn every pixels { x ∈ Ω | u∗(x) = u(a) or u∗(x) = u(b) or u∗(x) = u(c) }
where u∗ is the original image interpolated with intervals. On gray level (fig. 25b), the
points form closed curves that do not cross and can be organized into a tree driven by
the inclusion order of their interior. On the other hand, on colors (fig. 25c), the points do
not form closed curves; the inclusion tree is degenerated with a low depth.

4.2 multivariate mage processing strategies

4.2.1 Marginal processing

With a marginal approach, each component of the image is processed independently
from the others. Then, the resulting images are merged back to form a multivariate
image. Despite its simplicity, its major drawback is that it does not take into account
the correlation between the different components and so a part of the information is
discarded during the processing.
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Original Image

u2

u3

ũ1

Processed Image

ũ2

ũ3

Scalar processing

Scalar processing

Scalar processing

Figure 26: Marginal processing strategy.
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Figure 27: False color problem of the marginal filtering with the ToS. (Grain size: 500)

In our case, this means computing the Tree of Shapes (ToS) of each image channel and
processing each tree. Two majors problems emerge.

First, we do not have a single tree, but as many trees as the number of channels. As a
consequence, we have to handle several trees at the same time. For some applications,
such as object detection, this is a significant drawback since we may detect the same
object many times and extra work is then required to remove these redundancies.

Second, in the case of filtering, the marginal approach leads to the well-known “false
color” problem. It arises when recomposing the channels of the final image since it
may create new values that were present in the original image. The presence of “false
colors” may or may not present a problem, depending on the application. For example,
for denoising, marginal processing offers a wider range of possible values in the output
image and the new colors may be close to the original ones and do not alter visually the
result [37]. On the other hand, for other application such as simplification or segmentation,
it tends to create visible artifacts on the object boundaries due to the fact that the regions
do not match exactly in the trees. This problem is illustrated on fig. 27 where a grain filter
of size 500 has been applied marginally on each component. In the wall, the topologies
of the three trees differ, the shapes do not merge at the same level of filtering. The
recomposition process of the channels creates visible color artifacts.

4.2.2 Vectorial processing

Contrary to the marginal processing, a vectorial processing considers the set of the
components as a whole. Depending on the application, this approach is favored because
it prevents the creation of false colors. In our case, a vectorial processing would present
a major advantage: we would have a single structure to process. However, it requires
imposing a total ordering of vectors as required by the trees based on the threshold
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ũ1

Processed Image

ũ2
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Figure 28: Vectorial processing strategy.

decomposition and the choice of particular total order is not straightforward as we will
see in the next section.

4.3 on the imposition of a total ordering

Among hierarchical representations of images, component trees rely on a data (pixel
values) ordering that needs to be total. When dealing with multivariate data, authors
generally have two approaches. They either define a new total ordering relation on their
data, or adapt their structures to deal with the natural partial order. Many authors have
attempted to define orders on colors. There actually exist more than seventy ways of
ordering a vector space (see Aptoula and Lefèvre [9] for a rather complete survey of color
orders used in the mathematical morphology framework). In this section, we review only
the most well-known approaches to order vectorial data.

Let us first recall the definition of an ordering relation ≤. ≤ is a binary relation that is,
∀x, y, z ∈ E,

reflexive x ≤ x

transitive x ≤ y and y ≤ z⇒ x ≤ z

anti-symmetric x ≤ y and y ≤ x ⇒ x = y

Moreover, ≤ is said to be total if ∀ x, y, x ≤ y or (not exclusive) y ≤ x; if not, the relation
is said to be partial because some elements are not comparable.

If ≤ does not meet the anti-symmetry property, then the ordering relation is a preorder

(also known as a weak order if the relation is strict). The consequence is that two different
values a and b may be considered equivalent (a ≤ b ∧ b ≤ a) by the relation. It leads to
component trees where a node in the trees has several values (the ones belonging to the
same equivalence class).

A classification of ordering relations can rely on their algebraic properties (totality, anti-
symmetry. . . ) or with respect to the way these relations are built. Barnett [14] proposed
to classify them into four groups: marginal (M-ordering), conditional (C-ordering), partial
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(P-ordering) and reduced (R-ordering). The former is a component-wise ordering that
deals separately with each channel, i.e., a partial order, and will be discussed in section 5.1.
The three others provide total (pre)orders and are discussed below.

4.3.1 Conditional orderings (C-ordering)

With C-ordering, vectors are ordered by means of one, several, or all of their marginal
components. The most well-known C-ordering is the lexicographical ordering, that is a
total order. If only several components participate in the comparison, it yields a total
preorder. For example let v, w ∈ Rn, the lexicographical ordering ≤L using only the two
first components (v ≤L w iff v1 < w1 ∨ v1 = w1 ∧ v2 ≤ w2) is a total preorder. Colors
(1, 1, 2) and (1, 1, 3) are considered as equivalent by the above relation. The main pitfall of
C-orderings lies in the importance given to the first components. Considering the RGB
space for example, it implies that the red component is more relevant than the others.
Workarounds like the sub-quantization of first components (also known as α-trimmed
lexicographical ordering [97, 7, 115]) enables to lower the importance given to the first
dimension.

4.3.2 Reduced orderings (R-orderings)

With R-ordering, vectors are reduced to scalar values using a mapping h : Rn → R s.t.

v < w ⇔ h(v) < h(w)

If h is injective then each index is mapped to a unique color and the relation is a total
order, otherwise it is a total preorder.

In [127], R-orderings are classified in two main groups: R-orderings based on projections
and the ones based on distances. The first group has mappings written as:

h(v) =
n

∑
i=1

λi.vi (4.1)

The methods of this group employ standard unsupervised reduction techniques like
the Principal Component Analysis.

The second group of methods, namely distance-based ordering, are supervised and
they involve choosing a reference vector vref and the order relation is built upon a distance
to vref , i.e., h(v) = d(v, vref ). More generally, a set of K reference vectors vk

ref can be chosen
and the mapping h has the generic form:

h(v) =
K

∑
k=1

λk.d(v, vk
ref ) (4.2)

The choice of a good distance function between vectors is another problem, e.g. authors
generally use the CIELAB ∆E for colors. More advanced distances functions can be used,
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specially those that depend on the image content. In [127, 128], the distance is built upon
a support vector machine with a Gaussian kernel. Some reference points are chosen
as background or foreground, they are the training set of the classifier. Then, a SVM
regression is used to compute the distance to the other vectors, from which an ordering
relation is deduced.

This type of ordering has been widely used[64], and studied in-depth in [6] to extend
morphological filters. The first problem highlighted by [9] is the instability of the maxi-
mum (while the minimum is stable, close to vref ) that makes the dilation unstable to slight
modifications of the input image. This is a significant drawback from the perspective of
designing self-dual filters. While erosion tends to the reference color vref , dilation tends
to move away from the reference, to a “foreground” vector, but without defining it.

The second problem pointed out by Angulo [6] is the non-duality of the erosion and
the dilation made from distance-based ordering (even in gray-level). This is illustrated in
fig. 29. Values are in the range [0.0− 1.0] and vref = .4. Dilation and erosion use a 1× 3
rectangular structuring element. Using the distance-based approach, they are not dual,
as δ(ū) 6= ǫ(u). This prevents the definition of self-dual morphological operators based
on erosion and dilation as ones proposed by Heijmans [53]. However, as soon as vref is
defined as an extreme value (black or white typically), the duality is preserved but then,
the vectors are simply ordered by their norms.

.3 .4 .6u

.7 .6 .4ū

.4 .4 .4ǫ(u)

.7 .7 .6δ(ū)

.3 .3 .4δ(ū)

Figure 29: Problem of duality between erosion and dilation using the distance-based
ordering. vref = 0.4.

distance-based self-dual morphological operators In [66, 48], distance-
based dual erosion and dilation are defined using two reference points C+∞ and C−∞

(typically black and white) leading to two different distance functions:

v ≤1 w⇔ d(v, C−∞) ≤ d(w, C−∞)

v ≥2 w⇔ d(v, C+∞) ≤ d(w, C+∞)

Then, the infimum is defined using ≤1 ([48] brings a solution to the multiple extrema
pitfall and ensure the uniqueness of the minimum) while the supremum using ≥2,
that enables a dual definition of the erosion and the dilation. However, as noted by
Goutali et al. [48], imposing a total ordering on colors is not sufficient to get self-
dual morphological operators. From the color erosion and dilation operators, one can
get openings and closings and then self-dual morphological operators [53]. However,
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openings and closings defined this way are generally not idempotent. Indeed, we have to
ensure for any set of values that the minimum extracted by the erosion is the maximum
extracted by the dilation. Goutali et al. [48] proposed a solution to this problem but at
the cost of the loss of the duality property. The idea of having two different ordering
relations to extend the ToS to multivariate data seems difficult as it would imply to use
different relation for upper and lower sets.

rank transformations and space filling curves The distance-based order-
ing seen above belongs to a wider class of ordering methods based on rank transformation.
More formally, a rank transformation is a function Rn → N that maps a vector to a rank
position (so this is highly similar to the mapping h defined previously).

It has been shown that there is actually an equivalence between a total ordering on
Rn, a bijective mapping h, a rank transformation, and also space filling curves. In [74],
the authors proposed imposing a total order using a non-linear reduction of the color
space on a single dimension. Their approach based on manifold learning assumes that
two close points in the original high-dimension space are projected to close locations
and that local distances are preserved. They later introduced in [71] the ordering of color
patches. The same idea is used but the construction now involves the spacial relationship
and so the correlation between colors of two neighboring pixels is taken into account
when designing the ordering.

Another example of rank transformation is the bit-mixing ordering that uses the binary
representation of the vectors to deduce a single scalar value. The bits of the components
of the vector are sorted, most-significant bits come first, then the second bit of the
components. . . [34]

Rank transformation can also be interpreted in terms of space filling curves as they
yield curves in the high dimensional space that attains each value exactly once. As a
consequence, Z-filling curve, Peano curves. . . are also possible ways to define total vector
ordering. In [34], theses different approaches are compared in terms of the neighboring
conservation, i.e., we want to avoid high distance gaps between two consecutive values
in the order. This idea has been more recently retained by Chevallier and Angulo [35],
where they define their objective ordering relation as an optimization problem. They aim
at finding the permutation of values that minimizes the length of the curves that reach
every point of the co-domain (not the full value space). However, such an optimization
problem is difficult to solve and only an approximated solution can be computed.

4.3.3 P-orderings

Conditional and reduced orderings are the most used methods to impose a total order
on a vector space. For mathematical morphology, few authors relied on P-orderings. The
latter consists of clustering the vectors into groups so that they can then be ordered
according to their extremeness w.r.t. the rest of the data. Velasco-Forero and Angulo [126]
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rely on the random projection depth which assigns for each vector its degree of centrality
in the dataset and provides a “center-outward” ordering of the data.

4.3.4 The color “no free lunch” theorem

We have seen in section 4.3.2, methods that try to find a space filling curve minimizing the
irregularities along the path. However, the topology of a high dimensional space cannot
be reproduced on a single dimension. This is highlighted in [35], with the following
theorem:

Theorem 1. For any total order ≤ on Rn (n > 1).

∀R, r ∈ R+, ∃a, b, c ∈ Rn such that:

• a ≤ b ≤ c

• d(a, b) > R

• d(a, c) < r

A direct consequence of this theorem is that for any total ordering on a vector space,
there will exist two consecutive values with a large distance gap between them. This
theorem encourages the use of image dependant total order. However, if we now consider
the order computation as part of the morphological filter, it will lose the idempotence
property, as the ordering relation used for the first filter computation may not be the
same as for the second computation.

4.3.5 Local orderings and “pseudo”-morphological filters

Because of the consequences of theorem 1 (i.e., there does not exist a-priori any relevant
total ordering on a multi-dimensional value space), authors have been involved in
developing image content dependant ordering relations (see. sections 4.3.2 and 4.3.3).
This idea can be developed further by considering an ordering relation which is locally
dependant on the data. In [72, 73], authors impose a total order for each pixel, relying
only on the vector values in a spacial local window. Those values are represented as a
fully connected graph where edges are valuated with a distance color. Then, they aim
at extracting an Hamiltonian path (i.e., a linear order) from this graph using minimum
spanning trees. Yet, a drawback of a local ordering lies in that the fact that it does
not provide a partial ordering of the full value set; erosion and dilation lose important
algebraic properties (e.g. they do not commute with the infimum/supremum) that
prevent the construction of “real” morphological filters.
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4.3.6 Component trees processing based on total (pre)orders

Once a total order has been defined on values, computing component trees is straight-
forward. Any of the approaches described above can be used, even if most authors
have used the most “standard” methods to obtain the ordering. In [104], the max-tree is
computed on multiband images using the lexicographical order on the data where the
channels have been permuted w.r.t their signal to noise ratio. In [89], authors compare
lexicographical ordering and distance-based (pre)orderings with a marginal processing
in the context of image filtering and document binarization. Another comparison is
provided in [123], where the authors perform an evaluation of max-tree based image
compression. They compare some preorders either based on luminance, chromaticity or
saturation in different colorspaces.

While the construction of the tree is straightforward once the total ordering established,
the restitution phase is more challenging in the case of preorders. Indeed, when the
rank transformation is not injective, several vectors may map to the same value; thus a
node in the tree may be associated with several vectors. However, when filtering and
reconstructing with component trees (see. section 3.1.2), one has to select a single value
to set for the nodes that are removed. Naegel and Passat [89] proposed several restitution
strategies to solve this problem. It generally consists in choosing a representative value
based on the different vectors contained in a node.

pmean Each node is assigned to a representative value which is the mean vector.

pmedian Each node is assigned to a representative value which is the median vector
(the ordering relation is completed with a lexicographical cascade to ensure anti-
symmetry).

As noted by [123], those strategies tend to lower the quantization of the image even if
no filtering is performed. Pixels with an “equivalent” rank are altered and merge with
the same “color”. To overcome this issue, Tushabe and Wilkinson [123] proposed altering
only pixels that belong to nodes to be removed and keeping the others to their original
value. Theses are respectively referred as Mean of Parent (MP) and Median of Parent. They
also proposed two other restitution strategies:

nearest color (nc) A removed node gets assigned with the closest vector (in the

value space) from its own mean vector in the last surviving ancestor. The pixels from
non-filtered nodes keep their original value.

nearest neighbor (nn) A pixel in a removed node gets assigned with the value of
the nearest pixel (in the domain space) of the last surviving ancestor. The pixels from
non-filtered nodes keep their original value.

Note that the Pmean and Nearest Color strategies are subject to the “false color” problem
since the average vector may not exist in the original image spectrum. On the other hand,
the Nearest Neighbor strategy yields a “pseudo”-connected filtering as a removed node
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Figure 30: The different restitution strategies on the ToS when using a preorder on values.
The nodes with red borders are those to filter.

may be split and reconstructed with regions of different values. The later was motivated
by the authors who wanted to reach a filtering favoring a better image regularity with
smooth edges along the removed components. The different strategies are illustrated on
fig. 30 where data are ordered by luminance (so a preorder). The regions B1 and B2 have
the same rank so they belong to the same node in the ToS. With the Pmean strategy B1B2,
D and E are filtered with the same value (the average color of B1 and B2) while with the
MP rule, B1 and B2 remain unchanged. In both cases, a new color is introduced. This is
not the case with the NC and NN rules where B and E are filtered with the value b1 and
b2. We can also notice that on this scheme, the objective of the NN rule is reached, the
regions to remove have weak edges along their boundaries.
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4.4 conclusion

In this chapter, we have exposed the most well-known approaches to process multivariate
images with the ToS. We have seen that marginal processing is unsatisfactory as it yields
the management of multiple trees at the same time, and we do not have finally a single
structure representing the image. As a consequence, we have considered the vectorial
approach to extend the ToS through the imposition of a total order. We have shown
many strategies to impose a total order. Some of them try to impose an ordering on the
full value space, but we highlighted the fact that any ordering of this type will have
strong discontinuities. As a consequence, we have reviewed other types of ordering that
are image-dependant or locally-dependant but we also highlighted that if the ordering
computation is considered as a part of the process, usual self-dual morphological filters
based on them may lose important properties such as the idempotence, or the self-duality.
This motivates the claim that we would be better to find a way to extend the ToS to
multivariate images without trying to impose a total order on values.





5
C O M P O N E N T G R A P H S

In chapter 4, we have seen a classification of the methods imposing an ordering relation
on a vector space. Since a natural total order is not obvious, Passat and Naegel [102] were
the first to propose an extension of max-trees employing the M-ordering approach, that
is an ordering comparing the components channel-wise and yielding a partial order. As
a consequence, two values may not be comparable, components may overlap without
being nested. The underlying structure to process is no more a tree but a graph. In the
section 5.1 of this chapter, we recall the method extending max-/min- tree to partial order
proposed by Passat and Naegel [102] and show that it can be easily adapted for the ToS.
In section 5.2, we will also expose the way of processing these graphs and have a word
about the algorithmic complexity.

5.1 component trees extended to partial order

Let u an image from Ω→ F where F is endowed with an ordering relation ≤. We have
seen in section 3.1 that if ≤ is total, the sets of lower connected components Γ− or upper
connected components Γ+ form a tree. Now that ≤ is partial (we note it � now), two
components may overlap without being nested. As a direct extension of the definition
of the max-tree (resp. min-tree), [102] proposed to consider the Hasse diagram Ġ of the
cover of (Γ+,⊆) (resp. (Γ−,⊆)) which now forms a graph. If � is total, the component
graph is obviously equivalent to its component tree. The same idea can be applied to
extend the ToS as one just has to consider the cover of (S ,⊆) which also forms a graph.

[102] also proposed an alternative definition for the component graph G̈ which only
considers the connected components that are sup/inf-generators of u. More formally:

Γ̈+ =
⋃

λ∈F

{X ∈ CC([u � λ]) |
∧

u(X) = λ }

Γ̈− =
⋃

λ∈F

{X ∈ CC([u � λ]) |
∨

u(X) = λ }

From an algorithmic point of view, it simply consists in removing the “empty” nodes
from the graph Ġ. Note that in [102], the authors propose also a third graph where two
same connected components issued from two different threshold sets are represented
by two disjoint nodes in the graph. While this is useful as a matter of clarity and theory,
we do not consider this representation as it implies many redundancies and leads to a
representation which is not equivalent to component trees in grayscale.

39
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Figure 31: Example of ToS extensions using the approach in [102]. (b) is the first graph Ġ

using every possible cuts. (c) is the alternative graph G̈ using only sup/inf-
generating connected components.

In fig. 31, we show how this approach can be used to extend the ToS on multivariate
images. We use the same input image as in fig. 30 but now B1,B2,D and E all connect
to each other for the sake of the illustration. In the first definition of the extension,
nodes with “false” colors appear in the graph G (those in grays, see. fig. 31b). They
correspond to the supremum/infimum of the colors of connected components that are
not comparable. Those nodes are actually “empty” has they do not contain any proper
pixel that is not in one of their children. On the other hand, the second formulation
prevents the apparition of “false” colors in the graph G̈ as only cuts from value existing
in the original image are considered.

algorithmic and complexity considerations An early algorithm to compute
the component graph (in the context of extending min and max-trees) was proposed in
[90] and then corrected in [88]. As noted by the authors, algorithms used to compute the
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component trees on grayscale cannot be transposed to partial orders. An exception is if
the order has a particular lattice structure (namely a lower/upper piecewise total order),
where the component-graph is actually a hierarchy [103, 63]. The algorithm proposed by
Naegel and Passat [88] to compute Ġ is kind of “brute-force”:

1. Compute every connected component of every threshold set [u � λ] for all λ ∈ F,

2. Compute the graph of inclusion of the components,

3. Compute the transitive reduction of the graph.

If we consider the standard RGB space encoded on 24 bits, this implies testing every 224

cuts, which is computationally untracktable. In the special case of G̈, the authors propose
a dedicated algorithm that does not depend on the size of the value space [88]. Yet,
its complexity is still high (O(|Ω|2)), and the authors tackle the problem by processing
locally small patches and merging them back. While this is sensible for filtering, it is
not adapted for applications that need a representation of the full image (such as object
detection). In addition, this approach is not easily extendable to the ToS since connected
components need to be hole-filled first. A straightforward adaptation of the algorithm
would lead to a complexity O(|Ω|3).

5.2 processing the component graphs

As for grayscale component trees, the image can be reconstructed using the same formula
eq. (3.1) for min- and max- component graphs and eq. (3.3) for the graph extension of
the ToS. Equivalently, the same filtering strategies exposed in section 3.2.3 are available
for the component graph. However, as a node may now have several parents, the min
strategy is ambiguous. In [102], it is declined in two strategies:

min1 A node is kept if it passes the criterion and all the path from this node to the root
are “alive”.

min2 A node is kept if it passes the criterion and there exists an “alive” path from this
node to the root.

The fact that a node may have several parents yields another problem with the recon-
struction from a filtered tree. Consider Γ the initial set of components/shapes, Γ′ ⊂ Γ the
set of components/shapes in the filtered graph, and the operator ∩CC(A, B) = CC(A∩ B)

which returns the connected components of the intersection of two components. Then,
Γ∪ {∅} is stable w.r.t ∩CC (i.e., ∀A, B ∈ Γ, ∩CC(A, B) ⊂ Γ), while Γ′ ∪ {∅} is not. In other
words, a point may belong to several nodes. Naegel and Passat [90] tackle the problem
with a coherence recovery step which consists of adding in Γ′ some nodes of Γ until
reaching the stability in Γ′. This is illustrated in fig. 32. The node F has a single “alive”
parent, so the restoration process is the same as for the component trees. It takes the
value of its parent. On the other hand, the nodes D, E and DE have two “alive” parents,
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we have a conflict with the value to propagate. The coherence recovery steps aim at
recovering the highest nodes such that the reconstruction could be performed.

Even if the filtering with component graphs is O(N) where N is the number of nodes,
the coherence recovery process adds an extra-complexity compared to trees. In addition,
the computation of attributes is not as trivial. Attribute computation is a bottom-up
incremental process and one has to ensure that a node will not be counted twice when it
has several paths leading to the root.
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Figure 32: Coherence recovery with component graphs. Left: original component graph,
red nodes are the ones to remove. Middle: graph after the coherence recovery
step, green nodes are the recovered ones. Right: image reconstruction.

5.3 conclusion

In this chapter, we have exposed the innovative approach proposed by Passat and Naegel
[102] to extend the min- and max-trees to partial order so that we do not have to choose a
particular total order. We have shown that the same principle could be apply to extend the
ToS. However, because the ToS is based on hole-filled components, it requires extrawork
and the algorithms they propose cannot be adapted easily. In addition, those algorithms
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are so computationally expensive that it compels the authors to process the image by
patches. The latter has an important disadvantage for applications that require having
a representation of the full image. We also highlighted a second disadvantage of the
method in that it produces a graph and no longer a tree. Some basic processing that is
simple with trees becomes more tricky with graphs, such as the incremental computation
of attributes or the filtering that requires an extra coherence recovery step. Moreover, the
existing morphological state-of-the-art methods about object detection, simplification,
etc., are dealing with trees. This point justifies the claim that we would better have a tree
to process than a graph.





Part II
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6
T H E M U LT I VA R I AT E T R E E O F S H A P E S ( M T O S )

As seen in section 3.2, the ToS [32, 28] is a hierarchical representation of the image
in terms of the inclusion of its level lines. Its power lies in the number of properties
held by this structure that one would need for efficient image processing and computer
vision as discussed in [21]. Indeed, some authors have already used it successfully for
image processing and computer vision applications. In [43, 13, 139, 142], authors use
an energy optimization approach on the ToS hierarchy for image simplification and
image segmentation while in [21] relies on an a-contrario approach to select meaningful
level-lines. Other applications include blood vessel segmentation [144], scene matching
extending the MSER through the Maximally Stable Shapes [28] and the Tree-Based Morse
Regions [143], image registration [28], multispectral image classification [33]. . . for which
it competes with the state-of-art methods in their respective field. Apart from being
effective, the most remarkable things about the ToS are its versatility and its simplicity.
We have cited some examples of applications involing the ToS which spread over the
whole domain of the computer vision, but we did not yet say a word about the way of
processing this tree. The abstraction offered by the ToS enables us to perform advanced
image processing tasks in a simple way [26]. For example, an image simplification can
be performed by selecting or removing some nodes and a denoising by pruning some
branches of the tree as seen in section 3.2.3.

It is not so much a surprise that the ToS achieves such good results, but it is rather due
to the mathematical properties held by the representation [20]. The ToS is the support for
self-dual, contrast invariant and morphological connected operators.

• First, it is a morphological representation based on the inclusion of the connected
components of the image at different level of thresholding. As such, a basic filtering
of this tree is a connected filter that is an operator that does not move the contours
of the objects but only keep or remove some of them [112].

• Second, it is invariant by any contrast change. Yet it is not invariant to illumination
change but robust to local change of contrast as we expect the level lines to remain
globally the same. This property is very desirable in many computer vision applica-
tions where we face the change of illuminantion problem e.g. for scene matching,
object recognition. . . In fig. 33b, we show this invariance by simulating a change of
illuminantion directly in the ToS; so we have the exact same tree representation as
for the original image in fig. 33a.

• Third, besides being contrast change invariant, the ToS is also a self-dual repre-
sentation of the image. This feature is fundamental in a context where structures

47
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may appear both on a brighter background or on a lighter one. Therefore, auto-
dual operators are particularly well-adapted to process images without apriori
knowledge on the content disposition. While many morphological operators try
to be self-dual (e.g. Alternating Sequential Filters) by combining extensive and
anti-extensive operators, many of them actually depend on the processing order
(i.e., on which filter comes first). Self-dual operators have the ability to deal with
both dark and light objects in a symmetric way [53, 117] (see fig. 33b).

• Fourth, it allows a multiscale analysis of the same. Contrary to many key point
detectors (e.g. Harris corners detectors. . . ) which are highly local (thus the need
for a scale space in the SIFT method), the level lines (thus the shapes) are more
global as they are closed curves that can spread on the whole image. Multiscale
analysis is also very simple and efficient since it is encoded through the inclusion
of the level lines embedded in a tree structure which is both fast to compute and
easy-to-process [46, 140]. In fig. 33c we show that the level lines of the same object
taken from different views (different scale and different illumination) correspond.

• Last but not least, the level lines fit the object boundaries as they are located
everywhere in the image, tangent to the gradient. Contrary to many key-point
detectors which rely on local information, level lines may be large Jordan closed
curves that spread over the entire image. It is thus well-adapted for scene analysis
and content extraction.

While the ToS is well-defined on grayscale images, it is getting more complicated with
multivariate data. Indeed, like most morphological trees (e.g. min and max-trees), the ToS
relies on an ordering relation on values which has to be total. If it is not, the definition
based on lower and upper cuts yields components that overlap and the inclusion tree is
ill-formed.

However, the problem of correctly handling multivariate data is of main interest, since
they arise in many image processing fields. The most well-known example is the sensitive
color processing of natural images, but many other types of images are multivariate:
satellites provide multispectral or hyperspectral images with hundreds of bands, medi-
cal processing provide multimodal images acquired by several devices. . . Therefore, to
overcome this problem, most authors have been focusing on defining a total order on
multivariate data as exposed in chapter 4. However, from our point of view, the most
important concept in morphological trees lies the inclusion of shapes. As a consequence,
we introduce a novel approach which does not intend to build a total order, but tries
to build up a set of non-overlapping shapes from an arbitrary set of shapes using the
inclusion relation only.

This chapter is organized as follows. In the section 6.1, we explain the main lines of
the method extending the ToS to handle multivariate data. In section 6.2, we expose
the Graph of Shapes (GoS) as a structure merging several ToS’s, and in section 6.3, we
explain how we compute a tree from it.
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(a) A film cover and its meaningful level lines extracted with the MToS. Level lines are selected
using the Maximum Stability criterion (as for the MSER) and colorized w.r.t their level of
inclusion.

(b) On the need for contrast change/inversion invariance. The original image has been subjected
to a global marginal inversion and/or change of contrast (left) and to a local change of contrast
(right). They give the same MToS, so the same level lines depicted in (a).

(c) A different view of the image (a). The level lines are selected with same method and globally
match the ones of (a).

Figure 33: Robustness of the level lines w.r.t tranformations in the value space (b) and
the domain space (c).
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6.1 method overview
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Figure 34: The 5-step process of the proposed method. (1) The input image u is decom-
posed into individual channels u1, u2, . . . un, for which the ToS’s are computed,
(2) the ToS’s are merged into the GoS G (2), an algebraic attribute is computed
on G and, (4) yields a scalar attribute map ω, (5) a final tree is built upon ω.

In section 3.2, we gave the definition of shapes for gray-level images as hole-filled
connected components from lower and upper threshold sets of u. Let us first relax
this definition. A shape X is a connected component of Ω without holes (i.e., such that
H(X) = X).

Given a family of shape sets, namelyM = {S1, S2, . . . , Sn}, where each element (Si,⊆)
forms a tree, we note S =

⋃ Si the initial shape set. Note that (S ,⊆) generally does not
form a tree but a graph since shapes may overlap. We aim at defining a new set of shapes
S such that any two shapes are either nested or disjoint. We do not constrain S ⊆ S , i.e.,
we allow the method to build new shapes that were not in the original shape set. We
note T : RnΩ → (P(P(Ω)),⊆) the process that builds a tree of shapes (S(u),⊆) from
an image u ∈ ΩRn

.
The method we propose is a simple 5-step process which consists basically in two

parts depicted in fig. 34. The first part is the construction of a GoS from ToS’s computed
marginally on each component (steps 1–2). The second part aims at deducing the tree
from the GoS and consists in computing a tree over an image reconstructed from an
attribute valuated on the GoS (steps 3–5).

6.2 the graph of shapes (gos)

First u is decomposed into its individual channels u1, u2, . . . , un for which the ToS’s
T1, T2, . . . , Tn are associated with the shape sets S1, S2, . . . , Sn. Let S =

⋃ Si, we call
the GoS G the cover of (S ,⊆), i.e., it is the inclusion graph of all the shapes computed
marginally.
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Figure 35: Comparison of the GoS G with component graphs Ġ and G̈.

By starting with computing the marginal ToS’s of u, we have an initial shape set.
The trees provide a representation of the original image and u can be reconstructed
marginally from them. However, handling multiple trees is not straightforward. The
trees themselves lack some important information: how the shapes of one tree are related
(w.r.t. the inclusion) to the shapes of the other trees. The graph G is nothing more
that these trees merged in a unique structure that adds the inclusion relation that was
missing previously. As consequence, G is “richer” than {T1, . . . , Tn}, and because the
transformation from {T1, . . . , Tn} to G is reversible, G is a complete representation of
u; i.e., u can be reconstructed from G. Indeed, this is a component-wise restitution, i.e.,
ũ(x) = (ũ1(x), . . . , ũn(x)) where ũi(x) is given by eq. (3.3) based on the shape set Si.
In addition, G is also a self-dual and a contrast invariant representation of u because
{T1, . . . , Tn} are.

6.2.1 Differences with component graphs

In chapter 5, we have introduced an extension of the ToS to partial order in the same
way that Passat and Naegel [102] did with component-graphs for min- and max-trees.
The GoS G is different from them as illustrated in fig. 35. Ġ is actually finer than G
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A B Ω

A B

G

Figure 36: A GoS that is an invalid morphological tree. Left: two marginal shapes from
red and green channels are overlapping. Right: The corresponding Graph of
Shapes (GoS) G. The points of A ∩ B belong to both nodes A and B, so the
tree G is not valid.

as any lower marginal cut can be obtained from [u � (⊤, . . . ,⊤, λi,⊤, . . . ,⊤)] (and
upper marginal cuts as well). The shapes of G is thus a subset of the shapes of Ġ. On
the other hand, G seem unrelated to G̈ which is only composed of the shapes that are
inf/sup-generators of u. G has a strong interest from a computational point of view
because, contrary to Ġ and G̈, G can be computed efficiently by merging the marginal
ToS’s built on individual channels.

Note also that with “standard” morphological hierachies (min-/max- trees) and their
extension (the component-graph [102, 103]), for any point x, there exists a single smallest
component that contains x. As a consequence, a point belongs to a single node in the
structure. In the GoS, a point may belong to several nodes. For example, in fig. 36, the
points in (A ∩ B) belong to both nodes A and B, but (A ∩ B) does not exit as a node
in any marginal tree. This leads to a weird paradox, even if the GoS is actually a tree,
it is not a valid morphological tree. Thus, we cannot just extract a tree (e.g. with the
minimum spanning tree) from the GoS as it would not be valid.

6.3 computing a tree from the graph

The second part of the method tries to extract a tree from G. Let ρ : P(Ω) → N be an
algebraic decreasing shape attribute, i.e.,
∀A, B ∈ S , A ⊂ B⇒ ρ(A) > ρ(B)

We will discuss in the next section how we choose ρ and why we consider the depth

attribute. The depth of a shape in G is the length of the longest path of a shape A from
the root. Let ω : Ω→ R defined as:

ω(x) = max
X∈S ,x∈X

ρ(X) (6.1)

The map ω associates each point x with the depth of the deepest shape containing x

. Let C =
⋃

h∈R CC([ω ≥ h]). (C,⊆) is actually the max-tree of ω. Finally, we consider
S = H(C) and (S,⊆) as the final MToS Tω. The method is illustrated in fig. 37 where a
two-channel image has overlapping shapes from red and green components. The ToS’s T1

and T2 are computed marginally and merged into the GoS G for which we compute the
depth of each node (fig. 37b). Those values are reported in the image space, pixel-wise
(fig. 37c). This is this step at which we decide which shapes are going to merge; here B
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Figure 37: The method illustrated on an example.

and D are set to the same value. This choice is based on the level of inclusion and no
longer on the original pixel values. Eventually, the max-tree of the depth map is built
and yields the final MToS. In this example, the maxtree of ω gives valid shapes. However,
because C may form components with holes, the hole-filling ensures those components
are valid as shown in fig. 38.
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Figure 38: On the need for hole-filling. (a) Original 2-channel image. (b) The GoS G

valuated with depth. (c) Depth map ω reconstructed from G. (d) Maxtree of ω

without cavity filling. (e) Maxtree of ω with cavity filling. In (d), the max-tree
gives the shape A∪ B that has a hole, so we need the hole-filling step to ensure
valid shapes (e).

Let us now explain the rationale of this part. The main objective was to get a new set
of shapes from G that do not overlap. The first observation is that for any decreasing
attribute ρ, then (S ,⊂) is isomorphic to (S,R) where AR B ⇔ ρ(A) > ρ(B) and
A ∩ B 6= ∅. This just means that the inclusion relationship between shapes that we want
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to preserve can be expressed in terms of a simple ordering relation on R with the values
of a decreasing attribute. Suppose now that (S ,⊂) is a tree and consider the image
ω(x) = maxx∈X,X∈S ρ(x), we thus have C = {CC([ω ≥ h]), h ∈ R} = S . In other words,
the max-tree of w reconstructed from ρ valuated on a tree T yields the same tree. More
generally, if a shape A does not overlap any other shape, it belongs to CC([ω ≥ h]).

6.3.1 Image reconstruction from the MToS

Whereas G is a complete representation of u, the ToS is not, so u cannot be reconstructed
from it. Indeed, the tree construction process merges some marginal shapes (in the most
sensible way as possible). Consequently a node of the final tree gets associated with
multiple values of u. Actually this problem is not new; we already faced it in section 4.3.6
when extending the min- and max- trees with a total preorder, where the loss of the
anti-symmetry implies that some “equivalent” values belong to the same node. As a
reminder, we have seen that Naegel and Passat [89], and later Tushabe and Wilkinson
[123], have introduced some reconstruction strategies to solve the assignment problem.
The main idea is to associate to a node a single value computed from the set of values it
contains. For example, in [89] the authors proposed to assign the average vector or the
median vector to the node. In [123], the same principle is applied but only to the pixels
that belong to the nodes that are filtered out; the values of the other pixels remained
unchanged. The authors also proposed two others strategies, assigning the closest pixel’s
value from the last surviving parent, where “closest” can be interpreted in the value
space (1st strategy) or in the domain space (2nd strategy). The interested reader is referred
to those papers and to section 4.3.6 for more details. Unless otherwise specified, in part iii,
to reconstruct an image from a MToS, we use the strategy that assigns to each node the
average vector value from the original image.

6.4 choosing a sensible ρ function

The 3rd step of the method involves choosing an attribute to be computed over the GoS
G. This is a critical step since it decides afterward which shapes are going to be merged
or removed.

6.4.1 Level-Lines as a Distance Problem

Consider the distance between two points (p, p′) in Ω:

dTV(p, p′) = min
C(p,p′)

∫ 1

0
|∇u(C(t)).Ċ(t)| dt, (6.2)

where C(t) is a path in Ω from p to p′. Equation (6.2) is actually the minimum total
variation (TV) along a path between p and p′. This measure has been used by Dubrovina
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Figure 39: Equivalence between the level lines of a gray-level image u and the level lines
of the distance maps ωTV and ωCV.

et al. [44] for segmenting where the ToS is used as a front-end to compute efficiently the
level set distance. Let ωTV(x) = dTV(∂Ω, x) be the Total Variation distance map from the
border. This distance map can be computed using a simple decreasing attribute on the
ToS by summing the variations from the root to the nodes. Then, instead of considering
the tree T of u level lines, one can consider the max-tree Tω of equidistant lines. Both are
equivalent in gray-level (by prop. 5).

The problem with the Total Variation metric lies in that it depends on u, i.e., ωTV is not
contrast invariant. A contrast invariant counterpart would be to only count the number
of variations, i.e., the minimum number of level lines to traverse to get p:

dCV(p, p′) = min
C(p,p′)

∫ 1

0
1{∇u(C(t)).Ċ(t)} dt. (6.3)

Algorithmically speaking, building ωCV consists of computing the depth attribute
ρCV(A) = |A↑| and reconstructing ωCV(x) = max

X∈S ,x∈X
ρCV(X). This process is shown in

fig. 39.

6.4.2 Distance Map with Multivariate Images

Based on the equivalence between level lines and equidistant lines in gray levels, one can
produce a distance map for multivariate images. As with eq. (6.3) the idea is to count
the number of marginal level lines to traverse. Depending on the way we count the level
lines, the distance map may have several semantics:
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Figure 40: Differences between D1, D2, D3 for the distance map computation.

d1 : ωCV(x) = |X ∈ S , x ∈ X| − 1
Count the minimal number of marginal level lines we need to traverse to get x from
the border.

d2 : ρ(A) = |A↑| and ωCV(x) = max
X∈S , x∈X

ρ(X)

Count the number of marginal level lines to traverse to get the deepest shape that
contains x.

d3 : ρ(A) = max
φ∈ [Ω A)

|φ| and ωCV(x) = max
X∈S , x∈X

ρ(X)

where [Ω  A) stands for the set of paths from the root to A in G. It counts the
number of marginal level lines that are nested to traverse to get the deepest shape
that contains x.

These measures can be computed efficiently from G using basic graph algorithms (e.g.,
shortest path algorithm for D3 and ancestors counting algorithms for D1 and D2). The
differences between them are shown in fig. 40. While, the D2 and D3 distances yield a
union of shapes only, the D1 distances enables getting both union and intersection of
shapes. However, in practice, they define similar shape sets that differ essentially for very
small components (i.e., at the noise level) as shown in fig. 41. Indeed, figs. 41d to 41f show
that the level lines of the distance maps computed with the three measures are quite
similar and they agree with the level lines of the gray level version of the original image
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(a) Original image (b) Level lines of the TV dis-
tance computed on a gray
level version of (a)

(c) Distance map computed
with a Dijkstra-like algo-
rithm.

(d) ω map computed with D1 (e) ω map computed with D2 (f) ω map computed with D3

Figure 41: Distance maps computed with D1, D2, D3 on a practical example. Distances
are shown with the heat LUT for a better understanding. While (d), (e), and (f)
give a set of level lines that agree with (b), (c) does not.

(fig. 41b). As a consequence, for the illustrations in part iii, we consider the distance D3

as it is the fastest to compute. Note that it might be tempting to compute the distance
map ω using a more conventional shortest-path algorithm, however it has been shown
by Dubrovina et al. [44] that it cannot be used reliably to compute level line distance
due to topological issues. It would yield a totally different set of level lines that do not
represent correctly the image content. In fig. 41c, we show the level lines of the distance
map using the Dijkstra shortest path algorithm. As one can see, it gives a totally different
set of level lines and fails in retrieving the level line surrounding the plane.

6.5 selecting shapes by priority

We have previously introduced operators that create new shapes by merging some
marginal shapes. Consider now we want to restrict ourselves to existing marginal shapes
and prevent the creation of new shapes. Rather we want to keep the largest subset S ′ ⊂ S
of the most “important” ones such that (S ′,⊆) forms a tree. The “importance” of a shape
being given by a priority function p : S → R, where a low value stands for a higher
priority.
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Consider the example in which we want to select every red shape, then every green
shape that does not overlap a red shape and so on with the blue shapes. . . . The underlying
priority function is:

p(A) = min{i ∈ N | A ∈ Si} (6.4)

i.e., we give a priority “1” for shapes in the first tree, “2” for shapes in the second tree,
and so on. Any other priority function can be used but it has to be contrast invariant
if we want the final representation to be contrast invariant as well (any shape attribute
would make the deal such as the elongation, the curvature, etc.).

Consider first d : S → Nn defined as:

d(A) = (|{X ∈ S1, A ⊆ X}|,
|{X ∈ S2, A ⊆ X}|,
· · · ,

|{X ∈ Sn, A ⊆ X}|) (6.5)

In other words, given the ith tree, di(A) is actually the number of shapes from it which
each contain A.

Proposition 1. Consider the product order � on Nn defined as:

a � b⇔ ∀i, ai ≤ bi (6.6)

And the partial ordering relation ≺S on S s.t.

A �d B⇔ A ∩ B 6= ∅ and d(A) � d(B) (6.7)

Then (1) d is an homomorphism from (S ,⊆) to (Nn,�) and (2) (S ,⊆) is isomorphic to

(S ,�d).

Proof. 1. Let A and B be two shapes. If A ⊆ B, then any other shape containing B also
contains A, thus ∀i, di(A) ≥ di(B) and: A ⊆ B⇒ d(A) � d(B).
2. We need to proove that A ⊆ B⇔ A �d B. The⇒ is straighforward by (1).
Now we proove that A �d B ⇒ A ⊆ B by contradiction. Suppose A �d B and A * B.
We assume that A ∈ Si and B ∈ Sj. If i = j, A and B belongs to the same tree Ti thus A

and B are either nested or disjoint. Since A ∩ B 6= ∅ and di(A) ≥ di(B), it contradicts
A * B. Consider now the case where i 6= j. We note SA

j = {X ∈ Sj, A ⊆ X}. The shapes

of SA
j and SB

j are either nested or disjoint. Since A ∩ B 6= ∅ and dj(A) ≥ dj(B) then

SA
j ⊇ SB

j . Since B ∈ SB
j but A * B then B 6∈ SA

j . That contradicts SA
j ⊇ SB

j and finishes
the proof.

Let SA
vlap denote the set of of shapes which overlap A:

SA
vlap = {X ∈ S | A ∩ X 6= ∅, X 6⊂ A, A 6⊂ X}

= {X ∈ S | A ∩ X 6= ∅, d(X) ⊀ d(A), d(X) ⊁ d(A)}
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We are actually interested in those shapes of lower priority. We denote p′(A) the lowest
priority of the shapes that overlap A:

p′(A) = min
X∈SA

vlap

p(X)

And finally we can define the shape selection by priority operator ρ : S ⇒ Nn:

ρ(A) =

{
d(A) if p(A) ≤ p′(A)

⊥ otherwise

Proposition 2. For any two shapes A 6= B ∈ S , either A ∩ B = ∅ or ρ(A) � ρ(B) or

ρ(B) � ρ(A)

Proof. Suppose A ∩ B 6= ∅.
If A ⊂ B or B ⊂ A we have either ⊥ � d(A) � d(B) or ⊥ � d(B) � d(A) thus
ρ(A) � ρ(B) or ρ(A) � ρ(B). Otherwise A and B overlap without being nested, thus
ρ(A) = ⊥ or ρ(B) = ⊥ and then, ρ(A) � ρ(B) or ρ(B) � ρ(A)

Proposition 3. The maxtree of ω(x) =
≺

max
X∈S ,x∈X

ρ(X) only contains the shapes of highest priority

that do not overlap.

Proof. Consider the set of shapes S ′ = {A ∈ S | ρ(A) ≻ ⊥} ∪ {Ω}. Then, ∀A, B ∈ S ′,
ρ(A) � ρ(B)⇔ d(A) � d(B). We define the relation �ρ on S ′ as in eq. (6.7) replacing d by
ρ. It follows that (S ′,�ρ) is isomorphic to (S ′,�d) and by prop. 1, (S ′,⊆) is isomorphic
to (S ′,�ρ). By prop. 2, it follows that (S ′,⊆) and (S ′,�ρ) form a tree. By prop. 5, the
max-tree of ω is (S′,⊆).

6.6 conclusion

In this chapter, we have introduced a novel approach to extending the ToS to multivariate
data. This novelty lies in the fact that we do not rely on any total ordering on values.
Instead, we proposed merging the level lines issued from several ToS’s computed on
each component marginally. The way of merging those level lines is not dependant on
their values but rather on their level of inclusion through a structure called the GoS.
Instead of merging shapes, we have also introduced a way to select a set non-overlapping
shapes given a priority criterion. In the next chapter, we will prove that trees generated
by the proposed method meet some important criteria such as the marginal contrast
change/inversion of contrast.
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P R O P E RT I E S O F T H E M T O S

In chapter 6, we have introduced a method, the MToS, to extend the ToS to multivariate
data. We also highlighted some properties of the ToS that we would extend to the MToS:

• the invariance to the change of constrast,

• the invariance to the inversion of contrast (self-duality),

• the support for connected operators.

A transformation ψ is said to be contrast change invariant if given a strictly increasing
function g : R → R, g(ψ(u)) = ψ(g(u)). Moreover, the transformation is said to be self-

dual if it is invariant w.r.t. the complementation, i.e., ∁(ψ(u)) = ψ(∁(u)) (for images with
scalar values ∁(u) = −u). When ψ is both self-dual and contrast change invariant, then
for any strictly monotonic function G (i.e., either strictly increasing or decreasing), we
have G(ψ(u)) = ψ(G(u)). The ToS is actually a support for many self-dual morphological
operators and a representation T is said to be self-dual and morphological if T(G(u)) =

T(u).
In this chapter, after a recall of topological considerations about the ToS in section 7.1,

we are going to prove in section 7.2 that the method T, producing the MToS T(u) =

(S(u),⊆), has the following properties:

(p0) Well-formed tree On “classical” images (not synthetic), the tree has a sufficient height
and a sufficient number of nodes. In other words, it produces a tree which is
topologically similar to the “classical” ToS.

(p1) Domain covering
(⋃

X∈S(u) X
)
= Ω

(a point belongs to at least one shape)

(p2) Tree structure

∀X, Y ∈ S(u), either X ∩Y = ∅ or X ⊆ Y or Y ⊆ X

(any two shapes are either nested or disjoint)

(p3) If a shape X ∈ S verifies:

∀Y 6= X ∈ S , X ∩Y = ∅ or X ⊂ Y or Y ⊂ X

then X ∈ S(u) (any shape that does not overlap with any other shape exists in
the final shape set). A corollary of this property is the scalar ToS equivalence. If
M = {S1} then S(u) = S1, i.e., for scalar images the tree built by the method is
equivalent to the graylevel ToS.
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(p4) Marginal contrast change/inversion invariance.

Let us consider G(u) = (G1(u1), G2(u2), . . . , Gn(un)), where Gi is a strictly mono-
tonic function, then T is invariant by marginal inversion/change of contrast; that is,
T(G(u)) = T(u).

7.1 topological considerations

First Shape

Second Shape

Border

Figure 42: Shapes on the cubical grid (here the 2D square grid).

Throughout this paper, we assume that the image has its domain on a cubical grid that
allows continuous properties while staying on a discrete space. The algorithm proposed
by Géraud et al. [46] to compute the ToS in grayscale uses this representation as well and
more advanced details about topological properties with this grid can be found in [94].
We simply recall basic notions that will be necessary for the proofs in this chapter. We
denote KΩ the domain Ω immersed on the cubical 2D grid. Previously, as a matter of
clarity, we have denoted Ω the domain of the image, but KΩ was always assumed. In
fig. 42, original pixels are represented by 2-faces (large square) and intermediate pixels
are added (1-faces and 0-faces). In the ToS, a shape A is an open set on the grid and may
be composed of 0, 1 and 2-faces. In fig. 42, red and green elements represent two disjoint
shapes A and B. On the other hand, the border of a shape is composed of 0 and 1-faces
only (red elements). Shape boundaries are the actual level lines of the image. We denote
∂A, the border of the set A and Ā = A ∪ ∂A the closure of A. Note that in the tree of
shapes, two shapes are either nested or disjoint but Ā and B̄ may overlap as shown in
fig. 42.

Proposition 4. Let a shape A ∈ S , and x ∈ ∂A, then ∀X ∈ S , x ∈ X ⇒ X ∈ A↑.

Proof. Suppose x ∈ ∂A, and a shape B ∈ S such that x ∈ B. Then, B is an open set, so it
contains the 2-face in A adjacent to x and B ∩ A 6= ∅. Two shapes being either disjoint
or nested, we have B ⊆ A or A ⊆ B. Since x ∈ B but x /∈ A, it follows that A ⊆ B and
B ∈ A↑.
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7.2 proof of correctness

We now prove that the MToS construction process meets the properties given at the
beginning of the chapter.

Proposition 5. Given a set of shapes S where any two shapes are either disjoint or nested ((S ,⊆)
is a tree) and a strictly decreasing attribute ρ then C = S

Proof. (⇒) Let a shape A ∈ S . ∀x ∈ A, we have:
ω(x) = ( max

X∈S ,x∈X
ρ(X)) ≥ ρ(A)

Let now, x ∈ ∂A, ∀X ∈ S , x ∈ X, we have A ⊂ X (by prop. 4), thus ρ(X) < ρ(A) and
ω(x) < ρ(A). It follows that A ∈ CC([ω ≥ ρ(A)]) and A ∈ C.
(⇐) Let A ∈ P(Ω), A 6∈ S , we note SES(A) the smallest enclosing shape that includes A.
Suppose now that A ∈ C, then ∃λ ∈ R, A ∈ CC([ω ≥ λ]). Let α ∈ R, α = minx∈A ω(x),
then λ ≤ α. Yet,

α = min
x∈A

ω(x) = min
x∈A

max
X∈S , x∈X

ρ(X)

= min
X∈S , A∩X 6=∅

ρ(X)

= ρ(SES(A))

Thus, A ∈ CC([ω ≥ λ]) with λ ≤ ρ(SES(A)). But, since A ( SES(A) and A, SES(A) ∈
C then λ > ρ(SES(A)) which contradicts λ ≤ ρ(SES(A)). Therefore, A 6∈ S ⇒ A 6∈ C

A direct consequence of prop. 5 is that given a ToS T and the max-tree Tω of the image
ω reconstructed from a decreasing attribute ρ over T , then Tω = T .

Proposition 6. The method provides a tree Tω that verifies the property (P1), (P2), (P3), and

property (P4) if ρ is a pure algebraic attribute (it does not depend on the values of u).

Proof. (P1) and (P2) are straightforward because the 5th step consists in computing a
max-tree with hole-filled components on a scalar image ω. The shapes of the hole-filled
maxtree being a subset of the shapes of the ToS of ω, it follows that any two shapes are
either nested or disjoint.
(P3) With the same proof as in prop. 5, we show that ∀A ∈ S , if ∀B ∈ S , A ∩ B = ∅ or
A ⊆ B or B ⊆ A, then A ∈ C and A ∈ S.
(P4) A marginal tree Ti only depends on the ith channel, thus it is invariant w.r.t. to uj

(j 6= i). By property of the ToS, Ti is contrast change/inversion invariant w.r.t. ui. It follows
that every Ti is marginally invariant w.r.t. u and so does the set of shapes S to build the
graph G. Since the rest of the process only depends on the graph topology and no more
on the values of u, Tω is thus marginally contrast change/inversion invariant.

Proposition 7. The method provides a tree Tω which is well-formed (P0).
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Image Size #nodes Avg. depth Max depth

airplane 262k 81k / 129k 75 / 78 234 / 197

baboon 240k 89k / 129k 41 / 63 95 / 127

barbara 414k 141k / 228k 64 / 136 203 / 306

boats 453k 119k / 208k 83 / 163 232 / 295

goldhill 414k 123k / 240k 58 / 105 223 / 295

house 65k 22k / 35k 36 / 77 154 / 175

lenna 262k 69k / 161k 40 / 59 148 / 193

pepper 262k 102k / 200k 43 / 117 148 / 291

Table 1: Tree statistics comparison on well-known test images between the ToS on the
gray-level image (left side of the columns) and the MToS on the color image
(right side of the columns).

To verify the property (P0), we have computed some statistics about the tree topology
on some classical images. In table 1, we show the number of nodes, the average node
depth and the height of the MToS compared to the ToS computed on the gray level
version of the image. The number of nodes in the MToS is 50% to 100% higher than in the
ToS that highlights a better precision. Moreover, the average depth of the nodes (as well
as the height of the tree) increases significantly meaning that we do not just add some
leaf nodes (noise) but rather, some large shapes that increase the shape inclusion chains.

7.3 conclusion

In this chapter, we have proven that the process exposed in chapter 6 builds the MToS
which statisfies the desired properties; that is: a hierarchical structure, organizing hole-
free connected components in terms of inclusion, which is invariant to any marginal
change or inversion of contrast. We have seen that those properties are of main interest in
a context requiring a certain robustness to a change of illumination or a change of scene
view since these properties should ensure that the topology of the tree remain globally
the same in those cases. Yet, we have not discussed the properties of reconstruction
from the MToS. Since the image cannot be recovered from the MToS, one can wonder
which restitution strategy would ensure a idempotent filtering? Indeed, we have seen in
section 3.2, that depending on the filtering strategy, the reconstructed image may not
correspond to the tree from which the reconstruction was based. Here, the problem
is even harder. Since many values might be associated with a single node, we have to
construct a rule for selecting the filtering values when nodes are removed. The questions
about the properties of the restitution are thus postponed as a further work.
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M T O S C O M P U TAT I O N A L G O R I T H M

In chapter 6, we have introduced a two-step process to compute the MToS. The first
step requires the computation a new structure called the Graph of Shapes (GoS). The
second consists of computing a tree from the graph. In this chapter, we will introduce
the algorithms involved in those two steps in section 8.1 and section 8.2. Eventually, in
section 8.3, we will discuss the complexity of those algorithms.

8.1 computing the graph of shapes

To start with, we have to compute the ToS’s on each channel independently. We rely
on the algorithm of Géraud et al. [46] and we use the same tree encoding as they do.
That is, a ToS is encoded through a parent image where the parent relationship denotes
the inclusion of shapes. A shape is actually represented by a single point, namely the
canonical element. This point serves as the parent for all other points of the shape. We
suppose the function getCanonical(x) that returns the canonical element of the node that
contains x.

In the following, lowercase symbols (e.g. x, y, p, . . .) denote points in Ω while uppercase
symbols (e.g. A, B. . . ) denote points that are canonical elements. By abuse of notation,
we let A denote three things: the shape (element of P(Ω)), the tree node (the elements of
A that are not in a sub-shape) and the canonical element (element of Ω) that represents
A.

A straightforward algorithm to compute G would be to test inclusion of shape of one
tree with every shape of the other tree to get the graph of inclusion and then perform its
transitive reduction. It would lead to a complexity of O(n3). This complexity can drop
to n2 by pre-computing the Smallest Enclosing Shape (SES) of every shape in every tree
using dynamic programming that enables removing the transitive reduction of the final
graph.

Finding the Smallest Enclosing Shape of A in a shape set S , i.e.,

SES(A) =
⊆∧
{X ∈ S , A ⊆ X}

can be formulated as a well-known Least Common Ancestor problem on lattices. Indeed,
the smallest enclosing shape of A is the least common ancestor of all p ∈ A. Moreover,
since SES(A ∪ B) = LCA(SES(A), SES(B)), a dynamic programming formulation of the
problem exists and enables a fast recursive computation on trees:

SES(A) = LCA(SES(C1), . . . , SES(Ck), x1, . . . , xk′) (8.1)
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Algorithm 1: Least Common Ancestor
Input: A, B: two shapes in Si

Output: The least common ancestor of A, B in Ti

Data: par The parent image encoding Ti

depth The depth attribute on Ti

if A = NULL then return B;
if B = NULL then return A;
while depth(A) < depth(B) do B← par(B) ;
while depth(B) < depth(A) do A← par(A) ;
while A 6= B do A← par(A); B← par(B) ;
return A;

Algorithm 2: Smallest Enclosing Shape
Data: par The parent image encoding Ti

Output: The SES attribute for Ti w.r.t Tj

SES(A)← NULL foreach A ∈ Ti ;
foreach point x ∈ Ω do

A← getCanonical(x) in Ti ;
X ← getCanonical(x) in Tj ;
SES(A)← LCA(SES(A), X) in Tj ;

foreach node A ∈ Ti upward do

Q← par(A);
SES(Q)← LCA(SES(Q), SES(A)) in Tj;

return SES

where C1, . . . , Ck are the children of A and x1, . . . , xk′ are the points contained in the
node A. Algorithm 1 computes the least common ancestor of two shapes A and B by
following the paths of A and B up to the root and stops as soon as the paths join each
other. This relies on the depth of nodes to advance the path at the same tree level so
the depth attribute has to be computed as pre-processing. Algorithm 2 computes for
each shape A of the ith tree its smallest enclosing shape in the jth tree. In the following,
we denote this smallest enclosing shape by SESij(A). It is a straightforward attribute
computation that processes the tree in a bottom-up fashion using eq. (8.1).

To compute the GoS, we rely on the output of the smallest enclosing shape algorithm
to get a graph which is almost already reduced. Algorithm 3 proceeds as follows. It first
adds new vertex in the graph for each shape of the trees T1, . . . , Td, taking care of not to
add a shape twice if it belongs to several trees. For that purpose, we rely on the smallest
enclosing shape attribute computed previously. Indeed, if two shapes Xi and Xj from
respective trees Ti and Tj are equal, then we have SESji(Xj) = Xi and SESij(Xi) = Xj.
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Algorithm 3: Graph of shapes computation algorithm

Output: G = (V, E) the graph of shapes, with V the set of shapes and E the set of
edges

Data: Ti = (Si,⊆) The marginal tree of shapes
Data: pari The parent image encoding Ti

Data: SESij The SES attribute on Ti w.r.t Tj

Data: d The graph attribute as defined in eq. (6.5)

1 V ← ∅; E← ∅;
2 { add nodes to V };
3 for i← 1 to d do

4 foreach node A in Ti do

5 skip← False;
6 for j← 1 to i− 1 do

7 if SESji(SESij(A)) = A then // A 6∈ V

8 skip← True;

9 if not skip then V ← V ∪ {A} ;

10 { add edges to E };
11 foreach tree Ti do

12 foreach node A in Ti do

13 E← E ∪ {(A, pari(A))};
14 foreach j← 1 to d such that A 6∈ Tj do

15 E← E ∪ {(A, SESij(A))};

16 { remove from E all the edges that are not in the cover };
17 foreach vertex A ∈ V do

18 foreach pair of edges (A, U), (A, U′) do

19 if d(U) ≻ d(U′) then E← E \ (A, U′);

20 return G = (V, E);

Then, the condition SESji(SESij(Xi)) = Xi at line 7 with j < i allows to detect if the shape
has already been inserted before.

Next, the edges of the graph are added. Each shape is linked to its parent and to
every smallest enclosing shape in the other trees. This way, we prevent inserting a lot of
edges that would otherwise be removed during the reduction step. However, some edges
still need to be removed. Consider for example the simple case where we have three
shapes A, B, C (one in each tree) such that A ⊂ B ⊂ C. Then, the graph would contain
the edges (A, B), (A, C) and (B, C) but (A, C) is not in the cover of the graph. Thus,
the last step of the algorithm aims at removing {(A, C) | ∃B, A ⊂ B ⊂ C}. An efficient
way to know if two intersecting shapes are nested is to rely on the attribute d(A) =
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(depth1(SES1(A)), . . . , depthn(SESn(A))) defined in section 6.5. We know by prop. 1 that
(S ,⊆) is isomorphic to (S ,�d) thus ∀B, C ∈ S , B ∩ C 6= ∅ and d(B) ≻ d(C)⇒ B ⊂ C.

8.2 tree extraction algorithm

8.2.1 Computing the distance map

We have seen in section 6.4 that the second part of the method involves computing an
attribute over the graph and constructing a distance map that renders the level of inclusion
of each pixel. We have proposed three depth functions that we succinctly reiterate here:

d1 : ωCV(x) = |X ∈ S , x ∈ X| − 1
Counts the minimal number of marginal level lines we need to traverse to get x

from the border.

d2 : ρ(A) = |A↑| and ωCV(x) = max
X∈S , x∈X

ρ(X)

Counts the number of marginal level lines to traverse to get the deepest shape that
contains x.

d3 : ρ(A) = max
φ∈ [Ω A)

|φ| and ωCV(x) = max
X∈S , x∈X

ρ(X)

where [Ω  A) stands for the set of paths from the root to A in G. It counts the
number of nested marginal level lines to traverse to get the deepest shape that
contains x.

As said in section 6.4, D3 is straightforward to compute as one just has to apply a
shortest path algorithm from the root. However, it requires a small modification as we
want for each node, the length of the longest path instead of the shortest.

On the other hand, computing D1 and D2 are a bit more challenging as we have to
avoid counting the nodes twice during the accumulation of values along the paths. For
that purpose, we are going to rely on individual trees as there exists a single path from
the root to any node, thus easing the process. Let,

Uniqi(X) =

{
0 if ∃ 1 ≤ j < i, SESji(SESij(X)) = X

1 otherwise

The function Uniqi(X) tells for each shape X of Ti if it is already present in a tree Tj,
j < i. If so, the shape counts for zero, one otherwise. As for the algorithm 3, the test
SESji(SESij(X)) = X allows us to know whether a shape of Ti belongs also to Tj. Now,
we can define the function d′i(A) that computes the number of shapes in Si that include
A but are not available in any other tree Tj, j < i:

d′i(A) = ∑
X∈Si , A⊆X

Uniqi(X)
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Algorithm 4: Computation of the depth without shape redundancy.

Output: d′i The depth attribute without shape redundancy.
Data: Ti = (Si,⊆) The marginal tree of shapes
Data: pari The parent image encoding Ti

Data: SESij The SES attribute on Ti w.r.t Tj

foreach node A in Ti downward do

uniq← True;
for j = 1 to i do

if SESji(SESij(A)) = A then

uniq← False;

if uniq then

d′i(A)← d′i(pari(A)) + 1;

else

d′i(A)← d′i(pari(A));

return d′i;

Algorithmically speaking, this is a minor change to depth attribute computation algo-
rithm. This is illustrated in algorithm 4, where for each node A of Ti, we first check if
it does exist in any previous tree Tj and, according to the result, we then increment the
depth from its parent’s value.

Let Sx
i denote the smallest shape containing x in Si, and Sx = { Sx

1 , . . . , Sx
d }, then:

• D1 involves computing the number of shapes containing x which is also the number
of inclusions of Sx

i in each tree minus the size of the intersection of the shape sets.
So:

ωCV(x) =
d

∑
i=1

d′i(Sx
i )

• D2 involves computing the number of ancestors of A in the graph. This is actually
the number of inclusions marginally in each tree minus the number of shapes that
are common to these trees.

ρ(A) =
d

∑
i=1

d′i(A)

ωCV(x) = max
X∈Sx

ρ(X)

8.2.2 Computing the hole-filled max-tree

Once the distance map ω is built, we need to compute its hole-filled max-tree. The
straightforward algorithm that consists of computing the max-tree, filling its components
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and testing their inclusion to build back a new tree would lead to a high complexity.
Since the shapes of the ToS are actually a super-set of the hole-filled components of the
max-tree, a better method is to compute the ToS and filter out shapes issued from lower
threshold sets. We have seen in section 3.2.3, that the direct filtering cannot be used
reliably as the reconstructed image may no match the filtered tree. So we have to use
a subtracting filtering ensuring that the value of the nodes in the new tree are strictly
increasing when traversing it downward.

8.3 complexity analysis

Let N = |Ω| denote the number of pixels in the original image and d be the dimension
of F. As pre-processing, we have to compute the ToS’s marginally on each channel
and the depth attribute. A single tree computation is quasi-linear 1 (O(N log log N) for
high-quantized data) and a simple attribute computation is O(N) (as there are at most as
many nodes in the tree as the number of pixels). Thus, the pre-processing is O(d.N.αN).
Algorithm 2 requires for each point a least common ancestor computation which is O(H),
where H is the depth of the ToS so O(N.H). In the degenerated case, where the tree is
a chain, we have H = N, but in practice the depth of the trees is much less than N, so
we use the average complexity H (on natural images, H ≃ 300). Algorithm 3 requires
algorithm 2 to be computed on each pair of tree (O(d2.N.H)), next adds the nodes to V

(O(d2.N)), then adds the edges to E (O(d2.N)) and finally reduces the graph (O(d2N))
(because |V| is at most d.N, and each node has at most d outer edges). Finally, the overall
complexity of the process is dominated by the computation of SESij; that is O(d2.H.N).
However, the parallelization of this computation is straightforward since the SESij are
not dependent on each other.

Let us now focus on the second part of the method, where we have to build the distance
map ω. Using the distance D3, we have to compute the longest path length from the
root to any node. A Dijkstra-like algorithm is O(|E|+ |V| log |V|), but since the graph is
acyclic, we can use a topological sorting to calculate the root source longest distances
in O(|E|+ |V|) = O(d.N). The other distances D1 and D2 use a single pass algorithm
over each trees so O(d.N) as well. Finally, to get the final hole-filled max-tree, we have
to build the ToS and perform a simple filtering. The complexity is dominated by the
construction process, which is O(N.α(N)).

8.4 conclusion

In this chapter, we have given the algorithms involved in the computation of the MToS.
The process has two main parts: the construction of the GoS and the computation of a tree
from it. We have seen that the most computationally expensive part is the construction of
the graph, as it requires to retrieve for any shape of each tree, its smallest enclosing shape

1 O(N.α(N) where α(n) is the inverse of the Ackermann function which increases slowly.
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in any other tree. The second part being just an attribute computation over the graph to
get the distance map and its ToS computation; it is negligible compared to the first part.
The whole process is quasi-linear in the number of pixels, but quadratic in the number
of dimension, that makes it, at first glance non-practicable for high dimensional data.
However, we have noted that the parallelization of the quadratic part is straightforward
as it is a process on each marginal tree.
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E M P I R I C A L VA L I D AT I O N O F T H E M T O S

In chapter 6 and chapter 7, we have introduced a new hierarchical representation of
multivariate images which meets important properties regarding the invariance to any
marginal change or inversion of contrast. This approach, that extends the ToS to multi-
variate data, tries to merge some marginal shapes in a sensitive way, by relying on the
inclusion relationship between marginal components only. As a consequence, one may
wonder the influence of some perturbations on one channel in the merging process. This
chapter is two-fold. In section 9.1, we compare the performance of the MToS to the most
standard approaches exposed in chapter 4 and show practically that it is more accurate
and avoids most artifacts present with the other approaches. Then, in section 9.2, we
lead experiments to study the influence of merging with a noisy components and with
components of different dynamics and show its robustness to both type of perturbations.

9.1 comparison with standard approaches

We have seen in chapter 4, some classical methods to extend the ToS to multivariate data.
In this section, We review some of them and compare their performance with our MToS.

An unacceptable but widely used workaround for color image processing is to get rid
of the colors and process a gray-level version of the multivariate image. This workaround
makes sense if we pretend that the geometric information is mainly held by the luminance
[31]. However, it is not that rare to face images where edges are only available in the
color space (especially document and synthetic images). They contradict this assumption
and prove that the chrominance holds the geometric information as well, as shown in
fig. 43b where the luminance is not sufficient to retrieve the whole geometric content.

Another commonly used solution is processing the image channel-wise and finally
recombine the results. Marginal processing is subject to the well-known false color
problem as it may create new values that were not in the original images. False colors
may or may not be a problem in itself (e.g. if the false colors are perceptually close to the
original ones) but for image simplification it may produce undesirable artifacts as shown
in fig. 43c.

Since the pitfall of overlapping shapes is due to the partial ordering of multivariate
data, some authors tend to impose an “arbitrary” total ordering or total (pre)ordering
on values. The most advanced strategies have been designed to build a more “sensitive”
total ordering that depends on the image content. We have seen for example that in
[74], manifold learning is used to infer a ranking function of values and in [72] a locally-
dependent ordering are computed on spacial windows. [71] combines both ideas for a
manifold learning in a domain-value space capturing small dependencies between a pixel
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(a) Original image u.

(b) Simplification on a gray-level version of u (198 regions).

(c) Simplification with a marginal processing (123 + 141 + 136 regions).

(d) Simplification with a nonlocal rank transformation [71] (total order) (171 regions).

(e) Simplification with our approach (158 regions).

Figure 43: Simplification issues with “standard” color image processing. (b) and (d) show
leakage problems with total ordering. (c) illustrates the false color problem
due to marginal processing. (e) shows that the MToS retrieves correctly the
main content of the image while preventing false colors.
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(a) (b) (c) (d)

Figure 44: Effects of merging with a noisy component. (a) Original image. (b) House (red
channel) + Gaussian Noise (σ = 20, green channel) (c) Level lines of the ToS
of (a). Level lines: 24k, avg. depth: 37, max. depth: 124. (d) Level lines of the
MToS of (b). Level lines: 48k, avg. depth: 48, max. depth: 127.

and its neighbors during the construction of the total order. This is illustrated on fig. 43d
where we have better results than using the luminance only but still have leakage issues.

On this example, as shown in fig. 43e, the MToS we have proposed retrieves correctly
the main content of the image while preventing false colors.

9.2 robustness to dynamics and noise

9.2.1 Rubustness to noise

In fig. 44, we have conducted an experiment showing the robustness of the MToS to the
noise. A 2-channel image has been built from a gray-level image for the first component
and a random gaussian noise for the second one. In fig. 44d, we show that the presence
of noise in the second channel does not alter the geometric information provided by the
first channel as the meaningful level lines in fig. 44d match the ones in fig. 44c. The noise
add new level lines at leaves level.

9.2.2 Robustness to dynamics

In fig. 45, the experiment shows the effect of the dynamics on the ToS. From the “pepper”
image, we have extracted the two first components and black out the third (blue) one
(fig. 45a). We have then limited the quantum of the green channel to 10 levels (fig. 45b).
Figures 45c to 45e show the level lines of the red channel, the green channel, and the
sub-quantified green channel respectively. Eventually, we have computed the MToS’s of
(a) and (b) to study the effect of merging components of equal and different dynamics;
the corresponding level lines are shown in figs. 45e and 45g. If the components have
similar dynamics, we retrieve shapes from both channels. Indeed, we see in fig. 45e,
shapes coming from both (c) and (d). On the other hand, in the presence of an high-
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(a) Peppers (only red/green channels) (b) Peppers (only red/green channels) with the
green channel sub-quantized to 10 levels

(c) Level lines of the red chan-
nel of (a) and (b)

(d) Level lines of the green
channel of (a)

(e) Level lines of the green
channel of (b)

(f) Level lines of the MToS of (a) (g) Level lines of the MToS of (b)

Figure 45: Effects of merging with a low-dynamic component.

dynamic channel and a low-dynamic channel, the MToS retains mainly the level lines of
the high-dynamic one. Shapes in (g) are mainly coming from (c) and the ones of (e) are
ignored. This also highlights that a component with fewer information does not disturb
the MToS in retrieving the shapes from the one with more information.

9.2.3 Merging unrelated geometric information

The last experiment we have conducted is about merging unrelated geometrical infor-
mation from different sources. In fig. 46, we have combined two gray-level images into
a single 2-channel one on which we computed the MToS. The two main objects of the
pictures are retrieved in the MToS which contains the shapes of both the butter and
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Figure 46: Merging unrelated geometric information. The two first gray-level pictures
(butter and fly) are merged into a single 2-channel images whose level lines
given by the MToS are depicted in the third picture.

the fly. It shows the ability to our approach to merge information split across different
channels of the image.

9.3 conclusion

In this chapter, we have led some experimentation showing the pertinence and the
accuracy of the MToS compared to standard approaches that impose a total ordering on
values. We have seen practically that it can avoid leakage effects or color artifacts that are
present with the other methods. We have also shown the robustness of the MToS to noisy
channels or low-dynamic channels, which is of prime importance since it means that a
channel which brings no information does not prevent our method to retrieve sensitive
information from the other channels.
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I M A G E F I LT E R I N G

10.1 grain filters

A grain filter [29, 108] is an operator that removes the regions of the image which are
local extrema and whose area is below a given threshold. In that sense, it is related to
extreme filters but ensures a symmetric processing of the minima and the maxima, i.e., it
is self-dual. Using the ToS, a grain filter is thus a simple pruning, removing the nodes
which do not pass the size criterion. This is illustrated in fig. 47. We assign for each node
the size of the components and remove those nodes whose size is below 4, i.e., every
node below the red dashed curve. The pixels they contain are then attached to the first
ancestor above the red curve. Despite the simplificy of this filter, we will see its power for
image simplification and document layout extraction in section 10.1.1 and section 10.1.2
respectively.
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Figure 47: Scheme of a grain filtering process.

10.1.1 Image simplification

Grain filters allow us to reveal the “correctness” of the tree in the sense that a small grain
size should filter out what we perceive as noise or details while an high grain size should
show the main objects and the structure of the image. In fig. 48, we show the inclusion
map ω computed using our method and the image reconstructed from the max-tree Tω.
The reconstruction consists of computing for each node the average color of the pixels
it contains and then, assigning this value to the pixels, this is the Pmean strategy seen
in section 6.3.1. Because Tω is not a reversible representation of u, the latter cannot be
recovered from Tω, however the reconstruction is close to the original. In fig. 48d, we
have applied size-increasing grain filters that eliminate details in a “sensitive” way and
provide a reconstruction with few color artifacts that validate the structure organization
of our tree.
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(a) Original (b) Depth image ω (c) Reconstruction from Tω

(d) Grain filters of sizes 10, 100 and 500

Figure 48: Grain filters

10.1.2 Document layout extraction

We use a grain filter to extract text boxes and graphical parts of documents. Indeed, text
parts are composed of letters which are supposed to be small components if the MToS is
well-formed. On the contrary, text boxes and graphical contents are large components that
should remain after the filtering. Figure 49 shows the extraction of non-textual content
where self-duality matters since text may be over a darker or brighter background. As
one can see, the filtered images only contain the graphical content and text boxes while
actual letters are in the residue.

10.2 energy minimization constrained to trees’ topology

In [32], authors claim that the significant contours of objects actually correspond to
some segment of the level lines of the image. As a consequence, image simplification or
segmentation can be interpreted in terms of a selection of some meaningful level lines
in the ToS [23, 21]. Following the same idea, [13, 101], and later [142], proposed simpli-
fication methods that try to select the subset of level lines such that the reconstructed
image minimizes the simplified Mumford-Shah cartoon model [87]. This is so an energy
optimization constrained by the tree topology. More formally, we have to select a subset
of shapes S ′ ⊂ S that minimizes:

E(S ′) = ∑
S∈S ′

∑
x∈S|Sx=S

||u(x)− ū(S)||22 + λ |∂S|, (10.1)
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Figure 49: Simple filtering for document layout detection. Top row: original images;
bottom row: results of grain filters.

where Sx denotes the smallest shape containing x, ū(S) is the average color of the region
and |∂S| the length of the shape boundary. In [13], the authors proposed a greedy
algorithm that iteratively removes shapes from S . It is composed of the following steps:

1. Initialize S ′ = S

2. For each node (shape) S of S ′, compute ∆E(S) which tells how much the energy
decreases, i.e., ∆E(S) = E(S ′)− E(S ′ \ {S})

3. Search for the optimal shape S∗ = arg maxS∈S ′ ∆E(S) (we note par(S∗) its parent)
and remove S∗ from S ′.
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Figure 50: Scheme of the algorithm for energy minimization on trees. Left: the nodes are
valuated with ∆E, red labels stand for their meaningfulness priority. Middle:
at the first iteration, node 1 is removed, the blue nodes have their energy
updated. Right: after several iteration, all ∆E are positive; we cannot remove
any that would decrease the global energy; we have reached a local minimum.

4. Update the energy ∆E of par(S∗) and its children. The energies of those shapes are
the only ones to be affected by the removal. These nodes actually correspond to the
parent, the children, and the siblings of the old shape S∗.

5. Go back to (3) until reaching stability.

At the end of the process, we reach a local optimum in the sense that no more shapes
can be removed without increasing the energy. From an implementation point of view,
the method requires maintaining a priority queue of the nodes w.r.t. their energy. In [142],
the authors proposed replacing that priority queue by a predefined processing ordering
of the nodes to speed up the process. Typically, the nodes are first sorted w.r.t. their
meaningfulness (e.g. the magnitude of gradient on boundaries). This avoids updating the
heap used for the priority queue and drops the complexity from O(N log N) to linear
time. An example of such a process is illustrated in fig. 50.

The steps (2) and (4) of the method requires us to update the costs ∆E, so this
computation must be effective to ensure a fast processing. Let X be a shape of S ’,
Y = par(X) its parent, and Xpr, Ypr the “proper” pixels of the shapes (i.e., the pixels that
are not in any descendants). Then, ∆E can be rewritten as:

∆E(X) = E(S ′)− E(S ′ \ {X})
= ∑

X∈Xpr∪Ypr

||u(x)− ū(Xpr ∪Ypr)||22 − ∑
X∈Ypr

||u(x)− ū(Xpr)||22 − λ.|∂X|

= ∑
x∈Xpr

||u(x)||22 −
||∑Xpr∪Ypr

u(x)||22
|Xpr|+ |Ypr|

+
||∑x∈Ypr

u(x)||22
|Ypr|

− λ.|∂X|

From this rewriting, one can see that ∆E can be expressed as a per-shape attribute
computation that only requires to sum up u(x), u(x)2 and the number of proper pixels.
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Figure 51: Natural image simplification with the MToS. Left: original images; Right: the
simplification running on the MToS. The same λ parameter (λ = 5000) is used
for both images; the simplified images have less than 100 level lines.

10.2.1 Natural image simplification

Figure 51 shows the simplification on natural images. While dividing the number of level
lines by about 200, the main geometric information is preserved by the simplification.
Also, those images are typical cases where the chrominance plays an important role
in distinguishing regions with similar brightness. Low-contrasted boundaries between
regions of similar luminance create a “leakage” effect and level lines merge unrelated
objects that are disjoints with the MToS.
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(a) 285 over 113k level lines selected

(b) 112 over 727k level lines selected

(c) 161 over 194k level lines selected

Figure 52: Image simplification for old document restoration.

10.2.2 Old document restoration

Figure 52 illustrates the need for contrast invariance in the case of document restoration.
Here, the important point is that the MToS is able to retrieve low-contrasted letters
even in the presence of “show-through”. Since we use a segmentation energy, we do
not pretend that it is the perfect solution for document binarization, however since the
documents are widely simplified but keep all the objects of interest, it may serve as a
pre-processing for a more specific binarization method.
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10.3 shapings
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Figure 53: Illustration of getting meaningful high energetic nodes on trees. (a) Schematic
view of the energy evolution on the tree nodes. High energetic nodes are
located at the same place, in the green circles. (b) Evolution of the energy
along a branch of the tree. Interesting nodes are local maxima, however all of
them are not interesting. (c) The extinction value (dynamics) of each maximum
rendered with arrows, hot spots have a high extinction value compared to
non-meaningful maxima.

In chapter 3, we have seen some hierarchical image representations based on level sets:
the min-/max-trees and the ToS. An interest of these trees holds in that they enable us
to easily filter some components based on some shape descriptors. This is basically a
two-step process: first, the features of the shapes are described through a scalar measure
(namely, an attribute) which is computed on the tree, and second, the nodes below a given
threshold are filtered out. In the case of non-increasing attributes (which are the most
common), we have seen in section 3.1.2 that there exist several filtering strategies which
decide the nodes which will eventually remain.

Let us now consider the case of object detection. While “standard” filtering approaches
may yield interesting results, we still face two major problems that are illustrated in
fig. 53:

• The shapes evolve slowly along the branch, i.e., there are only few pixels added
between a shape and its parent. As a consequence, if we look at the energy distri-
bution on the tree, many close shapes have an high energy and would pass the
threshold criterion. In other words, we would detect the same object several times. We
could limit ourselves to the node with the highest energy per-branch, but then we
would face another challenge: what if there are several interesting objects that are
nested. . . They would be in the same branch and we would fail retrieving one of
them (see fig. 53a).
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• A solution to the previous problem would be to consider only the local maxima
of the energy considering the tree topology, i.e., a shape is a local maximum if
its energy is greater than the one of its parent and its children. However, even
so, many local maxima are located in the same region of the tree. Yet, we would
detect the same object several times. In addition, low energetic regions also have
non-meaningful local maxima. The fig. 53b shows the energy evolution along a
branch. The two first local extrema are located in the same high energetic region,
they refer to the same object so one of them is redundant. On the other hand, the
last local maximum has a low energy, it is not meaningful.

The approach proposed by Xu et al. [144] is to rely on the dynamics (or more generally
on an extinction value) [49, 125] of the extrema to figure out which of them are meaningful.
Considering the curve in fig. 53b as a topographical surface, the dynamics is the amount
of energy to climb to go from one extremum to another. This is illustrated in fig. 53c. On
this example, the non-meaningful extrema have a low extinction value contrary to the
ones we want to preserve.

Image u
Tree
T

Tree
T T

Image ũ
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Figure 54: Differences between shapings and “classical” filtering. (a) The black path stands
for the classical filtering scheme: tree computation, tree filtering, and image
restitution. In red is the shapings’ path. It adds a tree representation of the
shape space in which the filtering in performed. (b) Zoom on the shapings

part. The first tree T holds components in P(Ω). It is valuated with an non-
increasing attribute. The second tree T T is the min-tree of T ; its component
are sets of shapes, i.e., in P(P(Ω)).

An efficient method to perform such a filtering has been introduced in [144] known as
shapings. This denomination comes from the fact that we do not perform the filtering on
the tree T itself but on second tree T T that will enable the computation of the extinction
values. In other words, we work on the shape space, and the components of the second
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Figure 55: Microscopic image simplification with the MToS using a shaping to filter out
non-circular objects; from the left image [82], only 650 shapes remain (right).

tree is a set of shapes instead of being a set of pixels. The filtering will thus be performed
on T T , it yields T T ’. The “proper” elements of the remaining nodes of T T ’ give the new
set of shapes we want to preserve or remove in T ; it gives the new tree T ’ from which ũ

can be reconstructed. These differences with a “classical” tree-based attribute filtering is
illustrated in fig. 54. Shapings are actually a wider class of Extinction Filters that have been
shown to be more efficient than standard attribute filters for image registration as they
better preserve the structural similarity with the original image [120, 138]. The versatility
of the framework allows to use basically any morphological representation for the first
structure, e.g. in [144], the authors use the max-tree for blood vessel segmentation, while
in [50], the authors use the component graph (see chapter 5) for PET image segmentation.
In the following, we share the same idea but use the MToS as the first tree.

10.3.1 Shapings for Cytology

In this assessment, we aim at simplifying an image by filtering out objects that do not
have a given shape in the context of bronchial cytology. We first valuate a two-term
energy E = E1 + E2 on the tree:

• E1 expresses the circularity of the shape S. E1(S) = 1− λ2/λ1 where λ1 and λ2

are respectively the lengths of the semi-major axis and semi-minor axes of the best
fitting ellipse.

• E2 expresses the compacity of the shape: E2(S) = Perimeter(S)2/Area(S).

Then, we look for the shapes that minimize E. As said above, because the energy
varies slightly along a branch, we cannot just threshold the energy as it would preserve
many close shapes. We thus rely on shapings and preserve only the shapes that are local
minima. We further simplify the image by computing the extinction values of the minima
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and filter out those non-meaningful. Figure 55 shows the simplification on a bronchial
microscopical image. As one can see, only nucleus and cytoplasm are well-preserved and
the background correctly removed. Such a simplified image can then be combined to a
classifier to improve the classification accuracy.
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11.1 interactive and automatic image segmentation

In this section, we show the relevance of the MToS for image segmentation, first in the
context of interactive segmentation and then extending the method for unsupervised
segmentation where the seeds are detected automatically without requiring any user
intervention. First, in section 11.1.1 we present the mainlines of the segmentation method
using the tree. Section 11.1.2 shows how our work differs from the other state-of-art
object picking methods. Section 11.1.3 gives an in-depth explanation of the proposed
method, and in section 11.1.4 we propose a simple extension for non-supervised image
segmentation. Eventually, section 11.1.5 shows some results using our proposal and we
conclude in section 11.1.6.

Figure 56: Object picking with our method. Red and blue user scribbles define the back-
ground B and the foreground F respectively. The white line is the computed
F/B boundary.
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Figure 57: Scheme of the proposed method for object picking.

11.1.1 Method description

The problem of object picking can be summarized as follows: given two sets of points
F and B in P(Ω) representing the user inputs for the foreground class (F ) and the
background(B), we aim at classifying each point in Ω in one of the two classes.

Consider the distance measure between two points (p, p′) in Ω:

dTV(p, p′) = min
Cpp′

∫ 1

0
|∇u(Cpp′(t)).Ċpp′(t)|.dt, (11.1)

where Cpp′(t) is a path in Ω from p to p′. We can compute the distance between any
point x to the seeds F and B and assign the closest class to x. This approach has been
used by [107, 12]. However, Dubrovina et al. [44] showed that the proper way to compute
such a distance is to have a level set approach and to use the ToS.

Thus, a fundamental idea of the method is to use the MToS representation of the image
(instead of working directly on the domain), and to perform the classification on that
structure. It applies the same principle as previously (Nearest Neighbor) but uses the
tree topology instead of the 2D space topology. The final segmentation is obtained by
reconstructing the image from the tree where all nodes have been classified. The method
can be summarized in the following steps (see also fig. 57):

1. Compute the MToS T(u) of the image u,

2. Evaluate T(u)’s edges with the distance between nodes (see section 11.1.3 for more
details),

3. Transpose the user scribbles on T(u), giving two seed sets of node for F and B,

4. Classify every non-seed node as F or B by computing its distance to the seed nodes
using T(u)’s topology, and retrieving the label of the closest seed node,
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Figure 58: Object picking with and without holes. Because we are working in the shape
space, tagging the outer object is enough to recover the whole region, but it
does not prevent the user from getting objects with holes if he wants to.

5. Reconstruct the image from the labels of T(u),

6. Cleanup: keep significant foreground connected components only.

A significant advantage of working in the shape space is the ability to recover regions
of interest that are not even marked by the user. This feature is interesting for objects
composed by several other objects. Because a shape is a component without holes, it is
enough to select the outer region to retrieve the whole set of objects (see fig. 58).

On the other hand, the approach does not compute any statistics about the regions, but
only uses level sets that enable to recover large components with few user scribbles. The
amount of markers required actually depends on the number of level lines that separate
the background and the foreground.

11.1.2 Related works

Our approach is similar to the one proposed by Dubrovina et al. [44] since we both use
the ToS (or in our case the MToS) to perform the classification of the nodes and then
reconstruct the image from the labeled tree. The main difference is that Dubrovina et al.
[44] compute the tree on the likelihood map where each pixel is the confidence to be a
foreground pixel. It implies a statistical modeling of the user scribbles and so depends
on the accuracy of the modeling of the probability function. Their work is actually an
extension of [12] giving a better accuracy for the geodesic distance computation between
unlabeled pixels and seeds. In their work, Bai and Sapiro [12] noted how important it is
to have an efficient density modeling method that enables a better segmentation while
requiring fewer user scribbles than in previous work [107]. But still, the quality of the
estimation (so the results) highly depends on the trade-off between the region complexity
and the number of user markers. Actually, most image editing or matting state-of-the-art
algorithms, including grabcut [110, 67] (GMM modeling) use statistical learning for a
background/foreground estimation; our method does not.
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11.1.3 Algorithm details

The construction of the MToS has been seen chapter 8, we only give a brief summary of
it and we mainly detail here the way the ToS is used for segmenting (that are the steps
2–6 of section 11.1.1).

The first step involves the construction of a tree which features similar properties as the
ToS but for color images. To that aim, we have introduced in [25] the MToS. Basically, this
consists in computing the ToS on each channel independently and merging all shapes
in a single structure, called the Graph of Shapes, based on their inclusion. From this
graph, a tree is computed through an intermediate depth image that represents the level
of inclusion of each pixel in the set of shapes. More details can be found in [25] and in
chapter 6.

The second step of the algorithm consists in evaluating a distance on tree edges. As
noticed in section 6.3.1, contrary to the standard morphological trees, a node in the MToS
may be associated with many colors, as a consequence, we consider the average colors of
the points in the node, and the edge between two nodes is evaluated with the distance
between their average color (in La*b* space). Then, we need to label the nodes as F or B
from the user scribbles. In some rare cases, a node may get contradictory labels if the
user tags some points as F and B that belong to the same node. In that situation, the
node should get labeled with the majority class.

The 4th step consists of visiting each non-labeled nodes (shapes) and computing two
distances: dF and dB . These are the distances from S to the nearest foreground and
background seed respectively. This can be achieved in two passes. We denote par(S), the
parent of S in T, and d(S, par(S)) the distance between the average color of S and par(S).
At initialization, dB(S) = 0 if the node has background scribbles, +∞ otherwise. The
forward step goes from the leaves to the root, and computes:

dB(par(S)) = min(dB(par(S)), dB(S) + d(S, par(S)).

The backward step goes from the root to the leaves, and computes:

dB(S) = min(dB(S), dB(par(S)) + d(S, par(S)).

The same computation process holds for dF and finally, a node gets labeled with
arg minC∈{F ,B} dC(S).

In the tree T(u), each point belongs to a single node, so the reconstruction of the
image consists of assigning to each point the label of the node it belongs to. Eventually,
the clean-up step consists of removing each non significant region that is a connected
component whose size is below half the size of the largest connected component.

The overall complexity of the method is quasi-linear in the number of points, which is
the complexity of computing the MToS [46, 40].
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Figure 59: Illustration of the automatic segmentation. Left: Image simplification with the
α-tree (ω = 200). Blue squares stand for the centers of the candidate regions
(λ = 3000). Middle: The markers computed over the distance map. Right:
The multi-classes segmentation based on the seeds found previously. The
segmented components are shown with the average color over the region.

11.1.4 Extension for automatic segmentation

The previous framework requires the user to input the scribbles for tagging foreground
and background objects. The objective is now to extend this algorithm for automatic
segmentation without any user intervention. Instead of a binary segmentation, we first
extend the algorithm to a multi-classes classification without any effort. Given a set of
marked points {M1, . . . , Mn} labeled respectively with classes C1, . . . , Cn, we still aim at
classifying any other non-labeled data in Ω. We still use the Nearest Neighbor approach
using the distance defined by eq. (11.1). The binary to multi-classes classification is thus
straightforward. The real challenge is to automatically get the initial set of seeds. For this
purpose, we can rely on any initialization method used by other segmentation algorithms
(e.g. the minima of the gradient function as for the Watershed Transform, the modes
of the density function as for the Mean Shift algorithm. . . ). We arbitrarily have chosen
to initialize our algorithm from the (α, ω)-flat zones of the image that are the set of
connected components Γ in the image where the magnitude of the gradient inside Γ

cannot exceed α and the amplitude of the range cannot exceed ω [118]. More formally,
the initial set of seeds comes from:

{Γi} = {Γ ∈
⋃

α

CCα(u) | max(u(Γ))−min(u(Γ)) < ω}

where CCα(u) denotes the set of α-connected components of u. The set {Γi} forms a
partition of the image but leads to an over-segmentation (especially on object boundaries
with high gradients), thus we only keep the subset {Γ′i} of {Γi} whose size is above a
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given threshold. Finally, we compute a thick skeleton of the candidate regions that will
be the final markers. The process, illustrated in fig. 59, can be summarized as follows:

1. Compute the α-tree of u and retrieve the largest α-connected components such that
their range does not exceed w and their size is above a given threshold λ.

2. For each component, compute a distance map from the background and threshold
this distance map. It yields thick skeletons of the components that are the automatic
markers.

3. Perform the multi-classes segmentation extension of the algorithm seen in sec-
tion 11.1.3.

11.1.5 Experiments and discussion

Figures 56 and 60 show some results of the interactive segmentation and automatic
segmentation using our approach (implemented using our platform Olena [68, 69]). At
this point, and despite its simplicity, our approach for interactive segmentation competes
with the state-of-the-art methods such as Grabcut from a qualitative point of view.
However it is still premature to have a quantitative assessment with those approaches as
we have to tackle some problems first. A common failure case of our method appears
when the object of interest is traversed by some level-lines of the background. In that
case, we cannot separate correctly the foreground and the background. We have observed
in recent experiments that this problem can be partially solved by a different rooting of
the MToS (by choosing the point at infinity in the foreground or background scribbles
when constructing the tree). The automatic segmentation extension of this work is still in
development and is outperformed by the current state-of-art segmentation methods. The
method widely depends on the way the seeds are chosen and those given by the α-tree
mainly appear in the background. We have to first improve the seed computation process
before any further comparison with other methods. However, regarding the quality of
the current results, it tends to show the potential of a direct classification in the shape
space and that the MToS is an adequate structure for segmentation.

11.1.6 Conclusion

We have shown the versatility and the potential of the ToS for segmentation purposes. We
have proposed a marker-based classification using the MToS which is free of statistical
learning and despite its simplicity, yields results similar to the ones obtained by the
state-of-the-art methods. We have also presented an extension that enables an automatic
segmentation without requiring any user intervention. The automatic segmentation,
still in the process of development, provides interesting results that show the potential
of the MToS and the advantages of working in the shape space. As a further work,
since our approach is already robust without statistical learning, we plan to introduce
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Figure 60: Example of automatic segmentation on the BSD dataset [75]. Left: original
images, where blue squares are the markers computed from the α-tree; Right:
results of our segmentation method.

more sophisticated classification strategies to improve the interactive segmentation that
would enable to further compare our work with other state-of-the-art methods. For the
unsupervised segmentation part of this work, since the bottleneck lies in the automatic
detection of the seeds, we plan to experiment other pre-processing methods to get better
markers.

11.2 document detection in videos

In the scope of the ICDAR competition on Smartphone Document Capture and OCR
(SmartDoc-2015) [19], we aim at automatically detecting documents in video captured
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Figure 61: Scheme of the proposed method for document detection in a video frame.

by smartphones. The challenge is motivated by the fact that smartphones are more and
more replacing personal scanners as they are affordable and powerful. Nowadays, such
acquisition devices are even present in business applications such as document archival,
ID scanning, document dematerialization. . .

The dataset covers different document layout (textual and/or having graphical content)
and realistic scene analysis problems (change of illumination, motion blur, change of
perspectives, partial occlusions. . . ). There are six different document types that were
recorded on four different backgrounds that makes a total of 120 videos and 24.000

frames to process.
In section 11.2.1, we expose our MToS-based method to retrieve a document in a single

frame, while in section 11.2.2, we show an extension that enables tracking the document
between frames to enhance the detection efficiency. Eventually, in section 11.2.3, we show
some results of our method on practical examples and discuss the results.

11.2.1 Method description

The method we propose relies on the MToS representation of the image. Basically, we aim
at identifying some nodes in the tree that most match some document criteria expressed
as shape attributes and as an energy. The two criteria are:

1. How closely the shape boundary fits a quadrilateral, i.e., for each shape A we
compute the best fitting quadrilateral Quad(A) and we measure the ratio:

E1(A) =
|A|

|Quad(A)|

2. How “noisy” the object is. We expect a document with some text and graphics, i.e.,
a shape that contains many shapes inside. At the document level, the letters are
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a small grains that look like “noise”. Let LA = {X ∈ S | X ⊂ A and X is a leaf }
denote the set of leaves in the subtree rooted in A, then:

E2(A) =
∑X∈LA

(d(X)− d(A))

|LA|

where d(X) stands for the depth of the shape X.

We then look for the shape that minimizes the energy E(X) = E1(X) + E2(X). Note
that for a better accuracy of E2, we start with preprocessing the image with a grain filter
to ignore the effect of the natural image noise due to the sensor, and so that what we
consider as “noise” is big enough to be a letter.

11.2.2 Tracking document between frames

When processing the full video clip, one could apply the document detection method
exposed in section 11.2.1 on each frame. However, we do not rely on the regularity of
the motion that could help to correct miss-detected frames. As we expect small distance
between the coordinates of the detection between the current frame and the previous one,
the idea is now to retrieve several candidate “document” shapes and using the location
of the previously detected document to select the right shapes.

In order to retrieve several candidate shapes from the tree, we cannot just for example
select the ten lowest energetic ones. It would lead to the problem exposed in section 10.3.
As the energy does not evolve much along a branch, the ten lowest energetic shapes
are likely to be located in the same region, thus they refer to the same object. As a
consequence, we rely on shapings introduced in section 10.3.

First, we retain the 10 best shapes with shapings, i.e., the ten local extrema with the
highest extinction values, and then, order them w.r.t. their energy E. For the tth frame,
we get a family { S1

t , . . . , S10
t } of candidates shapes. Let S∗t−1 denote the shape detected

in the previous frame, then the current detected shape S∗t will be the lowest energetic
shape such that its distance with S∗t−1 is below a given threshold dmax. More formally:

S∗t = Sk
t : k = min{ i, 1 ≤ i ≤ 10 | d(Quad(Si

t), Quad(S∗t−1)) < dmax }

where d(Quad(X), Quad(Y)) is the average euclidean distance between the corners of
the best fitting quadrilaterals of X and Y. If no such shape S∗t exists, the detection fails.

11.2.3 Results and discussion

In fig. 62, we show some results of the proposed method in some tricky situations.
Indeed, the documents are purposely subject to blur due to camera motion, specular light
effects and non-uniform background. These problems are generally fatal to contrast-based
methods as they make the document merge with its background. Morphological methods
also suffer from these defaults which move the level lines of the image. However even if
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Figure 62: ICDAR competition on document detection. These images show the robustness
of our method to blur and light specularity that move object boundaries. Note
that some videos are available as supplementary materials [24].

the level line is moved away the real document boundary at some places, some segments
are still valid and allow a robust shape analysis, i.e., we are still able to know if the
shape looks like a quadrilateral, and then correct a posteriori the boundaries with a best
quadrilateral fitting.

A common misdetection performed by the method lies in a sub-document retrieval.
Indeed, some documents (e.g. forms, tables) may present a layout such that an inner-table
may have lower energy than the whole document. For the challenge, this problem has
been solved with an a priori knowledge about the expected size of the document, but a
more robust approach could be to favor the largest shape in the case where two nested
shapes have similar energies.
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Ranking Method Jaccard Index Confidence Interval
1 LRDE (ours) 0.9716 [0.9710, 0.9721]
2 ISPL-CVML 0.9658 [0.9649, 0.9667]
3 SmartEngines 0.9548 [0.9533, 0.9562]
4 NetEase 0.8820 [0.8790, 0.8850]
5 A2iA run 2 0.8090 [0.8049, 0.8132]
6 A2iA run 1 0.7788 [0.7745, 0.7831]
7 RPPDI-UPE 0.7408 [0.7359, 0.7456]
7 SEECS-NUST 0.7393 [0.7353, 0.7432]

Table 2: Global results for the Smartdoc Challenge 1 competition.

The method (slightly modified with a priori knowledge about the documents, e.g. the
expected size of the document w.r.t. the resolution of the video) got the first place of the
competition among 7 participants (see table 2). The evaluation was based on the Jaccard
index, that measures the similarity between the set of expected pixels in the ground truth
and the set of the segmentation result returned by the method. Our method obtained
an average Jaccard index of 0.9716, varying between 0.9710 and 0.9721 on the whole
dataset [19], which tends to show the robustness of the proposed approach.

11.3 hierarchical segmentation on multimodal images

In [144], in the continuation of their work on shapings (see. section 10.3), the authors
proposed a generic method to get a hierarchical segmentation of the image from any tree
representation.

Contrary to the hierarchies of segmentation seen in chapter 2, any cut in threshold-
set-based morphological trees does not lead to a segmentation but rather to a partial
partition of the image. Let A be an increasing attribute over a component tree T = (S ,⊆),
without loss of generality, we consider that T is a tree of shapes. A “cut” in T at scale
λ defines the set of shapes that are minimal elements (w.r.t. the inclusion relation)
of {X ∈ S | A(X) ≥ λ }. Obviously, a “cut” in those trees yields a set of disjoint
connected components {X1, . . . , Xn } and one could consider X0 = Ω \ ⋃1≤i≤n Xi as
the extra background class to get the full partition π1 = {X0, . . . , Xn } of the image.
However, when considering the partition π2 of a “cut” of higher scale {Y1, . . . , Ym } and
its background class Y0, then we have:

∀i, 1 ≤ i ≤ n, ∃j, 1 ≤ j ≤ m, Xi ⊆ Yj

but, X0 6⊆ Y0 so π1 is not a refinement of π2 and we do not have hierarchy of partition.
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(a) T1 MR (b) T2 MR (c) Saliency map (130 nodes)

(d) PET (inverted) (e) CT (inverted) (f) Saliency map (720 nodes)

Figure 63: Saliency map on multimodal medical images.

The idea introduced in [144] consists in the definition of a partition of the image in
terms of shape contours. Given a set of shapes S ′ ⊆ S , and a Boolean image f defined
on the cubical grid KΩ (see. section 7.1) as:

f (x) =

{
1 if ∃X ∈ S ′, x ∈ ∂X

0 otherwise

then the connected components of [ f < 1] ∩Ω define a partition of Ω. We note π(S)
the partition associated with the shape set S . Then, π is decreasing as for any S1 ⊆ S2,
we have π(S2) ⊑ π(S1). The need for shapings and working in the shape space is now
obvious as we aim at defining a family of decreasing shape set { S1, . . . , Sk } to build the
family H = {π(S1), . . . , π(Sk) } which is a hierarchy of partition.

In section 10.3, we have reviewed the basics of shapings. Given the attribute (an energy)
A computed over a tree, one can remove the nodes below a given threshold; it yields a
simplification of the image. The problem was that there is a redundancy in the remaining
shapes since two close nodes are likely to have the same energy, so to pass the criterion.
The idea introduced in [144] is to preserve only the local extrema in the tree and compute
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their extinction value AA (the filtering value required so that an extremum gets merged
with another extremum). Let the sequence E = { S1, . . . , Sn } be the extremal shapes
ordered increasingly according to their extinction value. Then, we have { S1, . . . , Sn }
where Sk = { Sk, . . . , Sn} which defines a sequence of decreasing shape sets that can be
used to build the hierarchy of segmentation. It is commonly represented as a saliency
map f where the extinction values computed for each extremum node are set back on
the contour of the shapes in the original domain space:

f (x) = max{AA(X), X ∈ E | x ∈ ∂X}

Thresholding the saliency map f with increasing values yields fine to coarse image
partitions. Indeed, it is straightforward that the connected components of [ f ≤ λ] actually
corresponds to the partition π(Si) where i = max{ k, AA(Sk) ≤ λ }

Examples of saliency maps are shown in fig. 63, where images have been acquired with
different devices (the brain image with T1- and T2- MRI scans and the body image with
PET and CT scans). We have computed the MToS on these images and used the MSER
criterion as the energy. As a first remark, the MToS preserves the geometric information
of the two channels and mixes them in a sensible way. For example, the heart only
appears on the PET scan (fig. 63d) and the lungs in the CT scan (fig. 63e) but both appear
on saliency map. Second, as one can see the most important objects appear with a high
saliency so they will be filtered last on segmentation hierarchy.

11.4 classification of hyperspectral images

With the recent advances in optical satellite sensors, the high spatial resolution images
issued from these devices have allowed a broader class of applications. A particular
interest of the very high resolution imagery has been the classification of urban scenes
in order to study their evolution. Practical applications include the automatic update
of transport network maps, the discovering of new buildings for fraud detection, the
refunding cost estimation after disasters. . .

In [41], the authors proposed a morphological approach for the classification based on
morphological profiles which is a pixel-wise study of the response to a bank of morpho-
logical filters [106]. Yet, the processing is marginal. Those filters are applied channel-wise
and the responses in each band are concatenated to form a feature space. Here we
propose to use filters based on our MToS, i.e., with a vectorial approach. In section 11.4.1,
we review the principles of morphological profiles for hyperspectral classification and
we expose the integration of the MToS in the processing line. In section 11.4.2, we com-
pare the results obtained by the MToS compared to other state-of-the-art morphological
profiles and show the benefits of our structure.
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(a) (b)

(c) (d)

(e)

Figure 64: Hyperspectral image classification. (a) Three principal components recom-
posed as an RGB image. (b) Ground truth. (c) Classification with AP. (d)
Classification with MSDAP. (e) Classification with VSDAP.

11.4.1 Method description

Dalla Mura et al. [41] proposed to use morphological attribute profiles to perform the
classification of hyperspectral images acquired by Quickbird. The basic idea is to study
the behavior at each pixel of an operator at different strengths of filtering. Because no
assumption can be made about the type (dark or light) of the objects to detect, they were
interested in self-dual profiles. As a consequence, in [41], they compute a set of attribute
openings and closings channel-wise at different predefined thresholds that yields the
feature space on which they perform the classification. More formally, given an attribute
opening γλ and the attribute closing φλ where λ ∈ {λ1, . . . , λn} is a family of threshold
values, they define their feature map ω as:

ω(x) = { γλi
(uk)(x), φλi

(uk)(x) } k, λi
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Figure 65: Overall accuracy of the classification by the AP, MSDAP, and VSDAP w.r.t.
the number of thresholds used in the profiles (so the dimension of the fea-
ture space). The x-axis represents intervals, e.g. the value 0.6 stands for the
thresholds { 0.2, 0.3, . . . , 0.6 }.

In [41], they replace the min and max-trees used for the computation of the openings
and the closings by self-dual attribute filters using the ToS. They further compare the
results in [33] and show that the classification with self-dual attribute profiles outperforms
the previous approach with min and max-trees. The features space size is divided by two
since each pair of dual filtering (γλi

(uk)(x), φλi
(uk)(x)) is replaced by a single self-dual

filtering ρλi
(uk)(x).

Yet, the ToS is computed marginally on each channel independently, so we extend their
approach with MToS-based filters which yields a non-marginal processing since a single
tree representing the image is used. However, the feature space has the same size as for
self-dual attribute profile, since the output of each filter ρ is now a vector:

ω(x) = { ρλi
(u)(x)k } k, λi
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11.4.2 Experiments and discussion

The experiments were carried out on a hyperspectral image acquired by Quickbird of
Pavia, Italy. Trees are computed on the first three components of the Principal Component
Analysis. The fig. 64 shows the results of the classification with attributes profiles (AP), the
marginal self-dual attribute profiles (MSDAP) and the vectorial self-dual attribute profiles
(VSDAP). For each method, the same attribute (moment of inertia), the same filtering
parameters (0.1, 0.2, . . . , 1.0), and the same classifier (Random Forest) are used. Figure 65

shows the overall classification accuracy as a function of the number of thresholds used in
the profile. When all thresholds are used, the VSDAP gets an Overall Accuracy of 82.2%
while in the same time the AP and MSDAP achieve respectively 77.5% and 68.9%. Using
the MToS for filtering and computing the profiles clearly outperforms the ones based on
the other trees and tends to confirm that the MToS retrieves and correctly synthesizes the
geometric information available in the different channels.
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conclusion

To access an high level of understanding of the image, we have motivated the claim that
hierarchical representations of image contents are easy-to-use and efficient solutions. To
exploit the power of hierarchical structures from the Mathematical Morphology (MM)
framework, image values need to be ordered. Even the most basic operations from
the MM (e.g. dilation and erosion) require a special organization of values (namely, a
complete lattice). In other words, the values themselves do not mean anything, only the
way they are related matters. However, when dealing with multivariate images, a total
ordering of data is usually not satisfactory. In addition, when considering self-dual filters,
we can intuitively expect the output of such a filter without ordering data as shown
below. Here, the notion of small objects (grain) is a priori not dependent on the ordering.
So fortunately, we avoid to compare/order red and blue.

Self-dual grayscale

grain filter

Expected color

“equivalent” filter

As a consequence, there is no reason to rely on an order that would mix non-comparable
components if it does not make sense. On the contrary, if an ordering of values inside
each channel makes sense, we should rely on it. In addition, channel-wise, we would like
to preserve important properties of morphological self-dual operators, i.e., the invariance
to any marginal change of contrast and any marginal inversion of contrast (self-duality
in the multidimensional case).

The Multivariate Tree of Shapes (MToS) presented here is a novel representation that
extends the grayscale ToS on multivariate images. This representation relies on the ToS’s
computed marginally on each channel of the image. It merges the marginal shapes in a
“sensible” way by preserving the maximum number of inclusion. The method proposed
has theoretical foundations expressing the ToS in terms of topographic map of the total
variation computed from the image border. This reformulation has allowed its extension
on multivariate data. We also have proven that the tree provided by our method meets
correctly those properties. To close the theoretical part, we have carried out experiments
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testing the robustness of the structure to non-relevant components (e.g. with noise or
with low dynamics) and we showed that such defaults do not affect the overall structure
of the MToS.

Because this work took place in a context where the practical usage is of prime
importance, we have also been involved in the validation of the soundness of our
approach on many real-case applications. Some of them were just an adaptation of ToS-
based methods to the new structure. We succeed in using the MToS for image filtering,
image simplification, image segmentation, image classification and object detection. The
use of the MToS generally outperforms its ToS-based counterpart, showing the potential
of our approach.

Eventually, because new real-case applications require processing more and more data
in a short time, we have been involved in developing a fast algorithm to compute the
MToS, as well as some tree processing algorithms (see part iv). We have studied their
complexity and have shown that the MToS can be built in quasi-linear time w.r.t. the
number of pixels and is quadratic w.r.t. the number of channels.

extension and future work

Multivariate Component-trees

The method proposed in chapter 6 is a two-step process where the first part consists in
merging marginal ToS’s into a single structure, the GoS, and the second part consists
of extracting a tree from the graph. This framework can be generalized for other trees
as inputs. In particular, nothing prevents the user from providing min- or max-trees as
inputs, before computing the graph of inclusion. The method would then provide a tree
which is marginally invariant to change of contrast. It may serves to define Multivariate
Min- or Max-trees (depending on the trees’ type in input) and so, a new approach to
extend component-trees to multivariate images without requiring the imposition of a total

ordering. Consequently, it may also be the base to define new connected operators, e.g.

openings or closings, on multivariate images.

Algebraic properties of a MToS-based filter

For many applications (e.g. object detection, segmentation) the image reconstruction
process is not necessary as we just need to identify or label some nodes of the tree.
However, in the case of image filtering (e.g. denoising), the reconstruction is a fundamental
step. With the MToS, a node may be associated with different values (just like component-
trees in the case of total preorders). It leads to a problem during the reconstruction
after filtering as one as to decide of a filtering value (see. sections 4.3.6 and 6.3.1). A
straightforward solution that we have adopted is to assign the average vector to each
node. However, one can wonder about the algebraic properties of such reconstruction.
In particular, given the MToS T(u) of u followed by the reconstruction of ũ, it is not
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evident that T(u) = T(ũ). This is a problem for defining “real” morphological filters like
a Multivariate grain filters. Indeed, we cannot ensure that the MToS of the reconstructed
image from a filtered tree are the same. In other words, two consecutive filtering with the
same grain size may give different results; we have lost the idempotency. Few authors
have been studying this problem, but it also arises with component-trees based on image-
dependent total orderings since the ordering built from the first image is not the same as
the one built on the reconstructed image.
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A C O M PA R AT I V E R E V I E W O F C O M P O N E N T T R E E
C O M P U TAT I O N A L G O R I T H M S

Edwin Carlinet and Thierry Géraud. “A Comparative Review of Component Tree
Computation Algorithms”. In: IEEE Transactions on Image Processing 23.9 (Sept.
2014), pp. 3885–3895.

a.1 introduction

In mathematical morphology, connected filters are those that modify an original image by
only merging flat zones, hence those that preserve some of the original image contours.
Originally, they were mostly used for image filtering [130, 112]. Major advances came
from max- and min-tree as hierarchical representations of connected components and
from an efficient algorithm able to compute them [114]. Since then, usage of these trees
has soared for more advanced forms of filtering: based on attributes [60, 55], using new
filtering strategies [114, 124], allowing new types of connectivity [99]. They are also a
base for other image representations. In [85] a tree of shapes is computed from a merge
of the min- and max- trees. In [141] a component tree is computed over the attributes
values of the max-tree. Max-trees have been involved in many applications: computer
vision through motion extraction [114], features extraction with MSER [76], segmentation,
3D visualization [132]. With the increase of applications comes an increase of data type
to process: 12-bit images in medical imagery [132], 16-bit or float images in astronomical
imagery [15], and even multivariate data with special ordering relation [104]. With the
improvement of optical sensors, images are getting bigger (so do image data sets) which
argues for the need for fast algorithms. Many algorithms have been proposed to compute
the max-tree efficiently but only partial comparisons have been proposed. Moreover,
some of them are dedicated to a particular task (e.g., filtering) and are unusable for other
purposes.

In a short paper [27], we have presented a first comparison of many state-of-the-art
max-tree algorithms in a unique framework, i.e., same architecture, same language (C++)
and same outputs. Yet this comparison was performed on a single image, the pseudo-
code of all the algorithms were not listed, and the description of those algorithms and
their comparison were short. This paper aims at correcting those three drawbacks, so
it presents a full and exhaustive comparative review of the state-of-art component tree
computation algorithms.
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The paper is organized as follows. Appendix A.2 recalls basic notions and manipu-
lations of max-tree. Appendix A.3 describes the algorithms and implementations used
in this study; in particular, a new technique that improves the efficiency of union-find-
based algorithms is presented in Appendix A.3.1.4. Appendix A.4 is dedicated to the
comparison of those algorithms both in terms of complexity and running times through
experimentations. Last we conclude in Appendix A.5.

a.2 a tour of max-tree : definition, representation and algorithms

a.2.1 Basic notions for max-tree

Let f : Ω→ V be an image on a regular domain Ω, having values on a totally preordered
set (V,≤) and let N be a neighborhood on Ω. Let λ ∈ V, we note [ f ≤ λ] the set { p ∈
Ω, f (p) ≤ λ }. Let X ⊂ Ω, we note CC(X) ⊂ P(Ω) the set of connected components
of X w.r.t. the neighborhood N ; P(Ω) being the power set of all the possible subsets of
Ω. {CC([ f = λ]), λ ∈ V } are level components and Ψ = {CC([ f ≥ λ]), λ ∈ V } (resp.
≤) is the set of upper components (resp. lower components). The latter endowed with
the inclusion relation form a tree called the max-tree (resp. min-tree). Since min- and
max-trees are dual, this study obviously holds for min-tree as well. Finally, the peak
component of p at level λ noted Pλ

p is the upper component X ∈ CC([ f ≥ λ]) such that
p ∈ X.

a.2.2 Max-tree representation

Berger et al. [15], and Najman and Couprie [91] rely on a simple and effective encoding
of component-trees using an image that stores the parent relationship. The latter exists
between two components A and B whenever A is directly included in B (parent is actually
the covering relation of (Ψ,⊆)). An upper component is represented by a single point
called the canonical element [15, 91] or level root. Let two points p, q ∈ Ω, and pr be the
root of the tree. We say that p is canonical if p = pr or f (parent(p)) < f (p). A parent

image shall satisfy the following three properties: 1) parent(p) = p⇒ p = pr - the root
points to itself and it is the only point verifying this property - 2) f (parent(p)) ≤ f (p)

and 3) parent(p) is canonical.
Furthermore, having just the parent image is an incomplete representation since it is

not sufficient to easily perform classical tree traversals. For that, we need an extra array of
points, S : N → Ω, where points are stored so that ∀i, j ∈ N i < j⇒ S[j] 6= parent(S[i]).
Thus browsing S elements allows to traverse the tree downwards i.e from the top (the
root) to the bottom of the tree (the leaves). On the contrary, a reverse browsing of S is
an upward tree traversal. Note that having both S and parent thus makes it useless to
store the children of each node. Figure 66 shows an example of such a representation
of a max-tree. This representation only requires 2nI bytes memory space where n is the
number of pixels and I the size in bytes of an integer, since points stored in S and parent
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Figure 66: Representation of a max-tree using the 4-connectivity with a parent image and
an array. Canonical elements are underlined.

are actually positive offsets in a pixel buffer. The algorithms we compare have all been
modified to output the same tree encoding, that is, the couple (parent, S).

a.2.3 Attribute filtering and reconstruction

A classical approach for object detection and filtering is to compute some features called
attributes on max-tree nodes. A usual attribute is the number of pixels in components.
Followed by a filtering, it leads to the well-known area opening. More advanced attributes
have been used like elongation, moment of inertia [134] or even Mumford-Shah like
energy [141]. Some max-tree algorithms [135, 76] construct the parent image only; they
do not compute S. As a consequence, they do not provide a “versatile” tree, i.e., a tree
that can be easily traversed upwards and downwards, that allows attribute computation
and non-trivial filtering. Here we require every algorithms to output a “complete” tree
representation (parent and S) so that it can be multi-purposedly usable. The rationale
behind this requirement is that, for some applications, filtering parameters are not
known yet at the time the tree is built (e.g., for interactive visualization [132]). In
the algorithms we compare in this paper, no attribute computation nor filtering are
performed during tree construction for clarity reasons; yet they can be augmented to
compute attribute and filtering at the same time. Algorithm 5 provides an implementation
of attribute computation and direct-filtering with the representation. â : Ω× V → A
is an application that projects a pixel p and its value f (p) in the attribute space A.
+̂ : A×A → A is an associative operator used to merge attributes of different nodes.
compute-attribute() starts with computing attributes of each singleton node and merges
them from leaves toward root. Note that this simple code relies on the fact that a node
receives all information from its children before passing its attribute to the parent.
Without any ordering on S, it would not have been possible. direct-filter() is an
implementation of direct filtering as explained in [114] that keeps all nodes passing a
criterion λ and lowers nodes that fail to the last ancestor “alive”. This implementation
has to be compared with the one in [135] that only uses parent. This one is shorter, faster
and clearer above all.



116 a comparative review of component tree computation algorithms

Algorithm 5: Attribute computation and filtering algorithms.

function compute-attribute(S, parent, f )
proot ← S[0];
foreach p ∈ S do attr(p)← â(p, f (p));
foreach p ∈ S backward, p 6= proot do

q← parent(p);
attr(q)← attr(q)+̂attr(p);

return attr;

function direct-filter(S, parent, f , attr)
proot ← S[0];
if attr(proot) < λ then out(proot)← 0;
else out(proot)← f (proot);
foreach p ∈ S forward do

q← parent(p);
if f (q) = f (p) then out(p)← out(q); /* (1) */

else if attr(p) < λ then out(p)← out(q); /* (2) */

else out(p)← f (p); /* (3) */

return out;
(1) p not canonical, (2) Criterion failed, (3) Criterion passed

a.3 max-tree algorithms

Max-tree algorithms can be classified in three classes:
Immersion algorithms. They start with building N disjoint singletons, one for each pixel
and sort them according to their gray value. Then, disjoint sets merge to form a tree
using the union-find algorithm [4, 122].
Flooding algorithms. A first scan allows to retrieve the root which is a pixel at lowest
level in the image. Then, they perform a propagation by flooding first the neighbor at
highest level i.e. a depth first propagation [114, 133].
Merge-based algorithms. They divide an image in blocks and compute the max-tree on
each sub-image using another max-tree algorithm. Sub max-trees are then merged to
form the tree of the whole image. Those algorithms are well-suited for parallelism using
a map-reduce (or divide-and-conquer) approach [100, 135]. When blocks are image lines,
dedicated 1D max-tree algorithms can be used [77, 81, 86].

a.3.1 Immersion algorithms

a.3.1.1 Basic principle

Berger et al. [15], Najman and Couprie [91] proposed two algorithms based on Tarjan’s
union-find. They consist in tracking disjoints connected components and merge them in
a bottom-up fashion. First, pixels are sorted in an array S where each pixel p represent
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the singleton set {p}. Then, they process pixels of S in backward order. When a pixel p is
processed, it looks for already processed neighbors (N (p)) and merges with neighboring
connected components to form a new connected set rooted in p. The merging process
consists in updating the parent pointer of neighboring component roots toward p. Thus,
the union-find relies on three processes: make-set(parent, x) that builds the single-
ton set {x}, find-root(parent, x) that finds the root of the component that contains
x, and merge-set(parent, x, y) that merges components rooted in x and y and set x

as the new root. Based on the above functions, a simple max-tree algorithm is given below:

Algorithm 6: Scheme of a union-find-based max-tree algorithm.

function Maxtree( f )
S← sort pixels increasing;
foreach p ∈ S backward do

make-set(parent, p);
foreach n ∈ Np processed do

r ← find-root(parent, n);
if r 6= p then merge-set(parent, p, r);

find-root is a O(n) function that makes the above procedure a O(n2) algorithm.
Tarjan [122] discussed two important optimizations to avoid a quadratic complexity: root
path compression and union-by-rank.

When parent is traversed to get the root of the component, points of the path used to
find the root collapse to the root of the component. However, path compression should
not be applied on parent image because it removes the hierarchical structure of the tree.
As consequence, path compression is applied on an intermediate image zpar that stores
the root of disjoints components. Path compression bounds union-find complexity to
O(n log n) and has been applied in [15] and [91].

When merging two components A and B, we have to select one of the roots to represent
the newly created component. If A has a rank greater than B then rootA is selected as
the new root, rootB otherwise. When rank matches the depth of trees, it enables tree
balancing and guaranties a O(n log n) complexity for union-find. When used with path
compression, it allows to compute the max-tree in quasi-linear time (O(n.α(n)) where
α(n) is the inverse of Ackermann function which is very low-growing). Union-by-rank
has been applied in [91].

Note that parent and zpar encode two different things, parent encodes the max tree
while zpar tracks disjoints set of points and also uses a tree. Thus, union-by-rank and
root path compression shall be applied on zpar but never on parent.

The algorithm given in Algorithm 7 is the union-find-based max-tree algorithm as
proposed by [15]. It starts with sorting pixels that can be done with a counting sort
algorithm for low-quantized data or with a radix sort-based algorithm for high quantized
data [5].Then it annotates all pixels as unprocessed with −1 (in common implementations,
pixels are positive offsets in a pixel buffer). Later in the algorithm, when a pixel p is
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Algorithm 7: Union-find without union-by-rank.

function Find-root(par, p)
if par(p) 6= p then par(p)← find-root(par, par(p));
return par(p)

function Maxtree( f )
foreach p do parent(p)← −1;
S← sort pixels increasing;
foreach p ∈ S backward do

parent(p)← p; zpar(p)← p; /* make-set */

foreach n ∈ Np such that parent(n) 6= −1 do

r ← find-root(zpar, n);
if r 6= p then zpar(r)← p; parent(r)← p /* merge-set */ ;

Canonicalize(parent, S);
return (parent, S);

function Canonicalize( f , parent, S)
foreach p in S forward do

q← parent(p);
if f (q) = f (parent(q)) then parent(p)← parent(q);

processed it becomes the root of the component i.e parent(p) = p with p 6= −1, thus
testing parent(p) 6= −1 stands for is p already processed. Since S is processed in reverse
order and merge-set sets the root of the tree to the current pixel p (parent(r) ← p), it
ensures that the parent p will be seen before its child r when traversing S in the direct
order.

a.3.1.2 Union-by-rank

The algorithm given in Algorithm 8 is similar to the one in Algorithm 7 but augmented
with union-by-rank. It first introduces a new image rank. The make-set step creates a tree
with a single node, thus with a rank set to 0. The rank image is then used when merging
two connected sets in zpar. Let zp be the root of the connected component of p, and zn be
the root of connected component of n ∈ N (p). When merging two components, we have
to decide which of zp or zn becomes the new root w.r.t their rank. If rank(zp) < rank(zn),
zp becomes the root, zn otherwise. If both zp and zn have the same rank then we can
choose either zp or zn as the new root, but the rank should be incremented by one. On
the other hand, the relation parent is unaffected by the union-by-rank, p becomes the
new root whatever the rank of zp and zn. Whereas without balancing the root of any
point p in zpar matches the root of p in parent, this is not the case anymore. For every
connected components we have to keep a connection between the root of the component
in zpar and the root of max-tree in parent. Thus, we introduce an new image repr that
keeps this connection updated.
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Algorithm 8: Union-find with union-by-rank

function Maxtree( f )
foreach p do parent(p)← −1;
S← sort pixels increasing;
foreach p ∈ S backward do

parent(p)← p; zpar(p)← p ; /* make-set */

rank(p)← 0; repr(p)← p; zp ← p;
foreach n ∈ Np s.t. parent(n) 6= −1 do

zn ← find-root(zpar, n);
if zn 6= zp then

parent(repr(zn))← p;
if rank(zp) < rank(zn) then swap(zp, zn);
zpar(zn)← zp; repr(zp)← p ; /* merge-set */

if rank(zp) = rank(zn) then rank(zp)← rank(zp) + 1;

Canonicalize(parent, S);
return (parent, S)

The union-by-rank technique and structure update are illustrated in Figure 67. The
algorithm has been running until processing E at level 12, the first neighbor B has already
been treated and neighbors D and F are skipped because not yet processed. Thus, the
algorithm is going to process the last neighbor H. zp is the root of p in zpar and we
retrieve the root zn of n with find-root procedure. Using repr mapping, we look up the
corresponding point r of zn in parent. The tree rooted in r is then merged to the tree
rooted in p (parent merge). Back in zpar, the components rooted in zp and zn merge.
Since they have the same rank, we choose arbitrary zp to be the new root.

The algorithm in Algorithm 8 is slightly different from the one of [91]. They use two
union-find structures, one to build the tree, the other to handle flat zones. In their paper,
lowernode[zp] is an array that maps the root of a component zp in zpar to a point of
current level component in parent (just like repr(zp) in our algorithm). Thus, they apply a
second union-find to retrieve the canonical element. This extra union-find can be avoided
because lowernode[x] is already a canonical element, thus f indoot on lowernode(zp) is
useless and so does parent balancing on flat zones.

a.3.1.3 Canonicalization

Both algorithms call the Canonicalize() procedure to ensure that any node’s parent
is a canonical node. In Algorithm 7, canonical property is propagated downward. S is
traversed in direct order such that when processing a pixel p, its parent q has the canonical
property that is parent(q) is a canonical element. Hence, if q and parent(q) belongs to the
same node i.e f (q) = f (parent(q)), the parent of p is set to the component’s canonical
element: parent(q).
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Figure 67: Union-by-rank. (a) State of the algorithm before processing the neighbor H

from E. (b) State of the algorithm after processing.

a.3.1.4 Level compression

Union-by-rank provides time complexity guaranties at the price of an extra memory
requirement. When dealing with huge images, it results in a significant drawback (e.g.
RAM overflow. . . ). Since the last point processed always becomes the root, union-find
without rank technique tends to create a degenerate tree in flat zones. Level compression
avoids this behavior by a special handling of flat zones. In Algorithm 9, p is the point
in process at level λ = f (p), n a neighbor of p already processed, zp the root of Pλ

p (at
first zp = p), zn the root of Pλ

n . We suppose f (zp) = f (zn), thus zp and zn belong to the
same node and we can choose any of them as a canonical element. Normally p should
become the root with child zn but level compression inverts the relation, zn is kept as the
root and zp becomes a child. Since parent may be inverted, S array is not valid anymore.
Hence S is reconstructed, as soon as a point p gets attached to a root node, p will not be
processed anymore so it is inserted in back of S. At the end S only misses the tree root
which is parent[S[0]].

a.3.2 Flooding algorithms

A second class of algorithms, based on flooding, contrasts with the immersion-based
algorithms described in the previous section A.3.1. Salembier et al. [114] proposed the
first efficient algorithm to compute the max-tree. A propagation starts from the root that
is the pixel at lowest level lmin. Pixels in the propagation front are stored in a hierarchical
queue composed by as many FIFO queues as the number of levels. It allows to access
directly any pixel in the FIFO queue at a given level. Algorithm 10 shows a slightly
modified version of Salembier’s original algorithm where the original STATUS image
is replaced by the parent image having the same role. The flood(λ, r) procedure is in
charge of flooding the peak component Pλ

r and building the corresponding sub max-tree
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Algorithm 9: Union-find with level compression.

function Maxtree( f )
foreach p do parent(p)← −1;
S← sort pixels increasing;
j = N − 1;
foreach p ∈ S backward do

parent(p)← p; zpar(p)← p; zp ← p ; /* make-set */

foreach n ∈ Np s.t. parent(n) 6= −1 do

zn ← find-root(zpar, n);
if zp 6= zn then

if f (zp) = f (zn) then swap(zp, zn);
zpar(zn)← zp; parent(zn)← zp ; /* merge-set */

S[j]← zn; j← j− 1;

S[0]← parent[S[0]];
Canonicalize(parent, S);
return (parent, S)

rooted in r. It proceeds as follows: first pixels at level λ are retrieved from the queue,
their parent pointer is set to the canonical element r and their neighbors n are analyzed.
If n is not in the queue and has not yet been processed, then n is pushed in the queue for
further processing and n is marked as processed (parent(n) is set to INQUEUE which is
any value different from -1). If the level l of n is higher than λ then n is in the childhood
of the current node, thus flooding is halted at the current level and a recursive call to
flood initiates the process for the peak component Pl

n rooted in n. During the recursive
flooding, some points can be pushed in the queue between level λ and l. Hence, when
flood ends, it returns the level l′ of n’s parent. If l′ > λ, we need to flood levels l′ until
l′ ≤ λ i.e. until there are no more points in the queue above λ. Once all pixels at level
λ have been processed, we need to retrieve the level lpar of the parent component and
attach r to its canonical element. A levroot array stores the canonical element of each
level component and -1 if the component is empty. Thus we just have to traverse levroot

looking for lpar = max{h < λ, levroot[h] 6= −1} and set the parent of r to levroot[lpar].
Since the construction of parent is bottom-up, we can safely insert p in front of the S array
each time parent(p) is set. For a level component, the canonical element is the last element
inserted ensuring a correct ordering of S. Note that the pass which gets the minimum
level of the image is not necessary. Instead, we could have called flood in Max-tree

procedure until the parent level returned by the function was -1, i.e the last flood call
was processing the root. Anyway, this pass has other advantages for optimization that
will be discussed in the implementation details section.

Salembier et al. [114]’s algorithm was rewritten in a non-recursive implementation in
[56] and later by [96] and [133]. These algorithms differ in only two points. First, [133] uses
a pass to retrieve the root before flooding to mimics the original recursive version while
[96] does not. Second, priority queues in [96] use an unacknowledged implementation of
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Algorithm 10: Salembier et al. [114]
max-tree algorithm.

function flood(λ, r)
while hqueue[λ] not empty do

p← pop(hqueue[λ]);
parent(p)← r;
if p 6= r then

insert_front(S, p)
foreach n ∈ N (p) s.t.
parent(p) = −1 do

l ← f (n);
if levroot[l] = −1 then

levroot[l]← n

push(hqueue[l], n);
parent(n)← INQUEUE;
while l > λ do

l ← f lood(l, levroot[l])

/* Attach to parent */

levroot[λ]← −1;
lpar ← λ− 1;
while lpar ≥ 0 and

levroot[lpar] = −1 do
lpar ← lpar− 1

if lpar 6= −1 then
parent(r)← levroot[lpar]

insert_front(S, r);
return lpar

function Max-tree(f )
foreach h do levroot[h]← −1;
foreach p do parent(p)← −1;
lmin ← minp f (p);
pmin ← arg minp f (p);
push(hqueue[lmin], pmin);
levroot[lmin]← pmin;
flood(lmin, pmin);

Algorithm 11: Non-recursive max-tree algo-
rithm [96, 133].

function ProcessStack(r, q)
λ← f (q);
pop(levroot);
while levroot not empty and

λ < f (top(levroot)) do

insert_front(S, r);
r ← pop(levroot); parent(r)← r;

if levroot empty or f (top(levroot)) 6= λ then
push(levroot, q)

parent(r)← top(levroot);
insert_front(S, r);

function Max-tree( f )
foreach p do parent(p)← −1;
pstart ← any point in Ω;
push(pqueue, pstart); push(levroot, pstart);
parent(pstart)← INQUEUE;
loop

p← top(pqueue); r ← top(levroot);
foreach n ∈ N (p) s.t. parent(p) = −1 do

push(pqueue, n);
parent(n)← INQUEUE;
if f (p) < f (n) then

push(levroot, n);
goto 16;

/* p is done */

pop(pqueue);
parent(p)← r;
if p 6= r then insert_front(S, p);

while pqueue not empty
// all pts at current level done?

q← top(pqueue);
if f (q) 6= f (r) then

// Attach r to its parent

ProcessStack(r, q);

root← pop(levroot);
insert_front(S, root);

heap based on hierarchical queues while in [133] they are implemented using a standard
heap (based on comparisons). The algorithm given in Algorithm 11 is a code transcription
of the method described in [96]. The array levroot in the recursive version is replaced
by a stack with the same purpose: storing the canonical element of level components.
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The hierarchical queue hqueue is replaced by a priority queue pqueue that stores the
propagation front. The algorithm starts with some initialization and chooses a random
point pstart as the flooding point. pstart is enqueued and pushed on levroot as a canonical
element. During the flooding, the algorithm picks the point p at highest level (with the
highest priority) in the queue, and the canonical element r of its component which is
the top of levroot (p is not removed from the queue). Like in the recursive version, we
look for neighbors n of p and enqueue those that have not yet been seen. If f (n) > f (p),
n is pushed on the stack and we immediately flood n (a goto that mimics the recursive
call). On the other hand, if all neighbors are in the queue or already processed then p

is done, it is removed from the queue, parent(p) is set its the canonical element r and if
r 6= p, p is added to S (we have to ensure that the canonical element will be inserted
last). Once p removed from the queue, we have to check if the level component has been
fully processed in order to attach the canonical element r to its parent. If the next pixel
q has a different level than p, we call the procedure ProcessStack that pops the stack,
sets parent relationship between canonical elements and inserts them in S until the top
component has a level no greater than f (q). If the stack top’s level matches q’s level, q

extends the component so that no more processing is needed. On the other hand, if the
stack gets empty or the top level is lesser than f (q), then q is pushed on the stack as the
canonical element of a new component. The algorithm ends when all points in queue
have been processed, then S only misses the root of the tree which is the single element
that remains on the stack.

a.3.3 Merge-based algorithms and parallelism

Whereas the algorithms of the two first classes (Sections A.3.1 and A.3.2) are sequential,
this section is dedicated to parallel algorithms. Merge-based algorithms consist in com-
puting max-trees on sub-parts of images and merging back trees to get the max-tree of the
whole image [100, 135, 77]. Those algorithms are typically well-suited for parallelism since
they adopt a map-reduce idiom. Computation of sub max-trees (map step), done by any
sequential method and merge (reduce-step) are executed in parallel by several threads. In
order to improve cache coherence, images should be split in contiguous memory blocks
that is, splitting along the first dimension if images are row-major. Figure 68 shows an
example of parallel processing using a map-reduce idiom. The domain has been split into
five sub-domains {D1, D2, . . . , D5}, we thus have 5 map operations which run a sequential
algorithm and 4 joins that merge the sub-trees. Figures 68b and 68c show a possible
distribution of the tasks on 3 threads. Note that map-steps and reduce-steps may occur
in parallel, but a single thread may also be in charge of several sub-tree construction.
For instance, the first thread is in charge of computing the sub-trees T1 and T2 for D1

and D2, merging them into a tree T12 and then merging it with the tree computed by the
second thread. Choosing the right number of splits and jobs distribution between threads
is a difficult topic that depends on the architecture (number of threads available, power
frequency of each core). If the domain is not split enough (a number of chunks no greater
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Figure 68: Map-reduce idiom for max-tree computation. (a) Sub-domains of f . (b) A
possible distribution of jobs by threads. (c) Map-reduce operations. M is the
map operator, ⊕ the merge operator.

Algorithm 12: Tree merge algorithm.

function connect(p,q)
x ← findrepr(parent, p);
y← findrepr(parent, q);
if f (x) < f (y) then swap(x, y);
while x 6= y do

/* common ancestor found? */

parent(x)← findrepr(parent, parent(x));
z← parent(x);
if x = z then parent(x)← y ; y← x;
else if f (z) ≥ f (y) then x ← z;
else parent(x)← y; x ← y; y← z;

function findrepr(par, p)
if f (p) 6= f (par(p)) then return p;
par(p)← findrepr(par, par(p));
return par(p)

function mergetree(Di, Dj)

foreach p ∈ Di do

foreach q ∈ (N (p) ∩ Dj) do
connect(p,q)

than the number of threads) the parallelism is not maximal, some threads become idle
once they have done their jobs, or wait for other thread to merge. On the other hand, if
the number of split gets too large, merging and thread synchronization cause significant
overheads. Since work balancing and thread management are outside the current topic,
they are delegated to high level parallelism libraries such as Intel Threading Building
Blocks (TBB).

The procedure in charge of merging sub-trees Ti and Tj of two adjacent domains Di

and Dj is given in Algorithm 12. For two neighbors p and q in the junction of Di, Dj,
it connects components of p’s branch in Ti to components of q’s branch in Tj until a
common ancestor is found. Let x and y be the canonical elements of the components to
merge with f (x) ≥ f (y) (x is in the childhood to y) and z be the canonical element of
the parent component of x. If x is the root of the sub-tree then it gets attached to y and
the procedure ends. Otherwise, we traverse up the branch of x to find the component
that will be attached to y that is the lowest node having a level greater than f (y). Once
found, x gets attached to y, and we now have to connect y to x’s old parent. findrepr(p)
is used to get the canonical element of p’s component whenever the algorithm needs it.
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Algorithm 13: Canonicalization and S computation algorithm.

function CanonicalizeRec(p)
dejavu(p) = true;
q← parent(p);
if not dejavu(q) then

// Process parent before p
CanonicalizeRec(q);

if f (q) = f (parent(q)) then // Canonicalize

parent(p)← parent(q);

InsertBack(S, p);

function Post-process(parent, f )
foreach p do dejavu(p)← False;
foreach p ∈ Ω s.t. not dejavu(p) do

CanonicalizeRec(p);

return (parent, S)

Once sub-trees have been computed and merged into a single tree, it does not hold
canonical property (because non-canonical elements are not updated during merge). Also,
the reduction step does not merge the S arrays corresponding to sub-trees (it would imply
reordering S which is more costly than just recomputing it at the end). Algorithm 13

shows an algorithm that canonicalizes and reconstructs S array from parent image. It
uses an auxiliary image dejavu to track nodes that have already been inserted in S. As
opposed to other max-tree algorithms, construction of S and processing of nodes are
top-down. For any points p, we traverse in a recursive way its path to the root to process
its ancestors. When the recursive call returns, parent(p) is already inserted in S and holds
the canonical property, thus we can safely insert back p in S and canonicalize p as in
Algorithm 7.

a.3.4 Implementation details

Algorithms have been implemented in pure C++ using STL implementation of some basic
data structures (heaps, priority queues), the Milena image processing library to provide
fundamental image types and I/O functionality, and Intel TBB [109] for parallelism.
Specific implementation optimizations are listed below:

Sort optimization. A counting sort is used when quantization is lower than 18 bits. For
large integers of q bits, it switches to 216-based radix sort requiring q/16 counting sorts.

Pre-allocation. Queues and stacks are pre-allocated to avoid dynamic memory reallo-
cation. Hierarchical queues are also pre-allocated by computing image histogram as a
pre-processing.

Priority-queues. A heap is implemented with hierarchical queues when quantization is
less than 18 bits. For large integer it switches to the STL standard heap implementation. A
“y-fast trie” data structure [136] can be used for large integer ensuring a better complexity
(see Appendix A.4.1) but no performance gain has been obtained.

Map-reduce. In the parallel version of the algorithms, all instructions that deal about
S construction and canonicalization have been removed since S is reconstructed from
scratch and parent canonicalized by the procedure in Algorithm 13
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Time complexity Auxiliary space requirement
Algorithm Small int Large int Generic V Small int Large int Generic V
Berger [15] O(n log n) O(n log n) O(n log n) n + k + O(n) 2n + O(n) n + O(n)
Berger + rank O(n α(n)) O(n log log n) O(n log n) 3n + k + O(n) 4n + O(n) 3n + O(n)
Najman and Couprie [91] O(n α(n)) O(n log log n) O(n log n) 5n + k + O(n) 6n + O(n) 5n + O(n)
Salembier et al. [114] O(nk) O(nk) ≃ O(n2) N/A 3k + n + O(n) 2k + n + O(n) N/A
Nistér and Stewénius [96] O(nk) O(nk) ≃ O(n2) N/A 2k + 2n 2k + 2n N/A
Wilkinson [133] O(n log n) O(n log n) O(n log n) 3n 3n 3n
Salembier non-recursive O(nk) O(n log log n) O(n log n) 2k + 2n 3n 3n
Map-reduce O(A(k, n)) O(A(k, n)) + O(k

√
n log n) . . . + n . . . + n . . . + n

Matas et al. [77] O(n) O(n) + O(k
√

n(log n)2) k + n 2n 2n

Table 3: Complexity and space requirements of many max-tree algorithms. n is the
number of pixels and k the number of gray levels.

a.4 algorithms comparison

a.4.1 Complexity analysis

Let n = H ∗W with H the image height, W the image width and n the total number of
pixels. Let k be the number of values in V.

a.4.1.1 Immersion algorithms

They require sorting pixels, a process of Θ(n + k) complexity (k≪ n) for small integers
(counting sort), O(n log log n) for large integers (hybrid radix sort), and O(n log n) for
generic data types with a more complicated ordering relation (comparison sort). Union-
find is O(n log n) and O(nα(n)) when used with union-by-rank 1. Canonicalization is
linear and does not use extra memory. Memory-wise, sorting may require an auxiliary
buffer depending on the algorithm and histograms for integer sorts thus Θ(n + k)

extra-space. Union without rank requires a zpar image for path compression (Θ(n))

and the system stack for recursive calls in findroot which is O(n) (findroot could be
non-recursive, but memory space is saved at the cost of a higher computational time).
Union-by-rank requires two extra images (rank and repr) of n pixels each.

a.4.1.2 Flooding algorithms

They require a priority queue to retrieve the highest point in the propagation front. Each
point is inserted and removed once, thus the complexity is Θ(np) where p is the cost of
pushing or popping from the heap. If the priority queue is encoded with a hierarchical
queue as in [114, 96], it uses n + 2k memory space, provides constant insertion and
constant access to the maximum but popping is O(k). In practice, in images with small
integers, gray level difference between neighboring pixels is far to be as large as k. With
high dynamic image, a heap can be implemented with a y-fast trie [136], which has
insertion and deletion in O(log log k) and access to maximum element in O(1). For any
other data type, a “standard” heap based on comparisons requires n extra space, allows
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Figure 69: (a) Comparison of the algorithms on 8-bit images as a function of the size; (b)
Comparison of the algorithms on 8 Mega-pixels images as a function of the
quantization.

insertion and deletion in O(log n) and has a constant access to its maximal element. Those
algorithms need an array or a stack of respective size k and n. Salembier’s algorithm uses
the system stack for a recursion of maximum depth k, hence O(k) extra-space.

a.4.1.3 Merge-based algorithms

The complexity depends on A(k, n), the complexity of the underlying method used to
compute the max-trees of sub-domains. Let s = 2h the number of sub-domains. The map-
reduce algorithms require s mapping operations and s− 1 merges. A good map-reduce
algorithm would split the domain to form a full and complete tree so we assume all
leaves to be at level h. Merging sub-trees of size n/2 has been analyzed in [135] and is
O(k log n) (we merge nodes of every k levels using union-find without union-by-rank).
Thus, the complexity of a single reduction is O(Wk log n). Assuming s constant and
H = W =

√
n the complexity as a function of n and k of the map-reduce algorithm is

O(A(k, n)) +O(k
√

n log n). When there is as many splits as rows, s is now dependent on
n. This leads to Matas et al. [77] algorithm whose complexity is O(n) + O(k

√
n(log n)2).

Contrary to what they claim, when values are small integers the complexity stays
linear and is not dominated by merging operations. Finally, canonicalization and S

reconstruction have a linear time complexity (CanonicalizeRec is called only once for
each point) and only use an image of n elements to track points already processed. The
complexity analysis for each algorithm as well as the memory required by any auxiliary
data structure (including preallocated stacks and queues) is summerized in Table 3.
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Figure 70: (a,b) Comparison of the parallel algorithms on a 6.8 Mega-pixels 8-bits image
as a function of number of threads. (a) Wall clock time; (b) speedup w.r.t the
sequential version; (c) Comparison of the parallel algorithms using 8 threads
on a 6.8 Mega-pixels image as a function of the quantization.

a.4.2 Experiments

Benchmarks were performed on an Intel Core i7 (4 physical cores, 8 logical cores). The
programs were compiled with gcc 4.7, optimization flags on (-O3 -march=native). Tests
were conducted on a dataset of 8-bit images that were re-sized by cropping or tiling
the original image. Over-quantization was performed by shifting the eight bits left and
generating missing lower bits at random. Figure 69 depicts performance of the sequential
algorithms w.r.t to the size and the quantization. As a first remark, we notice that all
algorithms are linear in practice. On natural images, the n log n upper bound complexity
of the [133] and [15] algorithms is not reached. Algorithms from [15] and [91] have quite
the same running time (±6% on average), however the performance of [91] algorithm
drops significantly at 256 Mega-pixels. Indeed, at that size each auxiliary array/image
requires 1 GB memory space, thus [91], which use a lot of memory, exceeds the 6 GB
RAM limit and needs to swap. Our implementation of union-by-rank uses less memory
and is on average 42% faster than [91]. Level compression is an efficient optimization that
provides 35% speedup on average on [15]. However, this optimization is only reliable
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on low quantized data. Figure 69b shows that it is relevant up to 18 bits. It operates on
flat-zones but when quantization gets higher, flat-zones are less probable and the tests
add worthless overheads (see Figure 71). Union-find is not affected by the quantization
but sorting does, counting sort and radix sort complexities are respectively linear and
logarithmic with the number of bits. The break in union-find curves between 18 and 20

bits stands for the switch from counting to radix sort. Flooding-based algorithms using
hierarchical queues outperform our union-find by rank on low quantized image by 41%
on average. As expected, [114] and [96] (which is the exact non-recursive version of the
former) closely match. However, the exponential cost of hierarchical queues w.r.t the
number of bits is evident on Figure 69b. By using a standard heap instead of hierarchical
queues, [133] does scale well with the number of bits and outperforms every algorithms
except our implementation of union-by-rank. In [133], the algorithm is supposed to match
[114]’s method for low quantized images, but in our experiments it remains 4 times slower.
Since [91]’s algorithm is always outperformed by our implementation of union-find by
rank, it will not be tested any further. Furthermore, because of the strong similarities
of [96] and [133], they are merged in our single implementation (called Non-recursive

Salembier below) that will use hierarchical queues when quantization is below 18 bits and
switches to a standard heap implementation otherwise. Finally, the algorithm Berger +

level compression will enable level compression only when the number of bits is below 18.
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Figure 73: Decision tree to choose the appropriate max-tree algorithm.

Figure 70 shows the results of the map-reduce idiom applied on many algorithms and
their parallel versions. As a first result, we can see that better performance is generally
achieved with 8 threads that is when the number of threads matches the number of
(logical) cores. However, since there are actually only 4 physical cores, we can expect
a ×4 maximum speedup. Some algorithms benefit more from map-reduce than others.
Union-find-based algorithms are particularly well-suited for parallelism. Union-find with
level compression achieves the best speedup, 3.6 times faster that the sequential version
while the union-find by rank, second, performs a ×3.1 speedup. More surprisingly, the
map-reduce pattern achieves significant speedup even when a single thread is used (×1.7
and ×1.4 for union-find with level compression and union-find by rank respectively).
This result is explained by a better cache coherence when working on sub-domains that
balances tree merges overheads. On the other hand, flooding algorithms do not scale that
well because they are limited by post-processes. Indeed, Figure 72 shows that 76% of the
time of parallelized Salembier’s algorithm is spent in post-preprocessing (that is going
to happen as well for union-find algorithms on architectures with more cores). In [135]
and [77], they obtain a speedup almost linear with the number of threads because only a
parent image is built. If we remove the canonicalization and the S construction steps, we
also get those speedups. Figure 70c shows the exponential complexity of merging trees
as number of bits increases that makes parallel algorithms unsuitable for high quantized
data. In light of the previous analysis, Figure 73 provides some guidelines on how to
choose the appropriate max-tree algorithm w.r.t. to image types and architectures.

a.5 conclusion

In this paper, we tried to lead a fair comparison of max-tree algorithms in a unique
framework. We highlighted the fact that there is no such thing as the “best” algorithm
that outranks all the others in every case and we provided a decision tree to choose the
appropriate algorithm w.r.t. to data and hardware. We proposed a max-tree algorithm
using union-by-rank that outperforms the existing one from [91]. Furthermore, we
proposed a second one that uses a new technique, level compression, for systems with
strict memory constraints. Extra-materials including the image dataset used for this
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comparison, and a “reproducible research” code, intensively tested, is available on the
Internet at http://www.lrde.epita.fr/Olena/MaxtreeReview.

Actually the union-find algorithm is a versatile tool used in many algorithms. A
recent publication [46] shows that the morphological tree of shapes, which is a self-dual
representation of the image contents, can also be computed using union-find. In [95], a
specific binary tree, corresponding to an ordered version of the edges of the minimum
spanning tree, is computed thanks to a Kruskal-like algorithm and involves the union-
find algorithm. Thus, the results presented in this paper also apply to obtain those trees
in the most efficient way.

http://www.lrde.epita.fr/Olena/MaxtreeReview
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b.1 introduction

The Tree of Shapes (ToS) [85] is an important morphological structure that represents
images in a self-dual way. Shortly put it can be seen as the result of merging the pair of
dual component trees, min-tree and max-tree, into a single tree. Using the ToS has many
advantages. Since it is self-dual, it makes no assumption about the contrast of objects
(either light object over dark background or the contrary). We only have one structure
that represents the image contents so we do not have to juggle with the couple of dual
trees. It intrinsically eliminates the redundancy of information contained in those trees.
Last, it encodes the spatial inclusion of connected components in gray-level images so
it is complementary to some other representations that focus on component (or region)
adjacency. As a consequence the ToS is not only an easy access to self-dual operators
such as grain filters but it has many applications, as listed in [80] (pp. 15–17), and some
very recent works illustrate several powerful perspectives offered by that tree (see [139,
141, 144], and their bibliography).

In the following we consider a nD digital image u as a function defined on a regular
cubical grid (precisely, u : Zn → Z), and to properly deal with some subsets of Zn and
with their complementary, we consider the dual connectivities c2n and c3n−1. For any
λ ∈ Z, the lower (strict) cuts1 and upper (large) cuts of u are defined as [ u < λ ] =

{ x ∈ X | u(x) < λ } and [ u ≥ λ ] = { x ∈ X | u(x) ≥ λ }. From them we deduce two
sets, T<(u) and T≥(u), composed of the connected components of respectively lower and
upper cuts of u: T<(u) = { Γ ∈ CCc2n([ u < λ ]) }λ and T≥(u) = { Γ ∈ CCc3n−1([ u ≥
λ ]) }λ, where CC denotes the operator that gives the set of connected components of
a set. The elements of T<(u) and T≥(u) respectively give rise to two dual trees: the
min-tree and the max-tree of u. We then define two other sets, S<(u) (set of lower
shapes) and S≥(u) (set of upper shape), as the sets of components of resp. T<(u) and

1 We can indifferently use the term “cut” or “threshold”.
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Figure 74: Three morphological trees of the same image.

T≥(u) after having filled the cavities 2 of those components. With the cavity-filling (or
saturation) operator denoted by H, we have: S<(u) = {Hc3n−1(Γ); Γ ∈ T<(u) } and
S≥(u) = {Hc2n(Γ); Γ ∈ T≥(u) }.

The set of all shapes S(u) = S<(u) ∪ S≥(u) forms a tree, the so-called Tree of
Shapes (ToS) of u [85]. Indeed, for any pair of shapes Γ and Γ′ in S, we have Γ ⊂
Γ′ or Γ′ ⊂ Γ or Γ ∩ Γ′ = ∅. Actually, the shapes are the cavities of the elements of T<
and T≥. For instance, if we consider a lower component Γ ∈ [ u < λ ] and a cavity H of
Γ, this cavity is an upper shape, i.e., H ∈ S≥. Furthermore, in a discrete setting, H is
obtained after having filled the cavities of a component of [ u ≥ λ ]. Figure 74 depicts on a
sample image the three components trees (T<, T≥, and S). Just note that the Equations so
far rely on the pair of dual connectivities, c2n and c3n−1, so discrete topological problems
are avoided, and, in addition, we are forced to consider two kind of cuts: strict ones for
c2n and large ones for c3n−1.

The state-of-the-art of ToS computation (detailed in appendix B.5) suffers from two
major flaws: existing algorithms have a time complexity of O(n2) and they cannot easily
be extended to nD images. Briefly put, this is due to the fact that either they follow shape
contours or they have to know if a component has a cavity2. This paper presents an
algorithm that can compute the ToS with quasi-linear time complexity when image data
are low quantized; furthermore this algorithm straightforwardly applies to nD images.

This paper is organized as follows. First we explain that a well-known algorithmic
scheme can be reused to compute the ToS (appendix B.2). Then this paper introduces a
new discrete representation of images (appendix B.3) that has some properties borrowed
from the continuous world. At that point we are ready to glue together the algorithmic

2 In 2D, a cavity of a set S ∈ Ω is called a “hole”; in nD, it is a connected component of Ω\S which is not
the “exterior” of S. Browsing the elements of S in nD, with n ≥ 3, does not allow to know whether S has a
cavity or not[54].
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scheme and the novel image representation to present a quasi-linear algorithm that
compute the ToS (appendix B.4). Related works about that tree computation is presented
so that the reader can compare our approach to existing ones (appendix B.5). Last, we
give a short conclusion (appendix B.6) 3.

b.2 algorithmic scheme and the need for continuity

This section shows that the max-tree algorithm presented in [15] is actually an algorithmic
“canvas” [47], that is, a kind of meta-algorithm that can be “filled in” so that it can serve
different aims. In the present paper it gives an algorithm to compute the ToS.

b.2.1 About union-find and component trees

An extremely simple union-find structure (attributed by Aho to McIlroy and Morris) was
shown by Tarjan [122] to be very efficient. This structure, also called disjoint-set data
structure or merge-find set, has many advantages that are detailed in [27]; amongst them,
memory compactedness, simplicity of use, and versatility. This structure and its related
algorithms are of prime importance to handle connected operators [79, 45].

Algorithm 14: “Union-Find”-based computation of a morphological tree.

function unionfind(R)
for all p do

zpar(p)← undef

for i← N − 1 to 0 do

p← R[i]
parent(p)← p
zpar(p)← p
for all n ∈ N (p) s.t.

zpar(n) 6= undef do

r ← findroot(zpar, n)
if r 6= p then

parent(r)← p
zpar(r)← p

return parent

function findroot(zpar, x)
if zpar (x) = x then

return x

else

zpar(x)← findroot(zpar, zpar(x))
return zpar(x)

function computetree(u)
R ← sort(u)
parent← unionfind(R)
canonicalizetree(u, R, parent)
return (R, parent)

3 Due to limited place, this paper does not contain the following topics (they will be included into an
extended version of this paper). A comparison of execution times of existing algorithms. Actually it is possible to
reduce the space complexity (i.e., memory usage) of the algorithm proposed in this paper so the shorter
version presented here is not our “competitive” version. The union-by-rank procedure that guaranties quasi-linear

complexity. So that the Union-Find routine (given in [15] and recalled in algorithm 14) remains short, its
code does not feature tree balancing; yet it is explained in [27]. A formal proof of our algorithm. This paper
focuses on how the proposed algorithm works and gives an insight into the reasons why it works; to give a
formal proof requires a large amount of materials, the first part of which can be found in [94]. About high

bit-depths data. That case is not detailled in this paper.
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Let us denote by R the ancestor relationship in trees: we have aR p iff a is an ancestor
of p. R can be encoded as an array of elements (nodes) so that aR p ⇔ indexR(a) <

indexR(p); browsing that array thus corresponds to a downwards browsing of the tree,
i.e., from root to leaves. To construct the max-tree of a given image, we rely on a rooted
tree defined by a parenthood function, named parent, and encoded as an nD image (so
parent(p) is an nD point). When a node of the max-tree contains several points, we choose
its first point (with respect to R) as the representative for this node; that point is called a
component “canonical point” or a “level root”. Let Γ denote a component corresponding
to a node of the max-tree, pΓ its canonical element, and pr the root canonical element.
The parent function that we want to construct should verify the following four properties:
1. parent(pr) = pr ; 2. ∀ p 6= pr, parent(p)R p ; 3. p is a canonical element iff p =

pr ∨ u(parent(p)) 6= u(p) ; 4. ∀ p, p ∈ Γ ⇔ u(p) = u(pΓ) ∧ ∃ i, parenti(p) = pΓ

(therefore ∀ p ∈ Γ, p = pΓ ∨ pΓR p).
The routine union_find, given in algorithm 14, is the classical “union-find” algo-

rithm [122] but modified so that it computes the expected morphological tree [15] while
browsing pixels following R−1, i.e., from leaves to root (let us recall that we do not
feature here the union-by-rank version). Its result is a parent function that fulfills those
first four properties. Obtaining the following extra property, “5. ∀p, parent(p) is a canon-
ical element,” is extremely interesting since it ensures that the parent function, when
restricted to canonical elements only, gives a “compact” morphological tree such as the
ones depicted in fig. 74. Precisely it allows to browse components while discarding their
contents: a traversal is thus limited to one element (one pixel) per component, instead of
passing through every image elements (pixels). Transforming the parent function so that
property 5 is verified can be performed by a simple post-processing of the union-find com-
putation. The resulting tree has now the simplest form that we can expect; furthermore
we have an isomorphism between images and their canonical representations.

b.2.2 Computing the max-tree and the ToS

The algorithm presented in [15] to compute the max-tree is surprisingly also able to
compute the ToS. The skeleton, or canvas, of this algorithm is the routine compute_tree

given in the right part of algorithm 14; it is composed of three steps: sort the image
elements (pixels); then run the modified union-find algorithm to compute a tree encoded
by a parent function; last modify the parent function to give that tree its canonical form.

In the case of the max-tree, the sorting step provides R encoded as an array of
points sorted by increasing gray-levels in u, i.e., such that the array indices satisfy
i < i′ ⇒ u(R[i]) ≤ u(R[i′]). When image data are low quantized, typically 12 bit data
or less, then sorting points can be performed by a distribution sort algorithm. Last, the
canonicalization post-processing is a trivial 5-line routine that the reader can find in [15].
In the case of the ToS, it is also a tree that represents an inclusion relationship between
connected components of the input image. As a consequence a first important idea to
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catch is that the ToS can be computed with the exact same routine, union_find, as the
one used by max-tree.

b.2.3 What if...

The major and crucial difference between the max-tree and the ToS computations is
obviously the sorting step. For the union_find routine to be able to compute the ToS
using R−1, the sort routine has to sort the image elements so that R corresponds to
a downward browsing of the ToS. Schematically we expect that R contains the image
pixels going from the “external” shapes to the “internal” ones (included in the former
ones).
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Figure 75: Tree computation of the max-tree (left) and of the ToS(right). For both cases,
the result R of the sorting step is given over the green arrow and the tree
computation, browsing R−1, is progressively depicted.

The similarity between the computations of both trees is illustrated in fig. 75. We
can see that the modified union-find algorithm correctly computes both trees once R is
properly defined. Therefore we “just” need to know how to compute R in the case of the
ToS to turn the canvas given in the previous appendix B.2.2 as the expected algorithm.
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Figure 76: A sample image and its ToS (left); a step towards an ad-hoc image representa-
tion (right).
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Let us consider the image depicted on the left of fig. 76 with its ToS. We can see that
we need to reach the regions A and A’ before the regions B and C in order to properly
sort pixels, i.e., to compute R. It is only possible if we can pass “between” pixels. The
representation depicted on the right of fig. 76 is well-suited for that since it contains
some elements that materialize inter-pixel spaces. Furthermore, given a two adjacent
pixels with respective values 0 and 3, the element in-between them has to bear all the
“intermediate” values: not only 1 but also 2. Indeed, if we change the value of regions
A and A’ from 1 to 2, the tree structure is unchanged but inter-pixel elements between
regions B and C have now to make A and A’ connect with value 2. Eventually we need an
image representation that is “continuous” in some way with respect to both the domain
space and the value space.

b.3 image representation

To be able to sort the image pixels so that R corresponds to a top-down browsing of ToS
elements, this paper introduces a novel representation of images4. It relies on a couple of
theoretical tools briefly described hereafter5.

b.3.1 Cellular complex and Khalimsky grid

From the sets H1
0 = {{a}; a ∈ Z} and H1

1 = {{a, a + 1}; a ∈ Z}, we can define
H1 = H1

0 ∪ H1
1 and the set Hn as the n-ary Cartesian power of H1. If an element h ⊂ Zn

is the Cartesian product of d elements of H1
1 and n− d elements of H1

0 , we say that h

is a d-face of Hn and that d is the dimension of h. The set of all faces, Hn, is called the
nD space of cubical complexes. Figure 77 depicts a set of faces { f , g, h} ⊂ H2 where
f = {0}×{1}, g = {0, 1}×{0, 1}, and h = {1}×{0, 1}; the dimension of those faces are
respectively 0, 2, and 1. Let us write h↑ = {h′ ∈ Hn | h ⊆ h′} and h↓ = {h′ ∈ Hn | h′ ⊆ h}.
The pair (Hn,⊆) forms a poset and the set U = {U ⊆ Hn | ∀h ∈ U, h↑ ⊆ U} is a
T0-Alexandroff topology on Hn. With E ⊆ Hn, we have a star operator st(E) = ∪h∈E h↑

and a closure operator cl(E) = ∪h∈E h↓, that respectively gives the smallest open set and
the smallest closed set of P(Hn) containing E.

f

g

h h

f

g

Figure 77: Three faces depicted as subsets of Z2 (left) and as geometrical objects (middle);
Khalimsky grid (right) with 0- to 2-faces respectively painted in red, blue, and
green.

4 In [94], a formal characterization of the discrete topology underlying this novel representation is presented.
5 The authors recommend [78, 11] for extra readings about those tools.
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The set of faces of Hn is arranged onto a grid, the so-called Khalimsky’s grid, depicted
in gray in fig. 77 (right); and inclusion between faces lead to a neighborhood relationship,
depicted in gray and yellow. The set of 2-faces, the minimal open sets of Hn, is the
n-Cartesian product of H1 and is denoted by Hn

1 .

b.3.2 Set-valued maps

A set-valued map u : X  Y is characterized by its graph, Gra(u) = { (x, y) ∈
X × Y | y ∈ u(x) }. There are two different ways to define the “inverse” of a subset by
a set-valued map: u⊕(M) = { x ∈ X |u(x) ∩M 6= ∅ } is the inverse image of M by u,
whereas u⊖(M) = { x ∈ X |u(x) ⊂ M } is the core of M by u. Two distinct continuities
are defined on set-valued maps. The one we are interested in is the “natural” extension
of the continuity of a single-valued function. When X and Y are metric spaces and when
u(x) is compact, u is said to be upper semi-continuous (u.s.c.) at x if ∀ε > 0, ∃ η > 0
such that ∀ x′ ∈ BX(x, η), u(x′) ⊂ BY(u(x), ε), where BX(x, η) denotes the ball of X of
radius η centered at x. One characterization of u.s.c. maps is the following: u is u.s.c. if
and only if the core of any open subset is open.

b.3.3 Interpolation

Following the conclusions of appendix B.2.3, we are going to immerse a discrete nD
function defined on a cubical grid u : Zn → Z into some larger spaces in order
to get some continuity properties. For the domain space, we use the subdivision X =
1
2 Hn of Hn. Every element z ∈ Zn is mapped to an element m(z) ∈ 1

2 Hn
1 with z =

(z1, . . . , zn) 7−→ m(z) = {z1, z1 +
1
2} × . . .× {zn, zn +

1
2}. The definition domain of u,

D ⊆ Zn, has thus a counterpart in X, that will also be denoted D, and that is depicted in
bold in fig. 78. For the value space, we immerse Z (the set of pixel values) into the larger
space Y = 1

2 H1, where every integer becomes a closed singleton of H1
0 . Thanks to an

“interpolation” function, we can now define from u a set-valued map u = I(u). We have
u : X  Y and we set:

∀ h ∈ X, u(h) =





{ u(m−1(h)) } if h ∈ D
max(u(h′) : h′ ∈ st(cl(h)) ∩D ) if h ∈ 1

2 Hn
1 \D

span(u(h′) : h′ ∈ st(h) ∩D ) if h ∈ X\ 1
2 Hn

1 .
(B.1)

An example of interpolation is given in fig. 78. Actually, whatever u, such a discrete
interpolation I(u) can also be interpreted as a non-discrete set-valued map IR(u) : Rn  

R (schematically IR(u)(x) = I(u)(h) with h such as x ∈ Rn falls in h ∈ 1
2 Hn), and we

can show that IR(u) is an u.s.c. map.
To the authors knowledge the notion of cuts (or thresholds) have not been defined

for set-valued maps. Since they are of prime importance for mathematical morphology,
and for the ToS in particular, we propose in this paper the following definitions. Given
λ ∈ Y, let us state that [u ⊳ λ ] = { x ∈ X | ∀ µ ∈ u(x), µ < λ } and [u ⊲ λ ] = { x ∈
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Figure 78: The function u : Z2 → Z (left) is transformed into the set-valued map u :
1
2 H2  1

2 H1 (middle); d-faces with d ∈ {0, 1} are interval-valued in u with the
span of their respective (d + 1)-face neighbors (right).

X | ∀ µ ∈ u(x), µ > λ }. We can show [94] that, with those definitions, ∀u, ∀λ, [ I(u) ⊳

λ ] and [ I(u) ⊲ λ ] are well-composed [65]. That is, strict cut components and their
complementary sets can be handled both with the same unique connectivity, c2n. As a
consequence, the operators star and H commute on those sets, and we can prove [94]
that:

SI(u) = {Hc2n(Γ); Γ ∈ {CCc2n([ I(u) ⊳ λ ])}λ ∪ {CCc2n([ I(u) ⊲ λ ])}λ }

is a set of components that forms a tree. Moreover, we can also prove that T<(u) = { Γ∩
D; Γ ∈ { CCc2n([ I(u) ⊳ λ + 1/2 ]) }λ∈H0 } and T≥(u) = { Γ ∩D; Γ ∈ { CCc2n([ I(u) ⊲

λ + 1/2 ]) }λ∈H0 }. So eventually we have: S(u) = { Γ ∩ D; Γ ∈ SI(u)}. That final
property means that strict cuts of the interpolation of u, considering only c2n for the
different operators, allows for retrieving the shapes of u, as defined with the pair of dual
connectivities c2n and c3n−1.

b.4 putting things altogether

b.4.1 About saturation and initialization

Classically the root node of the ToS represents the whole image and, formally, the
saturation operator is defined w.r.t. a point at infinity, p∞, located outside the image
domain D. A rather natural idea is that the root level, ℓ∞, should only depend on the
internal border of D (which is unfortunately not the case for the algorithms proposed
in the literature). To that aim, before interpolating u, we add to this image an external
border with a unique value, ℓ∞, set to the median value of the internal border. p∞ is then
one point from the added border.
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Algorithm 15: Sorting for ToS computation.

function priority_push(q, h, U, ℓ)
// modify q
[lower, upper]← U(h)
if lower > ℓ then ℓ′ ← lower
else if upper < ℓ then ℓ′ ← upper
else ℓ′ ← ℓ

push(q[ℓ′], h)

function priority_pop(q, ℓ)
// modify q, and sometimes ℓ

ℓ′ ← level next to ℓ such as q[ℓ′] is not
empty
ℓ← ℓ′

return pop(q[ℓ])

function sort(U)
for all h do

deja_vu(h)← false

i← 0
push(q[ℓ∞], p∞)
deja_vu(p∞)← true
ℓ← ℓ∞ /* start from root level */
while q is not empty do

h← priority_pop(q, ℓ)
u♭(h)← ℓ

R[i]← h
for all n ∈ N (h) s.t. not deja_vu(n) do

priority_push(q, n, U, ℓ)
deja_vu(n)← true

i← i + 1

return (R, u♭)

b.4.2 Handling the hierarchical queue

To sort the faces of the domain X of U, we use a classical front propagation based on a
hierarchical queue [83], denoted by q, the current level being denoted by ℓ. The sorting
algorithm is given in algorithm 15. There are two notable differences with the well-known
hierarchical-queue-based propagation. First the d-faces, with d < n, are interval-valued so
we have to decide at which (single-valued) level to enqueue those elements. The solution
is straightforward: a face h is enqueued at the value of the interval U(h) that is the closest
to ℓ (see the procedure priority_push()). Just also note that we memorize the enqueuing
level of faces thanks to the image u♭ (see the procedure sort). Second, when the queue
at current level, q[ℓ], is empty (and when the hierarchical queue q is not yet empty), we
shall decide what the next level to be processed is. We have the choice of taking the next
level, either less or greater than ℓ, such that the queue at that level is not empty (see the
procedure priority_pop()). Practically choosing going up or down the levels does not
change the resulting tree since it just means exploring some sub-tree before some other
disjoint sub-tree.

The result R of the sorting step is the one expected since the image U, in addition
with the browsing of level in the hierarchical queue, allows for a propagation that is
“continuous” both in domain space and in level space. An interesting property due to the
interpolation and the well-composedness of cuts is that the neighborhood N , used for
faces in the propagation, corresponds to the c2n connectivity on the Khalimsky’s grid.
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b.4.3 Max-tree versus tree of shapes computation

The main body of the ToS computation algorithm is given in algorithm 16. The major
differences between this algorithm and the one dedicated to the max-tree (see the
procedure compute_tree in algorithm 14) are the following ones.

Algorithm 16: ToS computation in five steps.

function compute_tree_of_shapes(u)
U ← interpolate(u)
(R, u♭)← sort(U)
parent← union_find(R)
canonicalize_tree(u♭, R, parent)
return un-interpolate(R, parent)

First the three basic steps (sort, union-find, and canonicalization) are now surrounded
by an interpolation and un-interpolation process. Note that the un-interpolation just
cleans up both R and parent to keep only elements of D. Second, as emphasized in
appendix B.2.2, the sorting step is of course dedicated to the ToS computation. Last, a
temporary image, u♭, is introduced. It is defined on the same domain as u, namely X, and
contains only single-valued elements. This image is the equivalent of the original image u

when dealing with the max-tree: it is used to know when an element h is canonical, that
is, when u♭(parent(h)) 6= u♭(h) (so that image is thus required by the canonicalization
step that runs on X).

Complexity analysis of the algorithm presented here is trivial. The interpolation, canon-
icalization, and un-interpolation are linear. The modified union-find (once augmented
with tree balancing, i.e., union-by-rank) is quasi-linear when values of the input image
u have a low quantization (typically 12 bits or less). Last, the time complexity of the
sorting step is governed by the use hierarchical queue: it is linear with low quantized
data6. Eventually we obtain a quasi-linear algorithm. The representation of the tree with
the pair (R, parent) allows for any manipulation and processing that one expects from a
morphological tree [27].

b.5 related works

The first known algorithm, the “Fast Level Line Transform (fllt)” [85], computes the
max-tree and the min-tree of an image and obtains the ToS by merging both trees. The
main drawback of the fllt is the need to know that a component has an hole (in order
to match it with a component of the other tree). To that aim the Euler characteristic is
computed, which can be done locally (while following the border of components) but

6 Formally the sorting step has the pseudo-polynomial O(k n) complexity, k being the number of different
gray values. Though, since we consider low bit-depths data, k shall only be considered as a complexity
multiplicative factor.
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in 2D only. In [30, 80] the authors show that this fusion approach is sound in nD with
n > 2; yet it cannot be effective in practice due to unacceptable complexity.

In [28] the “Fast Level Set Transform” (flst) relies on a region-growing approach to
decompose the image into shapes. It extracts each branch of the tree starting from the
leaves and growing them up to the root until at least one saddle point is encountered.
Each time a saddle point is encountered, the branch extraction procedure has to stop until
every parallel branch meeting at this point is extracted. So each saddle point invalidates
the shape currently being extracted, forcing the algorithm to visit its pixels again once
a parallel branch is extracted. Since an image like a checkerboard contains O(n) saddle
points meeting on O(n) pixels, the flst has a O(n2) worst case time complexity.

Song [119] takes a top-down approach to build the tree of level lines in O(n + t) time,
where t is the total length of all level lines (note that filling the interior of each level line
allows for retrieving the ToS). The algorithm is restricted to 2D images with hexagonal
pixels. Its key idea is to perform a recursion (starting from the image boundary): for a
given component, follow every contours of its holes, and repeat this procedure for each
hole component. Since the total length of level lines of an image can be of order O(n2),
the worst case has a quadratic-time complexity.

b.6 conclusion

In this paper, we have presented a new algorithm to compute the ToS of an image
which features a quasi-linear time complexity, runs on nD images, and benefits from a
much simpler implementation than existing algorithms. We have also proposed a novel
representation of images as set-valued maps which has some continuity properties while
remaining discrete.

Actually we believe that this representation is a good start to get a “pure” self-duality

for images and operators, that is, a way to get rid of the pair of dual connectivities c2n

and c3n−1, and of the dissymmetry of cuts (strict and large cuts for respectively lower
and upper cuts). In particular, replacing the maximum operator by the median operator
in eq. (B.1) leads to a pure self-dual definition of the ToS of 2D images [94]. Furthermore
the perspectives offered by that new representation might be far from being limited to
the ToS computation.

For our experiments we use our free software library [69]; in particular, the fact that
our tool makes it easy to write generic software in the case of mathematical morphology
and discrete topology is discussed in [70]. The work presented here will be available in
the next release of our software for we advocate reproducible research.
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c.1 introduction

In a large number of applications, processing relies on objects or areas of interest. There-
fore, region-based image representations have received much attention. In mathematical
morphology, several region-based image representations have been popularized by at-
tribute filters [18, 132] or connected operators [114, 113], which are filtering tools that act
by merging flat zones. Such operators rely on transforming an image into an equivalent
region-based representation, generally a tree of components (e.g., the Min/Max-trees [114]
or the tree of shapes [85]). Such trees are equivalent to the original image in the sense that
the image can be reconstructed from the associated tree. Filtering then involves the design
of an attribute function that weighs how important/meaningful a node of the tree is or
how much a node of the tree fits a given shape. The filtering is achieved by preserving
and removing some nodes of the tree according to the attribute function. This filtering
process is either performed classically by thresholding the attribute function [113] or by
considering the tree-based image representations as graphs and applying some filters on
this graph representation [141, 137].

There exist many applications in image processing and computer vision that rely on
tree-based image representations (see [137] for a short review). All these applications share
a common scheme: one computes a tree representation and an attribute function upon
which the tree analysis is performed. The choice of tree representation and the adequacy
of attribute function mainly determine the success of the corresponding applications.

Many algorithms for computing different trees have been proposed (see appendix C.2.2
for a short review). In this paper, we focus on attribute computation, which is also
an important step for the tree-based applications. To the best of our knowledge, only
the algorithms for information computed on region have been presented [135] so far,
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(a) Illustration on a synthetical image. Green: exterior region; Blue: interior region.

(b) Illustration of cerebrospinal fluid detection on MRI images of a newborn’s brain.

Figure 79: Examples of object detection using the context-based energy estimator [139]
relying on contour and context information. An evolution of this attribute
along a branch starting from the yellow point to the root is depicted on the
right side of (a).

none of the existing papers gives explicitly the algorithms computing the other attribute
information employed in tree-based applications. In this paper, firstly, we detail explicitly
how to incrementally compute some information on region, contour, and context. These
informations form the basis for many classical attribute functions (e.g., area, compact-
ness, elongation). Let us remark that contextual information is very adequate for object
detection, such as the context-based energy estimator [139] that relies on information
computed on contour and context. Two examples of object detection using this attribute
are shown in fig. 79. Another type of interesting information is extremal information
along the contour (e.g., the minimal gradient’s magnitude along the boundary). An
example employing this information is the number of false alarms (NFA) for meaningful
level lines extraction [42, 21]. Here we propose an efficient algorithm that does not require
much memory to compute this kind of information. Lastly, we depict an algorithm com-
puting the extinction-based saliency map [137] representing a hierarchical morphological
segmentation using tree-based image representations (two examples are illustrated in
fig. 80). These algorithms form the main contribution of this paper.

The rest of the paper is organized as follows: A short review of some tree-based
image representations and their computations using immersion algorithm are provided
in appendix C.2. Our proposed algorithms to compute some attribute information
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(a) Extinction-based saliency map using color tree of shapes [25].

(b) Circular object oriented extinction-based saliency map.

Figure 80: Illustrations of extinction-based saliency maps from the ToS.

and saliency maps are detailed in appendix C.3, and we analyze in appendix C.4 the
complexity and the memory cost of the proposed algorithms. Finally, we conclude and
give some perspectives in appendix C.5.

c.2 review of morphological trees and their computations

Region-based image representations are composed of a set of regions of the original
image. Those regions are either disjoint or nested, and they are organized into a tree
structure thanks to the inclusion relationship. There are two types of such representations:
fine to coarse hierarchical segmentations and threshold decomposition-based trees. In
this paper, we only consider the threshold decomposition-based trees.

c.2.1 Tree-based Image Representations

Let f be an image defined on domain Ω and with values on ordered set V (typically R

or Z). For any λ ∈ V , the upper level sets Xλ and lower level sets X λ of an image f are
respectively defined by Xλ( f ) = {p ∈ Ω | f (p) ≥ λ} and X λ( f ) = {p ∈ Ω | f (p) ≤ λ}.
Both the upper and lower level sets have a natural inclusion structure: ∀ λ1 ≤ λ2, Xλ1 ⊇
Xλ2 and X λ1 ⊆ X λ2 , which leads to two distinct and dual representations of the image:
Max-tree and Min-tree [114]. The Tree of Shapes (ToS) is a fusion of the Max-tree and
Min-tree via the notion of shapes [85]. A shape is defined as a connected component of an
upper or lower level set with its holes filled in. Thanks to the inclusion relationship of
both kinds of level sets, the set of shapes can be structured into a tree structure, called
the ToS. An example of these trees is depicted in fig. 81.
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Figure 81: Tree-based image representations relying on threshold decompositions.

c.2.2 Tree Computation and Representation

There exist three types of algorithms to compute the Min/Max-tree (see [26] for a com-
plete review): flooding algorithms [114, 133, 96], merge-based algorithms [135, 100], and
immersion algorithms [15, 91]. In this paper, we employ the immersion algorithm to con-
struct the Min/Max-tree. Concerning the ToS [85], there are four different algorithms [85,
119, 28, 46]. We use the one proposed by Géraud et al. [46]. It is similar to the immersion
algorithms used for the Min/Max-tree computation. All these trees feature a common
scheme of process: they start with considering each pixel as a singleton and sorting
the pixels in decreasing tree order (i.e., root to leaves order), followed by an union-find
process (in reverse order) to merge disjoint sets to form a tree structure.

Let R be the vector of the N sorted pixels, and N (p) be neighbors (e.g., 4- or 8-
connectivity) of the pixel p. The union-find process is then depicted in the left column
of algorithm 17, where parent and zpar are respectively the parenthood image and the
root path compression image. The whole process of tree computation is given in the
right column of algorithm 17, where SORT_PIXELS is a decreasing tree order sorting.
The algorithms for computing the Min/Max-tree and the ToS differ in this pixel sorting
step. For the Min/Max-tree, they are either sorted in decreasing order (Min-tree) or
increasing order (Max-tree). If the image f is low quantized, we can use the Bucket sort
algorithm to sort the pixels. Concerning the ToS, the sorting step is more complicated.
It first interpolates the scalar image to an image of range using a simplicial version of
the 2D discrete grid: the Khalimsky grid as shown in fig. 82. We note KΩ, the domain
Ω immersed on this grid. In fig. 82a, the original points of the image are the 2-faces,
the boundaries are materialized with 0-faces and 1-faces. The algorithm in [46] ensures
that shapes are open connected sets (e.g., the purple shape in fig. 82a) and that shapes’
borders are composed of 0-faces and 1-faces only (e.g., the dark curve in fig. 82a). We
refer the interested reader to the work of Géraud et al. [46] for more details on this pixel
sorting step.

The tree structure is encoded through the image parent : Ω → Ω or KΩ → KΩ that
states the parenthood relationship between nodes. In parent, a node is represented by a
single pixel (a 2-face of the Khalimsky grid in the case of the ToS) called the canonical
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Algorithm 17: Tree construction relying on union-find process.

function find_root(zpar, x)
if zpar(x) 6= x then

zpar(x)← find_root(zpar, zpar(x));

return zpar(x)

function union_find(R)
foreach p do zpar(p)← undef;
for i← N − 1 to 0 do

p← R[i];
parent(p)← p; zpar(p)← p;
foreach n ∈ N (p) s.t.

zpar(n) 6= undef do

r ← find_root(zpar, n);
if r 6= p then

parent(r)← p; zpar(r)← p;

return parent

function canonize_T( f ,R, parent)
for i← 0 to N − 1 do

p← R[i];
q← parent(p);
if f (parent(q)) = f (q) then

parent(p)← parent(q);

return parent

function compute_tree( f )
R ← sort_pixels(f);
parent← union_find(R);
parent← canonize_T( f ,R, parent);
return parent

element, and each non-canonical element is attached to the canonical element representing
the node it belongs to. In the following, we denote by getCanonical : Ω→ Ω or KΩ →
KΩ, the routine that returns the canonical element of each point in the image.

c.3 proposed algorithms

In this section, we detail several algorithms related to some applications using tree-based
image representations, including computation of some classical information used in
many attribute functions (accumulated information in appendix C.3.1, and extremal
information along the contour in appendix C.3.2), and computation of extinction-based
saliency maps [137] in appendix C.3.3. For the sake of simplicity, we consider the Min-
tree or Max-tree representation. The algorithms for the ToS construction share the same
principle.

c.3.1 Incremental Computation of Some Accumulated Information

There are three main types of accumulated information: computed on region A (e.g.,
area), on contour L (e.g., length), and on context X (interior context Xi or exterior context
Xe).

attributes computed on regions During the tree construction process, the al-
gorithm starts with the pixels lying on the leaves, and the union-find acts as a region
merging process. The connected components in the tree are built during this region
growing process. We are able to handle information computed on region efficiently, such
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(a) Khalimsky grid.

union  and update

(b) Updating contour. (c) Regional context.

Figure 82: (a): A point in a 2D image is materialized with 0-faces (blue disks), 1-faces
(green strips), and 2-faces (red squares). (b): Updating contour information
when an union between two components (yellow and blue) occurs thanks to a
pixel (gray). (c): The approximated interior and exterior regional context of the
red level line is respectively the dark gray region and the light gray region.

as its size, the sum of gray level or sum of square of gray level that can be used to
compute the mean and the variance inside each region, the moments of each region
based on which we can compute some shape attribute that measures how much a node
fits a specific pattern. The algorithm for computing these information is depicted in
algorithm 18 by adding some additional operations (red lines) to the union-find process
during the tree construction, where iA encodes information on pixels (i.e., 2-faces). For
example if A is the size or the sum of gray level, then iA would be 1 (size of a pixel) or
the pixel value. The operator +̂ is a binary commutative and associative operator having
a neutral element 0̂ [135]. For example, if A is the size, then the operator +̂ and 0̂ would
be the classical operator + and 0 for the initialization.

attributes computed on contours Attribute functions that rely on contour-
related information are also very common, such as the average of gradient’s magnitude
along the contour. Information accumulated on contour can be managed in the same
way as information computed on region. The basic idea is that during the union-find
process, every time a pixel p is added to the current region to form a parent region,
process the four 1-faces which are the four neighbors (4-connectivity) of the current
pixel (i.e., 2-face in the Khalimsky grid in fig. 82a). If a 1-face e is already added to the
current region (i.e., belongs to its boundary), then remove e after adding p, since that
1-face e will be inside the parent region, consequently it is no longer on the boundary.
Otherwise, add this 1-face e. This process is illustrated in fig. 82b. It relies on an image
is_boundary defined on the 1-faces that indicates if the 1-face belongs to the boundary
of some region. Information on contour is computed by adding some supplementary
process (green and gray lines in algorithm 18) to the union-find process, where iL encodes
information defined on 1-faces. For example if L is the contour length or the sum of
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Algorithm 18: Incremental computation of information on region (in red), contour (in
green), and context (in blue). The computation of extremal information is in magenta.
The black lines represent the original union-find process, and the gray lines are used
for the computation of contour, context, and extremal information.

function union_find(R)

for all p do

zpar(p)← undef;
A(p)← 0̂ ; // compution on region (e.g. , area, sum of gray level)

L(p)← 0̂ ; // computation on contour (e.g. , contour length)

Xi(p)← 0̂, Xe(p)← 0̂ ; // computation on context

VL(p)← M̂ ; // extremal information along the contour

for all e do is_boundary(e)← false;
for i← N − 1 to 0 do

p← R[i]; parent(p)← p; zpar(p)← p;
A(p)← A(p) +̂ iA(p) ; // iA: information on pixels (i.e., 2-faces)

for all n ∈ N (p) s.t. zpar(n) 6= undef do

r ← find_root(zpar, n);
if r 6= p then

parent(r)← p, zpar(r)← p;
A(p)← A(p) +̂ A(r);
L(p)← L(p) +̂ L(r);
Xi(p)← Xi(p) +̂ Xi(r), Xe(p)← Xe(p) +̂ Xe(r);

for all e ∈ N4(p) do

if not is_boundary(e) then

is_boundary(e)← True ;
L(p)← L(p) +̂ iL(e) ; // iL: information on 1-faces

// itr
X and idl

X: top-right and down-left context of 1-faces

if e is above or on the right of p then

Xi(p)← Xi(p) +̂ idl
X (e), Xe(p)← Xe(p) +̂ itr

X(e)
else Xi(p)← Xi(p) +̂ itr

X(e), Xe(p)← Xe(p) +̂ idl
X (e);

appear(e)← p;
else

is_boundary(e)← False ;
L(p)← L(p) −̂ iL(e);
if e is above or on the right of p then

Xi(p)← Xi(p) −̂ itr
X(e), Xe(p)← Xe(p) −̂ idl

X (e)
else Xi(p)← Xi(p) −̂ idl

X (e), Xe(p)← Xe(p) −̂ itr
X(e);

vanish(e)← p;

for all e do

Na ← appear(e), Nv ← vanish(e);
while Na 6= Nv do // update: either min or max

VL(Na)← update
(
VL(Na), iL(e)

)
;

Na ← parent(Na);

return parent
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gradient’s magnitude, then iL would be 1 (size of a 1-face) or the gradient’s magnitude
on the 1-faces. The operator −̂ is the inverse of the operator +̂.

attributes computed on contexts In [139], we have presented a context-based
energy estimator that is adequate for object detection (see fig. 79 for some examples).
It relies on regional context information. The interior and exterior contextual region of
a given region S (e.g., a shape) is defined as the set of pixels respectively inside and
outside the region with a distance to the boundary less than a given threshold ε. More
formally, given a ball Bε of radius ε, the exterior and interior of the shape S are defined
as ExtB(S) = δB(S) \ S and IntB(S) = S \ ǫB(S) where δ and ǫ denote the dilation and
erosion.

An approximated interior and exterior contextual region is illustrated in fig. 82c with
ε = 2. As shown in this figure, we approximate the interior region and the exterior
region of each level line by only taking into account the pixels which are aligned
perpendicularly to each 1-face of the level line. Note that some pixels may be counted
several times. Information on context can be computed in the same way as information
on contour. But one has to attend closely to interior and exterior information while doing
the update operation. The algorithm for computing interior (resp. exterior) contextual
information Xi (resp. Xe) is shown in algorithm 18 by adding the gray and blue lines to
the union-find process. This algorithm relies on two pre-computed images defined on
1-faces: itr

X and idl
X that encode information of ε pixels above (horizontal 1-face) or on the

right side (vertical 1-face) of e, and respectively below (horizontal 1-face) or on the left
side (vertical 1-face) of e.

Contextual information can be retrieved exactly at cost of a higher computation
complexity. For every point p, we aim at finding all the shapes for which p is in the
interior or the exterior. Given two points p and q such that q ∈ B(p), we note Sp and Sq

their respective shapes (nodes). We also note Anc = LCA(Sp, Sq) where LCA stands for
the least common ancestor of the two nodes and finally, let [A B) = {S | A ⊆ S ⊂ B}
denotes the path from A to B in the tree. For all shapes S ∈ [Sp  LCA(Sp, Sq)), we
have p ∈ S, but q /∈ S, thus p ∈ IntB(S) and q ∈ ExtB(S) (see fig. 83). The algorithms in
algorithm 19 use the above-mentioned idea to compute contextual information, where
iX stands for information on pixels. A set of nodes DjVu is used to track the shapes
for which the current point has already been considered. If for neighbors q1 and q2,
[Sp  LCA(Sp, Sq1)) and [Sp  LCA(Sp, Sq2)) have shapes in common, they will not be
processed twice.

c.3.2 Computation of Extremal Information along the Contour

Apart from those attributes based on accumulated information, the number of false
alarms (NFA) [42, 21] (see [21] for several examples of meaningful level lines selection
using NFA) requires to compute the minimal gradient’s magnitude along the boundary
of each region. Here we propose an efficient algorithm that requires low memory to
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Sp

Sq=
LCA(Sp,Sq)

Sp

Sq

LCA(Sp,Sq)

Sq

Sp=
LCA(Sp,Sq)

Figure 83: Three cases for contextual computation. p and q are two neighbors (w.r.t. B).
The red path denotes the nodes in [Sp  LCA(Sp, Sq)) for which p is in the
interior and q in the exterior. Left: case Sp ⊂ Sq, middle: case Sp and Sq are in
different paths, right: case Sq ⊂ Sp.

Algorithm 19: Algorithms for exact computation of contextual information Xi and Xe.

function external_context(parent)

foreach node x do Xe(x)← 0̂;
foreach point q in Ω do

DjVu← ∅;
foreach point p in Bε(q) do

Np ← getCanonical(p);
Nq ← getCanonical(q);
Anc← LCA(Np, Nq);
while Np 6= Anc do

if Np 6∈ DjVu then

Xe(Np)← Xe(Np) +̂ iX(q);

DjVu← DjVu∪ {Np};
Np ← parent(Np);

return Xe

function internal_context(parent)

foreach node x do Xi(x)← 0̂;
foreach point p in Ω do

DjVu← ∅;
foreach point q in Bε(p) do

Np ← getCanonical(p);
Nq ← getCanonical(q);
Anc← LCA(Np, Nq);
while Np 6= Anc do

if Np 6∈ DjVu then

Xi(Np)← Xi(Np) +̂ iX(p);

DjVu← DjVu∪ {Np};
Np ← parent(Np);

return Xi

handle this extremal information along the contour VL. It relies on two images appear

and vanish defined on the 1-faces. appear(e) encodes the smallest region Na in the tree
for which the 1-face e lies on its boundary, while appear(e) stands for the smallest region
Nv for which e is inside it. Note that Na and Nv might be equal, e.g., in the case of
1-faces in the interior of a flat zone. The computation of extremal information along
the contour VL is depicted in algorithm 18 by adding the gray and magenta lines to the
union-find process, where M̂ in the initialization step is the maximal (resp. minimal)
value for minimal (resp. maximal) information computation, and the operator “update”
is a “min” (resp. “max”) operator for the minimal (resp. the maximal) information.

c.3.3 Computation of the Saliency Map

As shown in [144, 137], the saliency map introduced in the framework of shape-based
morphology relies on the extinction values E defined on the local minima [125]. Once the
extinction values computed for all the minima (see [125] for details about the computation
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Algorithm 20: Computation of extinction-based saliency mapME .

function compute_saliency_map( f )
(T ,A)← Callcompute_treef;
E ← compute_extinction(T ,A);
foreach edge e doME (e)← 0;
foreach edge e do

Na ← appear(e), Nv ← vanish(e);
while Na 6= Nv do

ME (Na)← max(E(Na),ME (e));
Na ← parent(Na);

foreach 0-face o do
ME (o)← max(ME (e1),ME (e2),ME (e3),ME (e4))

returnME

of the extinction values compute_extinction()), we can weigh the extinction values on
the region boundaries corresponding to the minima. Each 1-face takes the maximal
extinction value of those minima for which this 1-face is on their boundaries. This can
be achieved via two images appear and vanish that have been used in the computation
of extremal information along the contour (as shown in algorithm 18). For each 0-face
o, it takes the maximal value among the four 1-faces e1, e2, e3, and e4 that are neighbors
(4-connectivity) of o in the Khalimsky grid. Finally, the extinction-based saliency map
ME is obtained. The computation of the saliency map is given in algorithm 20.

c.4 complexity analysis

We use the algorithms based on the Tarjan’s Union-Find process to construct the Min-tree
and Max-tree [91, 15, 26] and the ToS [46]. These approaches would take O(n log(n))
time, where n is the number of pixels of the image f . For low quantized images (typically
12-bit images or less), the complexity of the computation of these trees is O(n α(n)),
where α is a very slow-growing “diagonal inverse” of the Ackermann’s function. In this
section, we analyze the additional complexity and the memory usage of the algorithms
proposed in appendix C.3.

c.4.1 Accumulated Information on Region, Contour, and Context

As described in appendix C.3.1 and shown in algorithm 18, information computed on
regions, contours, and contexts (the approximated version) are computed incrementally
during the union-find process. Consequently, they have the same complexity as the
union-find which is O(n α(n)). Besides, the pre-computed images (e.g., iL or itr

X) can be
obtained in linear time, so the O(n α(n)) complexity is maintained. To compute exactly
contextual information as described in algorithm 19, for each pixel p, we have to compute
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the least common ancestor Anc of p and any q ∈ Bε(p) and propagate from Np to Anc.
The computation of the least common ancestor has a O(h) complexity if a depth image
is employed, where h is the height of the tree. Consequently, the total complexity is
O(nε2h).

Apart from the necessary memory of the union-find process, the computation of in-
formation on regions does not require auxiliary memory. For information computed on
contours and contexts (approximated), the auxiliary memory usage is 4n for the interme-
diate image is_boundary (defined on the Khalimsky grid). For the exact computation of
contextual information, we need the depth image (n pixels) used by the least common
ancestor algorithm and the intermediate set DjVu (O(h) elements). The total auxiliary
memory cost is thus n + h.

c.4.2 Extremal Information along the Contour

The algorithm computing extremal information along the contour relies on two auxiliary
images appear and vanish. As described in appendix C.3.2 and shown in algorithm 18,
these two images are computed incrementally during the union-find process. The com-
plexity of this step is O(n α(n)). Then, to compute the final extremal information, for each
1-face e, we have to propagate the value to a set of node (from appear(e) to vanish(e)).
In the worst case, we have to traverse the whole branch of the tree. Consequently, the
complexity would be O(nh). In terms of auxiliary memory cost, it would take 4n for
each intermediate image appear, vanish, and is_boundary. So the total additional memory
cost would be 12n. Such extra cost is acceptable for 2D cases, but become prohibitive
for very large or 3D images. Actually, we could avoid the extra-memory used for the
storage of appear and vanish as the information they provide could be computed on the
fly in each algorithm. Nevertheless, for the purpose of clarification, we have chosen to
compute these information one for all to avoid code redoundancy in the algorithms we
have proposed.

c.4.3 Saliency Map

The computation of extinction-based saliency map given in appendix C.3.3 and depicted
in algorithm 20 also relies on the two temporary images appear and vanish. Suppose
that we have the extinction values E for all the local minima. In the same way as the
computation of extremal information along the contour, for each 1-face e, we have to
propagate from appear(e) to vanish(e). The worst time complexity would be O(nh). The
computation of extinction values E relies on a Max-tree computation process, which is
quasi-linear. The auxiliary memory cost would be 12n (4n for each temporary image
appear, vanish, and is_boundary). Yet, the remark about the memory usage given in
appendix C.4.2 holds for this complexity analysis.
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c.5 conclusion

In this paper, we have pesented several algorithms related to some applications using tree-
based image representations. First of all, we have shown how to incrementally compute
information on region, contour, and context which forms the basis of many widely used
attribute functions. Then we have proposed an algorithm in order to compute extremal
information along the contour (required for some attribute functions, such as the number
of false alarms (NFA)), which requires few extra memory. Finally, we have depicted how
to compute extinction-based saliency maps from tree-based image representations. The
time complexity and the memory cost of these algorithms are also analyzed. To the best
of our knowledge, this is the first time that these algorithms (except for information
computed on region) are explicitly depicted, which allows reproducible research and
facilitates the development of some novel interesting attribute functions. In the future,
extension of these algorithms to 3D images will be studied. And we would like to study
some more attribute functions: learning attribute functions in particular would be one
interesting future work.
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