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Abstract. In this paper we propose an efficient algorithm to perform
a polynomial approximation of the vector field derived from the usual
distance mapping method. The main ingredients consist of minimizing
a quadratic functional and transforming this problem in an appropriate
setting for implementation. With this approach, we reduce the problem
of obtaining an approximating polynomial vector field to the resolution
of a not expansive linear algebraic system. By this procedure, we obtain
an analytical shape representation that relies only on some coefficients.
Fidelity and numerical efficiency of our approach are presented on illus-
trative examples.

1 Introduction and Motivations

In many computer vision applications, recognition of an object is performed
from its shape. The latter is generally obtained thanks to a thresholding or a
segmentation [14] of the observed image. Then a shape representation and/or
attributes are computed from these shapes in order to get feature vectors. The
latter are used for the recognition process. Thus the shape representation is of
capital importance. In this paper we present a novel approach to represent a
shape.

From a qualitative point of view, a shape representation should enjoy the
following properties:

– Fidelity. The represented shape should be close to the original (observed)
shape.

– Discrimination. The representation should allow for a good separation
between shapes. This property is mandatory for shape recognition purposes,

– Robustness. The representation should be as less sensitive as possible to
small deformations which could alter the shape.

– Compactness. The representation should require few bits in order to allow
for its archiving.
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Many shape representations and descriptions have been proposed in the liter-
ature to address one or many of the above issues. In this paper we consider
only the two dimensional case. Most probably, the most known representation
is the one based on the characteristic function. This representation yields a bi-
nary image where one value encode a point of the object whereas the other one
corresponds to a point of the background. A natural extension of this approach
to the case of two or more objects is based on a connected component labeling
approach. A label is attributed to every connected component where each of
them is assumed to be an object.

Another class of shape representation is the shape descriptor approach. It is
dedicated to shape recognition purposes and has generally a poor fidelity behav-
ior and consists on computing attributes associated to a shape. Many descriptors
can be computed such as the iso-perimetric ratio, compactness ratio. . . Specific
descriptors which are invariant to translation, rotation and scaling are known as
the moment invariants [7]. In order to assure robustness minimal box and bound-
ing box can be considered. Due to the discrete nature of an image, computations
and properties can be violated.

Moreover these descriptors are not reliable for small objects. The choice of a
descriptor generally depends on the application.

Contour based representation is another class of approach. Chain codes are
described in the seminal work of Freeman in [4, 5]. It consists of encoding the
direction of the contours of a shape. Such a representation is widely used both
for pattern recognition [9] and shape transmission in video, as in MPEG-4 for
instance. Assuming a shape lives in the complex plane, Fourier descriptors and
complex representation [2] can be used. Polygonal approximation of the contour
of a shape consists of representing the shape via piecewise affine functions. Exten-
sion of this approach using splines instead of affine functions is presented in [?].
For the two latter approaches, the Hough transform can be used, as described
in [1], in order to determine the number of segments or breaking points.

In [11], Osher et al. propose to represent the contour of a shape as the zero
level set of an implicit function. This variational representation of the contour is
used to make evolve the contour. The implicit function is generally taken as the
signed distance function to the contour. In order to help to contour to be closed
to the boundary of the shape, Xu et al. propose in [15], to consider not only the
distance function but also its direction: it yields a vector field where every vector
points toward the closest point of the shape. The latter is particularly useful to
move the contour to points of the shape which have high curvature.

In this paper we follow in part the work of Xu et al. [15]. Contrary to their
work our goal is not to use the vector field associated to a shape to move a curve
close to this shape but to represent the shape itself by its associated vector field.
More precisely, we consider the polynomial representation of this vector field.
The main contributions of this paper are the following. We propose a new shape
representation based on the polynomial representation of a vector field associated
to a shape. Since this vector field is observed on discrete points only, we propose
a convex minimization problem to get the polynomial representation. We show
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that this problem is well-posed. In order to get a fast algorithm we recast the
problem into an equivalent one such that the minimization is reduced to perform
a simple matrix multiplications. To our knowledge, all these results are new even
if they are related in some aspects to the work of [10].

The rest of this paper is as follows. Sect. 2 is devoted to the theoretical setting
of the minimization problem along with its restatement such that the solution
is given as a matrix multiplication. This matrix is studied in Sect. 3. Practical
implementation details and some experiments are presented in Sect. 4. Finally
in Sect. 5, we draw some conclusion and sketch future prospects.

2 Obtaining a polynomial vector field for shape
representation

In this section we describe the problem of obtaining a polynomial vector field
for shape representation as a problem of optimization. The framework retained
here allows us to obtain rigorous results on existence and uniqueness for this
problem. We recast the problem in order to design a fast algorithm.

2.1 Setting of the problem ; existence and uniqueness theorem

First of all we introduce some standard notations: ‖·‖2,n stands for the Euclidean
norm in IRn and 〈·|·〉n denotes the usual Euclidean inner product in IRn. Note
that in ‖·‖2,n, the dependance on the dimension will be useful for subsequent
computations (cf. for e.g. Eqs. (10) and (15)).

We denote by Ω ⊂ IR2 the continuous support of the image under consider-
ation, which we assume to be non empty. For any positive integer q, we denote
by Ωq the discrete set {(xs, ys) ∈ ZZ2 | s ∈ {1, ..., q}} as the associated discrete
support of Ω, related to a given discretization.

For any integer d, we consider Xd the set of polynomial real vector fields on
Ω of degree less than or equal to d. An element W ∈ Xd is defined basically via
N = (d+1)(d+2) real coefficients (a1

ij , a
2
ij) which can be written in a coordinates

system for each (x, y) ∈ Ω as:

W (x, y) =

 ∑
0≤i+j≤d

a1
ijx

iyj ,
∑

0≤i+j≤d

a2
ijx

iyj

T

:= [fW (x, y), gW (x, y)]T , (1)

or in a more detailed fashion

W (x, y) =

[
d∑

k=0

k∑
l=0

ak,1
l,k−lx

lyk−l,

d∑
k=0

k∑
l=0

ak,2
l,k−lx

lyk−l

]T

. (2)

Note that Eq. (2) will be used in the sequel for the explicit description and
clarity of our computations. Besides, note that we do not prescribe conditions
on the boundary ∂Ω of the support.
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A binary image being given and an integer q chosen, let V be the observed
vector field computed from Ωq as described in [15]. More precisely, we compute
V as the gradient vector field of the distance mapping. Roughly speaking, it
corresponds to a vector field where each vector is unitary and points toward the
closest point of the border of the shape. In the sequel, for each point (xs, ys) ∈ Ωq

this observed vector field V in site s will be given by the following notation:

V (xs, ys) := [αs, βs]
T

. (3)

Now we describe our process to obtain a polynomial vector field approxi-
mation of V . It relies on a minimization problem of a standard l2-norm, and
is slightly related to the work of [10], even if in this last work the accuracy of
the approximation seems to be more central than its effectiveness in CPU time
for instance. Our proposed approach gives satisfactory results on both aspects
(cf. Sect. 4 for illustrative examples). We propose to compute a polynomial vec-
tor field approximation of V denoted by Wd,V as the argmin of the following
optimization problem:

(Pd,V ) Find W ∗ ∈ Xd such that Ed,V (W ∗) = inf
W∈Xd

Ed,V (W ) ,

where Ed,V is the following elementary functional:

Ed,V :
{

Xd → IR+

W 7→ Ed,V (W ) =
∑s=q

s=1 ||V (xs, ys)−W (xs, ys)||22,2 .
(4)

For any W ∈ Xd, let us define Nq(W ) as follows:

Nq(W ) :=

(
q∑

s=1

‖W (xs, ys)‖22,2

) 1
2

. (5)

In order to deal with a well-posed problem we need to show that Nq(·) is a norm.
Note that the only axiom that need some works for making Nq(·) a norm, is the
axiom of separation (i.e. Nq(W ) = 0 ⇒ W = 0). We give here some elements to
discuss this last important point, which is linked with algebraic geometry. The
complete proof can be found in [3]. First of all, consider a vector field X ∈ Xd

and recall that a singular point ω ∈ Ω of a vector field X is a point such that
X(ω) = 0. The singular points of X are given as the common zeros of fW and
gW defined in Eq. (1). If the two polynomials fW and gW are relatively prime,
the intersection of the algebraic curves fW = 0 and gW = 0 consists of isolated
points whose number (i.e., number of isolated points) is less than or equal to d2

thanks to the classical Bezout theorem [8]. Thus if q > d2, we have that the axiom
of separation holds for the subset of vector fields X ∈ Xd whose components are
relatively prime. If fW and gW have common factors, let us denote by P their
greatest common divisor (GCD). The singular points are given as the zeros of
P . For this last case, curves constituted of singular points may exist but the
number of such curves is still bounded in function of the degree d (cf. [8] and
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references therein). In order to conclude in this last case, we introduce the degree
d∗(q) which corresponds to the minimal degree such that there exists a non-zero
polynomial in Xd which gives zero for all points in the discrete support Ωq, i.e.,

d∗(q) = inf{d ∈ IN | ∃X ∈ Xd\{0}, X(xs, ys) = 0,∀(xs, ys) ∈ Ωq} . (6)

Using the previous considerations we can show the following theorem as
proved in [3]:

Theorem 1. For each q ∈ IN∗, there exist d∗(q) ∈ IN∗ such that for any d ≤
d∗(q), Nq(·) is a norm on Xd .

Then we get the following existence and uniqueness result by using standard
arguments from convex analysis:

Corollary 1. Let q be an integer. Let V be the observed vector field computed
from Ωq via the standard distance map. Then there exist d∗(q) ∈ IN∗ such that
for any integer d ≤ d∗(q) the problem of minimization (Pd,V ) admits a unique
solution W ∗

d,V ∈ Xd .

Proof. Let q and V given as stated in Corollary 1. Then by Theorem 1 we know
that there exist d∗(q) ∈ N∗ such that Nq(·) is a norm on Xd, for each d ≤ d∗(q).
Take such a degree d, then it is obvious that the functional Ed,V defined in Eq.
(4) is strictly convex and continuous with respect to the norm Nq(·). We have
also the following inequality for each W ∈ Xd:

Ed,V (W ) ≥ |Nq(V )−Nq(W )| ,

which leads to
Ed,V (W ) → +∞, as Nq(W ) → +∞ .

Thus, classical theorem 1.9 of [13] allows us to conclude. ut

We now describe how to perform effectively the optimization.

2.2 Rewriting the problem (Pd,V )

In this section we show that the problem (Pd,V ) can be restated as an optimiza-
tion one with a functional of the basic form J(ξ) = a(ξ, ξ) − l(ξ) + c where a
(resp. l) is a bilinear symmetric form (resp. a linear form) on a finite dimensional
vector space E , and where c is a real constant.

Recall that for any point (xs, ys) ∈ Ωq the real vector V (xs, ys) is given by
Eq. (3). Note that a polynomial vector field W ∈ Xd given in Eq. (2) is isomorph
to the following vector w of IRN with N = (d + 1)(d + 2):

w =
[
(wT

k,1)0≤k≤d, (wT
k,2)0≤k≤d

]T ∈ IRN , (7)

where for each k ∈ {0, ..., d},

wk,1 =
[(

ak,1
l,k−l

)
0≤l≤k

]T

∈ IRk+1, wk,2 =
[(

ak,2
l,k−l

)
0≤l≤k

]T

∈ IRk+1 , (8)



6

with for i ∈ {1, 2},
(
ak,i

l,k−l

)
0≤l≤k

which denotes the row:

(
ak,i

l,k−l

)
0≤l≤k

= (ak,i
0,k, ak,i

1,k−1, · · · , ak,i
k,0) . (9)

Starting from Eq. (4) with notations given by Eq. (2), some elementary alge-
braic computations permit to show that the problem (Pd,V ) in Xd is equivalent
to the following problem restated in IRN :

(P̃d,V ) Find w∗ ∈ IRN such that Jd,V (w∗) = inf
w∈IRN

Jd,V (w) ,

where we define Jd,V (w) for any w ∈ IRN as,

Jd,V (w) = 〈Hw|w〉N − 2〈h|w〉N + c . (10)

We now detail the formulae describing the matrix H and the vector h on
their direct expressions. We also rewrite them in order to get more manageable
expressions in terms of numerical computations. The direct formulae are only
given for pedagogical purposes and can be viewed as the starting step for ob-
taining the manageable ones. The complete description along with proofs can be
found in [3].
• Direct expressions: Using once more Eq. (4) and Eq. (2), by developing, it is
easy to show that:

〈Hw|w〉N =
q∑

s=1


 d∑

k=0
0≤l≤k

ak,1
l,k−lx

l
sy

k−l
s


2

+

 d∑
k=0
0≤l≤k

ak,2
l,k−lx

l
sy

k−l
s


2 , (11)

and to show that h is a vector depending on the data V and the discrete support
Ωq through the following expression:

〈h|w〉N =
q∑

s=1

αs

 d∑
k=0
0≤l≤k

ak,1
l,k−lx

l
sy

k−l
s

+ βs

 d∑
k=0
0≤l≤k

ak,2
l,k−lx

l
sy

k−l
s


 . (12)

•Manageable expressions: In order to obtain implementable expressions, we in-
troduce the following matrix block notations for each (k, p) ∈ {0, ..., d}2:

[XY ]k,p =
q∑

s=1

[XsYs]k[XsYs]Tp ∈M(k+1),(p+1)(IR) , (13)

where [XsYs]k (with one index) denotes the following column vector:

[XsYs]k =
[(

xl
sy

k−l
s

)
0≤l≤k

]T
∈ IRk+1 . (14)
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One can show that the matrix H is a symmetric matrix which can be implicitly
defined through the following expression valid for any w ∈ IRN :

〈Hw|w〉N =
∑

0≤k+p≤2d
0≤k,p≤d

(〈[XY ]k,pwp,1 |wk,1〉k+1 + 〈[XY ]k,pwp,2 |wk,2〉k+1) .

(15)
Using this formalism we get the following expression of h:

h =
q∑

s=1

h((xs,ys);(αs,βs)) ∈ IRN , (16)

with
h((xs,ys);(αs,βs)) =

[
αs [XsYs]

T
, βs [XsYs]

T
]T

, (17)

and

[XsYs] =
[(

[XsYs]
T
k

)
0≤k≤d

]T

∈ IR
N
2 , (18)

where [XsYs]k is given by Eq.(14).
Finally, still by using Eqs. (2), (3) and (4), it is easy to show that the constant

c in Eq. (10) is given by:

c =
q∑

s=1

(
(αs)

2 + (βs)
2
)

. (19)

These preceding manageable expressions allow us to restate the problem
(Pd,V ) as the following equivalent one in IRN

(P̃d,V ) Find w∗ ∈ IRN such that Jd,V (w∗) = inf
w∈IRN

Jd,V (w) ,

which is suitable for an efficient implementation as the following sections will
show. For the sake of completeness, we expose here the obvious simplifications
brought by our approach, permitting to obtain the solution as the one of a linear
algebraic system. Indeed, since Jd,V is convex and ∇Jd,V (w) = Hw − h , then
according to the theorem 27.1 of [12], we have that w∗ is the solution of the
following equivalent problem (S̃d,V ):

(S̃d,V ) Find w∗ ∈ IRN such that Hw∗ = h .

According to Theorem 1, we know that the matrix H is symmetric invertible,
and is thus definite positive. Consequently, the problem (P̃d,V ) admits the single
following solution:

w∗
d,V = H−1h . (20)

It is then sufficient to exhibit the explicit structure of H in order to compute
the solution w∗

d,V , by a classical Cholesky method as the symmetric structure
of H permits. This explicit structure of H is described in the next section.



8

3 Properties of the matrix H

In this section we describe some properties of the matrix H introduced in Eq. (11)
and in Eq. (15). The latter will be used for the computations (see Sect. 4). The
main objective is to show that the matrix H is sparse in some meaning. First of
all, note that without loss of generality, we can assume that our discrete support
Ωq is a cartesian product of an odd number of points which are labeled with
zero as center of symmetry, that is:

Ωq = {−2δ − 1, · · · , 2δ + 1}2 , (21)

with δ ∈ ZZ+.
¿From Eq. (15), some attentive look shows that H can be written by block

as follows:

H =
[

B 0
0 B

]
(22)

where B = (Bi,j)1≤i,j≤N
2
∈ MN

2
(IR) is a matrix described below and Bi,j are

its constitutive real coefficients. More precisely, the matrix B is decomposed by
block [B]k,p as follows for any (k, p) in {0, ..., d}2 :

[B]k,p = [XY ]k,p =
(
Bik+r,jp+g

)
0≤r≤k
0≤g≤p

, (23)

with ik = 1 + k(k+1)
2 , and jp = 1 + p(p+1)

2 .
For each (r, g) in {0, ..., k} × {0, ..., p} we have

Bik+r,jp+g = Y (k+p)−(r+g)X(r+g) , (24)

where for each (m,n) in {0, ...d}2, Y nXm denotes the real

Y nXm :=
q∑

s=1

yn
s xm

s . (25)

Note that one can also show the identity Y nXm = Y mXn since we assume a
symmetric support. Therefore in order to construct, H it is sufficient to construct
B which is defined by the blocks ([XY ]k,p)0≤k,p≤d. Thanks to the symmetry of
our support defined by Eq. (21), we get the two following propositions. The
Proposition 1 gives us the null blocks, whereas the Proposition 2 gives us the
repartition of null coefficients in the non-null blocks. These propositions are
proved [3] and rely on the Cholesky decomposition of H:

Proposition 1. Let us suppose that Ωq checks (21), then for any (k, p) ∈
{0, ..., d}2 such that k + p is odd,

[XY ]k,p = [0]k,p ∈M(k+1),(p+1)(IR), and [XY ]p,k = [0]p,k ∈M(p+1),(k+1)(IR) .

Proposition 2. Let us suppose that Ωq checks (21), then for any (k, p) ∈
{0, ..., d}2 such that (k + p) is even, the following properties holds:



9

(i) For each (r, t) ∈ {0, ..., k} × {0, ..., p}) such that r + t is odd, we have
Bik+r,jp+t = 0.

(ii) For each m ∈ {0} ∪ {n ≤ r + t |n is even }, and for each (r, t) ∈ {0, ..., k} ×
{0, ..., p}) such that (r + t = m) or (r + t = (k + p)−m), then

Bik+r,jp+t = Y (k+p)−mXm = Y mX(k+p)−m > 0 .

The latter propositions allows us to build efficiently the matrix H. We em-
phasize that this matrix H does not depend on the observed vector field V but
only on the discrete support Ωq.

4 Experimental results

We first give some notes on the technical implementation before presenting some
results.

4.1 Notes on our implementation

Let us give a simple example of the matrix H. Assume that the degree d = 4.
The block B ∈M15(IR) whose H is made of which, have the following form:

B =


[0]1,0 [B]1,1 [0]1,2 [B]1,3 [0]1,4

[B]2,0 [0]2,1 [B]2,2 [0]2,3 [B]2,4

[0]3,0 [B]3,1 [0]3,2 [B]3,3 [0]3,4

[B]4,0 [0]4,1 [B]4,2 [0]4,3 [B]4,4


where [0]·,· denotes a block filled of zeros. There are 12 zero-block and 13 non-
zero-block. We can further express a non-zero block. We have a non empty block
for any (k, p) ∈ {0, ..., 4}2 such that k + p even with k ≥ p. For instance for
k = 4 and p = 2, we have [B]4,2 ∈ M5,3(IR) which can be computed with the
two terms Y 6 and Y 4X2:

[B]4,2 =


Y 6 0 Y 4X2

0 Y 4X2 0
Y 4X2 0 Y 4X2

0 Y 4X2 0
Y 4X2 0 Y 6


As one can see, the exponent necessary for the numerical computations, grows

rapidly as the degree gets larger. In practice, it means that classical types (such
as int,float,double) used in computer program to store numbers do not have
enough bits to encode these numbers. This leads to wrong computations. There-
fore special libraries which are dedicated to encode large numbers has to be used.
For our implementation, we have used the GNU Multiple Precision library [6].
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(a) (b)

Fig. 1. Original shapes: a circle in (a) and a U in (b).

4.2 Experiments

Figure 1 depicts two original shapes. The first one is a circle while the second
one is has the shape of the letter U. Size of these two images is 109× 109. The
associated vector field of these two shapes are shown in Figure 2-(a). Recon-
struction of these vector fields with degrees 13 and 25 are respectively shown on
Figure 2-(b) and Figure 2-(c). As one can see, the more the degree is high the
better the reconstruction is.

We have used a precision of 256 bits to encode numbers. For a degree 25 the
minimization takes 11.68 seconds while it takes 2.56 seconds for a degree 13.
Computations are performed on a Centrino 2.1 GHz. Note that in these time
results, most of the time is devoted to the construction of the vector h defined
in Eq. (12). Indeed, the matrix H does not depend on the considered shape, this
is a key point for concluding of the time efficiency of our algorithm for more
general shapes, but also justify the need of other experiments.

5 Conclusion

We have shown in this paper, how to attach a polynomial vector field to a shape
in order to represent it through an optimization procedure that can be recast
into an algebraic system in some appropriate vector space. By this procedure, the
representation thus achieved permits good fidelity to the initial shape and can
be performed with reasonable time. The quality of this fidelity seems to increase
with the degree of the polynomial vector field considered for the approximation.
Of course these comments rely on our experiments that must be completed in
the experimental side as the theoretical one.

Many future works are under investigation. First of all, given a shape, we
need to derive a condition for estimating the degree of the polynomial vector
field which is able to approximate the vector field associated to the shape, with
good accuracy and not expensive time. Besides, since we have a polynomial
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representation of the shape we can use algebraic tools. In particular, this frame-
work could be convenient to study shape deformations and/or diffeomorphisms
via tools such as Lie transforms. However many efforts remain to be done. Fi-
nally, the use of the approach developed in this paper for performing vector field
compression attached to the shape, will be presented in a forthcoming paper.
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(a) Original vector fields

(b) Reconstructed vector fields with degree 13

(c) Reconstructed vector fields with degree 25

Fig. 2. Vector fields associated with a circle (left column) and a U (right column). The
original vector fields are depicted in (a), while the reconstructed ones are shown in (b)
for degree 13 and in (c) for a degree 25.


