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ABSTRACT

Satellite image classification is a key task used in remote sensing
for the automatic interpretation of a large amount of information.
Today there exist many types of classification algorithms using ad-
vanced image processing methods enhancing the classification accu-
racy rate. One of the best state-of-the-art methods which improves
significantly the classification of complex scenes relies on Self-Dual
Attribute Profiles (SDAPs). In this approach, the underlying rep-
resentation of an image is the Tree of Shapes, which encodes the
inclusion of connected components of the image. The SDAP com-
putes for each pixel a vector of attributes providing a local multi-
scale representation of the information and hence leading to a fine
description of the local structures of the image. Instead of perform-
ing a pixel-wise classification on features extracted from the Tree of
Shapes, it is proposed to directly classify its nodes. Extending a spe-
cific interactive segmentation algorithm enables it to deal with the
multi-class classification problem. The method does not involve any
statistical learning and it is based entirely on morphological infor-
mation related to the tree. Consequently, a very simple and effective
region-based classifier relying on basic attributes is presented.

Index Terms— Remote Sensing, Classification, Mathematical
Morphology, Tree of Shapes.

1. INTRODUCTION

The development of the latest-generation optical imaging sensors
mounted on board of both terrestrial and satellite Earth observation
platforms have led to the increasing availability of data with high
spatial resolution. Very High Resolution (VHR) remotely sensed
images provide a detailed representation of the surveyed scene
with a geometrical resolution that at present can be up to 30 cm
(WorldView-3). One of the most promising strategy for the analysis
and the interpretation of the spatial information of a scene relies on
hierarchical representations of the content of an image, which are
available for example in the mathematical morphology framework.

The Tree of Shapes (ToS) [1, 2] is a morphological tree that rep-
resents images in a self-dual and contrast invariant way. Due to the
versatility of its structure, the ToS has proven to be a suitable repre-
sentation for addressing many applications, such as visualization [3],
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filtering [4],object detection [5], segmentation [6] and image simpli-
fication [7].

In the field of remote sensing, the ToS is mainly used for produc-
ing a multilevel filtering of images (e.g., from panchromatic, multi-
spectral, hyperspectral). When these filtered images are considered
as features for land cover classification, state-of-art results are ob-
tained. The Self-Dual Attribute Profiles (SDAPs) [8], were proposed
as a version of the Attribute Profiles (APs) [9] based on connected
operators [10] computed on the ToS instead of considering a min
and max-trees [10]. The use of the ToS allows simultaneously the
processing of bright and dark regions of the image, leading conse-
quently to a greater simplification of the image with respect to non
self-dual filters. The basic idea of SDAPs is to study pixel-wise the
behavior of a morphological operator at different levels of filtering.
Specifically, a set of self-dual attribute filters are computed at differ-
ent predefined thresholds that yields the feature space on which the
classification is performed [11, 12]. If, on the one hand, SDAPs pro-
vide meaningful features which allow classifiers to achieve remark-
able classification results, on the other, their effectiveness is strictly
dependent on the selected set of the filter parameters. Recently, the
authors in [13] proposed a novel strategy for the automatic selection
of the thresholds aiming at providing representative SDAPs. The
resulted image decompositions were non-redundant and representa-
tive, and the salient structures were extracted. While the profiles are
automatically generated, they are used for pixel-wise classification.
The zones represented by the nodes of the ToS are not used. In this
paper, the structure of the ToS is exploited and a classification based
on regions is presented.

Nonetheless, the idea of this work started by a simple consider-
ation: the filtered images which compose the SDAPs are computed
by pruning the ToS. Thus, performing the classification directly on
the ToS (i.e., classification of the nodes) should provide comparable
results of the SDAPs since they carry information which is present
in the ToS. The adopted scheme is the interactive segmentation algo-
rithm proposed in [14] for the Multivariate Tree of Shapes [15, 16].
The algorithm is extended to a multi-class classification problem,
with multispectral data sets acquired by QuickBird and IKONOS
sensors over urban areas. The preliminary experiments are con-
ducted by processing each image separately (i.e., channel-wise) with
the ToS. It is shown that the method does not involve any statistical
learning and it is based entirely on morphological information re-
lated to the tree such as gray levels or attribute values of the nodes.
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Fig. 1: Simplified scheme of the band-wise classifier.

2. TREE OF SHAPES

A self-dual tree has been defined in [2], called the Tree of Shapes
(also known as inclusion tree), that describes the image contents in a
unique way; the ToS can be interpreted as the result of merging the
min- and max-tree [10] of the same image. The ToS is a morpho-
logical self-dual representation of the connected components within
an image (i.e., zones enclosed by an isolevel line), also referred to as
flat zones. It was firstly introduced by Monasse et al. [2], where the
structure was computed with the Fast Level Line Transform (FLLT)
algorithm: it first computes the pair of dual component trees and
then obtains the ToS by merging both trees. Afterwards, Caselles et
al. [17] introduced the Fast Level Set Transform algorithm (FLST),
which relies on a region-growing approach to decompose the image
into shapes. An operation called saturation is applied to the con-
nected components which gives flat regions obtained by progres-
sively merging nested regions. Specifically, the algorithm extracts
each branch of the tree starting from the leaves and growing them
up to the root until only a single flat region is reached. Song et al.
[18], proposed to retrieve the ToS by building the tree of level lines
and exploiting its interior of each level line. Recently Geraud et al.
[19] proposed a new algorithm to compute the ToS in order to re-
duce the computational complexity and overcome the restriction to
only 2D images of the previous methods. The algorithm computes
the ToS with quasi-linear time complexity when data quantization is
low (typically 12 bits or less) and it works for nD images. Moreover,
Crozet et al. [20] presented the first parallel algorithm to compute
the morphological ToS based on the previous algorithm [19].

Described more formally, let f : Ω → E be a discrete two-
dimensional grayscale image, defined on a spatial domain Ω ⊆ Z2

and taking values on a set of scalar values E ⊆ Z with an ordering
relation ≤. For any λ ∈ Z, a lower L(f) and upper U(f) threshold
set is defined by:

L(f) = {x ∈ Ω, f(x) < λ}, (1)

U(f) = {x ∈ Ω, f(x) > λ}, (2)

Given X ∈ P the power set of E, the set of connected components
of Xis denoted as CC(X). If ≤ is a total relation, any two con-
nencted components X,Y ∈ CC(L(f)) are either disjoint or nested.
The min-tree and max-tree structures represent the components in
L(f) and U(f) respectively with their inclusion relations. Given the
hole-filling operatorH, a shape is any element of the set:

S = {H(Γ),Γ ∈ CC(L(f)) ∪ CC(U(f))}λ (3)

If ≤ is total, any two shapes are either disjoint or nested, hence the
cover of S,⊆ form the Tree of Shapes.
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Fig. 2: QuickBird Rome (true color image (a) and groundtruth (b))
and IKONOS Reykjavik (true color image (c) and groundtruth (d)).

3. SUPERVISED CLASSIFICATION OF THE TOS

The multi-class classification problem is addressed with an extension
of the interactive segmentation algorithm proposed in [14]. In this
phase of preliminary experiments, the classification of the nodes is
performed on the ToS (i.e., channel-wise) instead of using the Mul-
tivariate Tree of Shapes [15]. The classification is not pixel-based,
since the classifier does not work directly on the image domain but
in the space of the shapes (i.e., connected components), where the
nodes are classified. The approach is based on Nearest Neighbor
classification of nodes, in which neighboring nodes are defined ac-
cording to the tree topology. In the following, the steps of the method
are summarized (see also Fig. 1):

1. Compute the Tree of Shapes T (f) of a gray-scale image f .

2. Estimate an attribute-based distance δ of each pair of con-
nected nodes in the tree. The distance can be computed for
example as a difference of gray-levels, areas, etc.

3. Mark the nodes according to the input training data. If a node
gets labeled with different classes, the majority class is as-
signed,

4. Compute for each non-labeled node S the n distances



Table 1: QuickBird Rome classification accuracies (mean value with its standard deviation in brackets) of each band for different distances

Distance Pan Red Green Blue Near Infrared Majority vote

δval

87.72 (0.09) 91.84 (0.09) 88.49 (0.11) 90.31 (0.08) 86.84 (0.07) 93.96 (0.11)
89.69 (0.08) 93.12 (0.07) 90.32 (0.09) 91.86 (0.07) 88.94 (0.06) 94.92 (0.08)
87.71 (0.15) 92.87 (0.09) 89.58 (0.08) 90.61 (0.09) 86.66 (0.11) 93.34 (0.09)

δatt(area)

87.87 (0.09) 92.06 (0.08) 88.62 (0.11) 90.43 (0.07) 86.99 (0.04) 94.04 (0.11)
89.82 (0.07) 93.31 (0.07) 90.43 (0.08) 91.96 (0.06) 89.07 (0.03) 94.99 (0.08)
87.82 (0.12) 93.03 (0.11) 89.69 (0.08) 90.71 (0.11) 86.81 (0.09) 93.41 (0.12)

δatt(inertia)

87.68 (0.11) 91.86 (0.11) 88.40 (0.12) 90.27 (0.08) 86.80 (0.06) 93.84 (0.11)
89.66 (0.08) 93.14 (0.09) 90.25 (0.09) 91.82 (0.06) 88.91 (0.05) 94.82 (0.08)
87.57 (0.13) 92.81 (0.11) 89.42 (0.09) 90.47 (0.11) 86.54 (0.11) 93.16 (0.09)

Table 2: IKONOS Reykjavik classification accuracies (mean value with its standard deviation in brackets) of each band for different distances

Distance Pan Red Green Blue Near Infrared Majority vote

δval

92.50 (0.16) 90.71 (0.11) 90.60 (0.15) 89.93 (0.12) 91.14 (0.11) 95.28 (0.08)
93.79 (0.13) 92.30 (0.08) 92.22 (0.13) 91.66 (0.11) 92.66 (0.09) 96.09 (0.06)
93.99 (0.11) 92.24 (0.09) 92.12 (0.14) 91.44 (0.12) 92.41 (0.08) 95.98 (0.06)

δatt(area)

92.61 (0.17) 90.83 (0.11) 90.72 (0.16) 90.06 (0.11) 91.27 (0.12) 95.35 (0.07)
93.87 (0.14) 92.41 (0.09) 92.32 (0.13) 91.77 (0.09) 92.77 (0.11) 96.15 (0.06)
94.07 (0.11) 92.35 (0.11) 92.23 (0.14) 91.55 (0.11) 92.52 (0.09) 96.05 (0.06)

δatt(inertia)

92.51 (0.16) 90.69 (0.11) 90.59 (0.17) 89.89 (0.12) 91.08 (0.12) 95.25 (0.09)
93.78 (0.13) 92.29 (0.09) 92.21 (0.14) 91.63 (0.11) 92.61 (0.11) 96.07 (0.08)
93.98 (0.12) 92.23 (0.11) 92.11 (0.15) 91.41 (0.12) 92.36 (0.09) 95.96 (0.08)

{d1, d2, d3, ..., dn} to the closest corresponding n classes.

(i) Initialize each di, with i ∈ {1, 2, 3, ..., n}, as 0 if i is
equal to the label of the node S, otherwise +∞.

(ii) For each class i, from the leaves to the root, com-
pute: di(parent(S)) = min(di(parent(S)), di(S) +
δ(S, parent(S)))

(iii) For each class i, from the root to the leaves, compute:
di(S) = min(di(S), di(parent(S))+δ(S, parent(S)))

5. Classify every non-labeled node with the closest marked node
minc∈{1,2,3,...,n}dc(S).

6. Compute the classification map by retrieving the image from
the labels of T (f) (i.e., each pixel which belongs to a single
node is set to the label assigned to the node).

4. EXPERIMENTAL RESULTS

The first dataset used in our experiments is an image of Rome, Italy,
acquired by the QuickBird satellite. The dataset is composed of
a low-resolution (2.4m) multispectral image with four bands Red,
Green, Blue and Near Infrared and a high spatial resolution panchro-
matic image of 0.6m resolution. This dataset is considered challeng-
ing due to the oblique acquisition angle and the presence of long
shadows. The second dataset is an image of Reykjavik, Iceland, ac-
quired by the IKONOS Earth imaging satellite. As with the other
dataset, it consists of a low-resolution (4m) multispectral image with
the four bands and a high spatial resolution panchromatic image of
1m resolution. For each data set the panchromatic and multispec-
tral images are pansharpened using the undecimated discrete wavelet
transform (UDWT) method [21], and the obtained high-resolution

multispectral images are used for the classification. The true-colour
images and the groundtruth data are shown in Fig. 2.

Given a dataset, the classification is performed on each single
image (i.e., spectral band), as described in Section 3. Each exper-
iment is repeated ten times, randomly selecting 10 % of the refer-
ences samples as training set, and the mean values of the overall
(OA), average (AA) accuracy and kappa (K) coefficient are given.
In the experiments, three different measures δ (see Section 3) were
considered as distances between two nodes : δval difference of their
gray-level, δatt(area) difference of their area attribute values, and
δatt(inertia) difference of their moment of inertia attribute values.

The classification process does not involve any statistical learn-
ing, and the attribute-based distances computed on the ToS are the
only information available to the classifier for making a decision.
The preliminary classification results reported in Table 1 and Table
2, for the Rome and Reykjavik data set, respectively, are promising.
Despite the simplicity of the classifier considered in this work (i.e.,
nearest neighbor) and the use of a single feature (i.e., one spectral
band), very good results are obtained for both datasets achieving an
average OA of 93%. The classification results can be improved with
the fusion of the single results obtained for each spectral band us-
ing a majority voting strategy. This approach outperformed in terms
of average OA the classification results obtained considering a sin-
gle feature (+1.96% and +1.98% for the two datasets, respectively).
Obviously, other fusion criteria can be applied.

In comparison with the results provided by the state-of-the-art
methods ((APs) [9] and (SDAPs) [8][12]), the proposed method
achieves comparable performance, yet slightly lower, without using
sophisticated classification methods (such as SVM and Random
Forest [9]) and several features.



5. CONCLUSION AND PERSPECTIVES

A simple and effective region-based classification of remote sensing
images method developed on the Tree of Shapes representation has
been presented. Despite the simplicity of the Tree of Shapes struc-
ture, its versatility and potential allow for comparable performances
as the currently used sophisticated classification algorithms. Instead
of performing a pixel-based classification, the proposed method re-
lies first on classifying the nodes of the tree. Then, each pixel, which
belongs to a single node, is set to the label assigned to the node.

Additional experiments are needed to establish the performances
of this approach, and for instance clarify why the morphological dis-
tance based on attribute area performs slightly better than the others.
Fusion strategies between the distances may be required in order
to improve the classification results. Moreover, statistical learning
strategies may be integrated within the algorithm in order to improve
the robustness of the classifier.
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[5] Yongchao Xu, Thierry Géraud, and Laurent Najman,
“Context-based energy estimator: Application to object seg-
mentation on the tree of shapes,” in Proceedings of the 19th In-
ternational Conference on Image Processing (ICIP), Orlando,
Florida, USA, 2012, pp. 1577–1580.

[6] Françoise Dibos and Georges Koepfler, “Total variation mini-
mization by the fast level sets transform,” p. 179, jul 2001.

[7] Coloma Ballester, Vicent Caselles, Laura Igual, and Luis Gar-
rido, “Level lines selection with variational models for seg-
mentation and encoding,” Journal of Mathematical Imaging
and Vision, vol. 27, pp. 5–27, 2007.

[8] Mauro Dalla Mura, Jón Atli Benediktsson, and Lorenzo Bruz-
zone, “Self-dual attribute profiles for the analysis of remote
sensing images,” in Mathematical Morphology and Its Ap-
plications to Image and Signal Processing – Proceedings of
the 10th Intl. Symp. on Mathematical Morphology (ISMM),
vol. 6671 of Lecture Notes in Computer Science, pp. 320–330.
Springer, 2011.

[9] Mauro Dalla Mura, Jón Atli Benediktsson, Bjórn Waske, and
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