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Abstract

This paper deals with the total variation minimization problem
when the fidelity is either the L

2-norm or the L
1-norm. We propose

an algorithm which computes the exact solution of these two prob-
lems after discretization. Our method relies on the decomposition of
an image into its level sets. It maps the original problems into inde-
pendent binary Markov Random Field optimization problems asso-
ciated with each level set. Exact solutions of these binary problems
are found thanks to minimum-cut techniques. We prove that these
binary solutions are increasing and thus allow to reconstruct the so-
lution of the original problems.
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Résumé

Ce papier traite de la minimisation de la variation totale quand
l’attache aux données est soit la norme L

2 ou soit la norme L
1. Nous

proposons un algorithme qui fournit les solutions exactes ces deux
problmes après une phase de discrtisation. Notre méthode repose sur
la décomposition d’une image en ses lignes de niveaux. Les deux
problèmes initiaux sont reformulés en termes de champs de Mar-
kov binaires associés chacun des ensembles de niveaux. Les solu-
tions exactes de ces problèmes binaires sont exhibées grâce des al-
gorithmes de coupures minimales. Nous prouvons que ces solutions
présentent une relation de croissance ce qui permet de reconstruire la
solution des deux problèmes initiaux.
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1 Introduction

Image reconstruction and deconvolution methods are often based on the
minimization of the constrained total variation [1, 2] of an image. These
problems have minimizers in the space of functions of bounded variation
[3] which allows for discontinuities and thus preserve edges and sharp
boundaries. Suppose u is defined on a rectangle Ω of IR2. Then the total
variation (TV) of u is

TV (u) =

∫

Ω

|∇u| ,

where the gradient of u is taken in the distributional sense. A classical
way to minimize the TV is achieved by a gradient descent which yields
the following evolution equation:

∂u

∂t
= div

(

∇u

|∇u|

)

.

The last term corresponds to the curvature of u. In order to avoid divi-

sion by zero, a classical approximation is to replace |∇u| by
√

|∇u|2 + ε.
However, this scheme tends to smooth discontinuities and although it con-
verges towards the solution when ε tends to 0, it does not provide an exact
solution. Other formulation of TV minimization using duality is presented
in [4]. A fast algorithm which converges towards the solution can be de-
rived from this formulation. In [5], a fast approximation minimization
algorithm for Markov Random Field (MRF) is presented. It relies on min-
imum cost cut and the result is a local minimum.

In [6], a fast algorithm to compute the exact solution in 1D for the TV
minimization problem subject to the L2 constraint is presented. However,
the algorithm does not scale to higher dimensions. In 1D, one can find
an exact solution using dynamic programming [7], provided that the label
state is discrete. The complexity of such a method is Θ(N2|Ω|), where N
and |Ω| are the cardinality of the label state and the number of pixels in the
discrete domain Ω, respectively. In [8], Ishikawa presents an algorithm to
find the exact solution for MRF with convex priors in a polynomial time.

In this paper, we focus on TV minimization with L1 or L2 fidelity. Thus,
we are interested in minimizing the following functionals:

Eα(u, β) =

∫

Ω

|u(x)− v(x)|α dx + β

∫

Ω

|∇u| ,

where α ∈ {1, 2} and β ≥ 0. The use of the L1 fidelity has already been
studied in [9, 10, 11]. Our main contribution is an exact optimization of
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a discretization of the two functionals Eα(., β) . It relies on reformulating
the original problem into several independent binary problems which are
expressed through the MRF framework. It is based on the decomposition
of a function into its level sets.

The rest of this paper is as follows. The decomposition of the consid-
ered problems into independent binary problems is described in section 2.
In section 3, reconstruction of the solution from solutions of the binary
problems is shown. Minimization algorithm and results are presented in
section 4. Finally we draw some conclusions in section 5.

2 Formulation through Level Sets

In this section, we show that minimization of the TV minimization prob-
lem with L1 or L2 fidelity can be decomposed into the minimization of in-
dependent binary problems. For each level λ ∈ [0, N − 1], we consider the
thresholded images uλ of an image: uλ = 1lu≤λ. Note that this decomposi-
tion is sufficient to reconstruct the gray-level image: u(x) = min{λ, uλ(x) =
1}.

2.1 Coarea Formula

For any function u which belongs to the space of bounded variation, the
Coarea formula [3] gives

TV (u) =

∫

IR

P (uλ)dλ ,

for almost all λ and where P (uλ) is the perimeter of uλ. In the discrete
lattice version we define for each site s its grey level us and uλ

s = uλ(s) =
1lus≤λ . We estimate the perimeter using pairs of neighboring pixels:

TV (u) =
N−1
∑

λ=0

∑

s∼t

Rs,t(us, vs, λ) ,

where s ∼ t denotes neighboring pixels and Rs,t(us, vs, λ) = ws,t|u
λ
s − uλ

t |
(ws,t is some coefficient). For our experiments we use two different con-
tour length estimators. The first one consists in considering only the four-
connected neighborhood and setting ws,t to 1. The second one, as proposed
in [12], sets ws,t to 0.26 and 0.19 for the four and eight connected neighbor-
hood respectively. Note that the latter estimation is not accurate for small
regions.
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2.2 Expressing L1 and L2 through Level Sets

We reformulate L1 fidelity into level sets. We decompose the domain into
the following two disjoint sets {s : us < vs} and {s : us > vs}. This yields

∑

s∈Ω

|us − vs| =
∑

us<vs

|vs − us|+
∑

us>vs

|us − vs| =
∑

s∈Ω

N−1
∑

λ=0

(1lus≤λ<vs
+ 1lvs≤λ<us

)

=

N−1
∑

λ=0

∑

s∈Ω

1lus≤λ 1lλ<vs
+ 1lvs≤λ 1lλ<us

=

N−1
∑

λ=0

∑

s∈Ω

uλ
s (1− vλ

s ) + (1− uλ
s ) vλ

s

=

N−1
∑

λ=0

∑

s∈Ω

|uλ
s − vλ

s | =

N−1
∑

λ=0

∑

s∈Ω

D1(us, vs, λ) (1)

where D1(x, y, λ) = |xλ − yλ| , and where we used the property: |a− b| =
a + b − 2ab for binary variables a, b. Note that this formulation shows
that the L1-norm treats level sets of the image u independently of their
associated gray-levels. This can be seen as adopting a geometrical point of
view.

The same approach is used for the decomposition of L2 into level sets.
However, contrary to the L1 norm, the decomposition cannot be indepen-
dent of its gray-levels. We begin with separating the sum according previ-

ous disjoint sets and using the formula
∑M

k=1
(2k − 1) = M2 :

∑

s∈Ω

(us − vs)
2 =

∑

us<vs

vs−us
∑

k=1

(2k − 1) +
∑

us>vs

us−vs
∑

l=1

(2l − 1).

Then for the first sum we make the following change of variable k ← vs−λ,
while we do l ← λ− vs + 1 for the second one. It leads to:

∑

s∈Ω

(us − vs)
2 =

∑

us<vs

vs−1
∑

λ=us

(2(vs − λ)− 1) +
∑

us>vs

us−1
∑

λ=vs

(2(λ− vs) + 1)

=
∑

s∈Ω

N−1
∑

λ=0

1lus≤λ<vs
(2(vs − λ)− 1) +

N−1
∑

λ=0

1lvs≤λ<us
(2(λ− vs) + 1)

=
∑

s∈Ω

N−1
∑

λ=0

(1lus≤λ 1lλ<vs
− 1lvs≤λ 1lλ<us

) (2(vs − λ)− 1)

=

N−1
∑

λ=0

∑

s∈Ω

(uλ
s (1− vλ

s ) − (1− uλ
s ) vλ

s ) (2(vs − λ)− 1)
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=

N−1
∑

λ=0

∑

s∈Ω

(uλ
s − vλ

s ) (2(vs − λ)− 1) =

N−1
∑

λ=0

∑

s∈Ω

D2(us, vs, λ) (2)

where D2(x, y, λ) = (xλ − yλ) (2(y− λ)− 1) . This formulation shows that
L2 can be decomposed into level sets where their associated gray-levels
are taken into account.

2.3 Independent Optimizations

Finally, both energies can be re-written as follows:

Eα(u, β) =
N−1
∑

λ=0

(

∑

s∈Ω

Dα(us, vs, λ) + β
∑

s∼t

ws,t|u
λ
s − uλ

t |

)

=
N−1
∑

λ=0

Eλ
α(uλ, β) ,

where Eλ
α(uλ, β) =

∑

s∈Ω
Dα(us, vs, λ)+β

∑

s∼t ws,t|u
λ
s−uλ

t | . Note that each
term Eλ

α(uλ, β) is a 2D MRF which only involves binary variables and pair-
wise interactions. Pairwise interactions only deal with the same gray-level
component (λ) of two neighboring pixels (us and ut). The data fidelity term
can use different gray-level components of the observed image v, such as
the L2-norm case for instance. This is possible provided that the data fi-
delity energy can be linearly decomposed with respect to each component
uλ

s . The prior is an Ising model [13].
Now suppose that for each λ, we independently find the best binary

configuration ûλ which minimizes the energy of the MRF. Clearly, the sum-
mation will be minimized. Thus we will find a minimizer for Eα(., β) pro-
vided that the following property of monotony holds for binary minimiz-
ers:

ûλ ≤ ûµ ∀λ < µ . (3)

Indeed, if this property holds, then the minimizer û of Eα(., β) is given [14]
by ûs = min{λ, ûλ

s = 1} ∀s . The monotone property is proved in the next
section.

3 Reconstruction of the Solution

In this section, we prove the monotone property defined by (3). However,
since E1(., β) is not strictly convex, it leads to non-unique minimizers in
general. Such a situation is depicted in Figure 1. The monotone property
can be violated in that case. However the following Lemma will be useful.
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(a) (b) (c)

Figure 1: Since E1(., β) is not strictly convex, minimizers can be non-
unique. The original image is depicted in (a) where 4-connectivity is con-
sidered. Black and white circles refer to sites whose value is 0 and 1, re-
spectively. If β = 0.25 then there are two minimizers depicted in (b) and
(c), whose associated energy is 1.

3.1 A Lemma based on coupled Markov Chains

Lemma If the local conditional posterior energy at each site s can be written up
to a constant, as:

Eα(us | {ut}, vs) =
N−1
∑

λ=0

φs(λ) uλ
s (4)

where φs(λ) is a non-increasing function of λ, then one can exhibit a “coupled”
stochastic algorithm minimizing each total posterior energy Eλ

α(uλ, β) while pre-
serving the monotone condition: ∀s , uλ

s ↗ with λ .

In other words, given a binary solution u? to the problem Ek
α, there

exists at least one solution û to the problem El
α such that u? ≤ û ∀k ≤ l.

The proof of the Lemma relies on coupled Markov chains [15].

Proof: We endow the space of binary configurations by the following or-
der: u ≤ v iff us ≤ vs ∀s ∈ Ω. From the decomposition (4) the local
conditional posterior energy at level value λ is φs(λ) uλ

s . Thus the related
Gibbs local conditional posterior probability is

P (uλ
s = 1 | {uλ

t }, vλ
s ) =

exp−φs(λ)

1 + exp−φs(λ)
=

1

1 + exp φs(λ)
. (5)

With the conditions of the Lemma, this latter expression is clearly a mono-
tone non-decreasing function of λ.
Let us now design a “coupled” Gibbs sampler for the N binary images in
the following sense: first consider a visiting order of the sites (tour). When
a site s is visited, pick up a single random number ρ uniformly distributed
in [0, 1]. Then, for each value of λ, assign: uλ

s = 1 if ρ ≤ P (uλ
s = 1 | {uλ

t }, vλ
s )
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or else uλ
s = 0.1

From the non-decreasing monotony of (5) it is seen that the set of assigned
binary values at site s satisfies uλ

s = 1 ⇒ uµ
s = 1 ∀µ > λ. The monotone

property uλ ≤ uµ ∀ λ < µ is thus preserved. Clearly, this property also
extends to a series of N coupled Gibbs samplers having the same positive
temperature T when visiting a given site s: it suffices to replace φs(λ) by
φs(λ) / T in (5). Hence, this property also holds for a series of N coupled
Simulated Annealing algorithms [16] where a single temperature T boils
down to 0 (either after each visited site s or at the beginning of each tour
[13] .) �

Several points should be emphasized here:

• The coupled monotony-preserving Gibbs samplers described in [15]
relate to the same MRF but for various initial conditions, while here,
our N coupled Gibbs samplers relate to N different posterior MRF’s
(one for each level λ).

• It must also be noticed that our Lemma gives a sufficient condition
for the simultaneous, “level-by-level independent” minimization of
posterior energies while preserving the monotone property.

3.2 The L1 and L2 cases

Let us show that both L1 regularization and attachment to data energies
feature property (4); so will do their sum and thus the total posterior en-
ergy. Using previous property for binary variables a, b: |a−b| = a+b−2ab,
this yields:

∑

t∼s

|us − ut| =
N−1
∑

λ=0

∑

t∼s

|uλ
s − uλ

t | =
N−1
∑

λ=0

∑

t∼s

(1− 2uλ
t ) uλ

s + C

where C =

N−1
∑

λ=0

∑

t∼s

uλ
t is a “constant” since it only depends on the {uλ

t }.

Thus φs(λ) =
∑

t∼s

(1 − 2uλ
t ), which is by essence a non-increasing function

of λ.
Similarly starting from (1) for the L1 attachment to data term:

|us − vs| =
N−1
∑

λ=0

|uλ
s − vλ

s | =
N−1
∑

λ=0

(1− 2vλ
s ) uλ

s + C ′ , C ′ =
N−1
∑

λ=0

vλ
s

1This is the usual way to draw a binary value according to its probability, except that
we use here the same random number for all the N binary images.
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Table 1: Time results (in seconds) with L1 fidelity for the image “hand”

Size 4-Connectivity 8-Connectivity
151x121 4.97 7.58
343x243 21.02 30.56

The approach for the L2 relies on the same method. From (2) one can write:

(us − vs)
2 =

N−1
∑

λ=0

φs(λ) uλ
s + C ′′ ,

where φs(λ) = 2(vs − λ)− 1 clearly fulfills our requirement.
Thus in both cases, φs(λ) is a non-increasing function, so that TV regu-

larization with either L1 and L2-fidelity both follow the conditions of our
Lemma. Although we have proved the monotone property, it does not
provide an algorithm to compute the solution. Indeed, using a Simulated
Annealing process, one knows it has no stopping criteria. We propose an
algorithm in the next section.

4 Computations and Experiments

In this section, we describe our algorithm and present some experiments.

4.1 Minimum-cut Based Minimization

Greig et al. [17] were the first ones to propose an exact optimization
for binary MRF. It is based on constructing a graph such that its mini-
mum cut (MC) gives an optimal labelling. Since this seminal work, other
graph constructions were proposed to solve some non-binary problems
exactly [8, 18]. In [19], the authors propose a necessary condition for bi-
nary functions to be minimized via MCs along with a graph construction.
Our Ising model fulfills the condition.

For each level we construct the graph as proposed in [19] and com-
pute a MC. However, since uniqueness cannot be assured with L1 fidelity,
the algorithm returns one of the optimal configurations. Since these min-
imizations are independently performed, the monotone property can be
violated. To reconstruct the solution, one flips every pixel where this prop-
erty is violated. This flipping process also gives an optimal labelling since
the energy does not change.
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(a) (b) (c)

Figure 2: Minimizers of TV under L2 constraints (β = 1). The original
image is depicted in (a). The level lines resulting from the gradient descent
algorithm are presented in (b). The level lines of the exact solution, using
our algorithm, are depicted in (c).

To compute the MC, we used the algorithm described in [20]. For our
binary problems, this algorithm gives near-linear performance with re-
spect to the number of pixels |Ω|. Since we compute N cuts, the complexity
of our algorithm is near-linear both with respect to N and |Ω|. Time results
(on a 1.6GHz Pentium IV) for our method are presented in table 1 for L1

fidelity. This is in contrast with the near-quadratic behavior of [8] with
respect to N .

4.2 Experiments

For our experiments, we always use the 8-connectivity. In [21] the authors
give exact and analytic solutions for TV minimization with L2 attachment
for radial symmetric functions. For instance, if the observed image is a
circle then the solution is a circle with the same radius : only its gray-levels
change. Figure 2 depicts the level-lines of the solutions for our algorithm
and the gradient descent algorithm. For the latter, we approximate TV (u)

by
√

|∇u|2 + ε with ε = 1. Note how many level lines are created by the
gradient descent algorithm.

TV minimization is well-known for its high performance in image restora-
tion. Figure 3 depicts a cartoon image and its noisy version corrupted by
an additive Gaussian noise (σ = 30). It also presents the results of the
restoration using the gradient descent method and our algorithm. Al-
though the results visually look the same, the exact solution provides a
much better result in terms of level lines. Note how corners of the squares
are smoothed. This is predicted by the theory [22] which states that a
square cannot arise as a solution. Results of the regularization using L1-
fidelity are depicted in figure 4. The higher the coefficient β, the more fine
structures are removed while the contrast remains preserved.
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5 Conclusion

In this paper we have presented an algorithm to compute the exact solu-
tion of the discrete TV-based restoration problem when fidelity is the L1

or L2 norm. It relies on the decomposition of the problem into binary ones
thanks to a level set formulation. It allows for an algorithm whose com-
plexity is near-linear both with respect to the image size and the number
of labels.

Extension of this method to other types of fidelity is in progress. We
will show that the condition stated by our Lemma is equivalent to the fact
that each local conditional posterior energy is a convex function. Finally
a faster minimization algorithm which takes into account the monotone
property is under study. Comparisons with other exact minimization al-
gorithms must also be made.
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(a) Original image (b) Noisy image (σ = 30)

(c) Gradient descent restoration (d) Some level lines of (c)

(d) Restoration using our method (e) All level lines of (d)

Figure 3: Restoration of a blocky image corrupted by a Gaussian noise.
Results of TV minimization with L2 fidelity for the gradient descent algo-
rithm and our method. Only level lines multiples of 5 are displayed on
(d).
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(a) Original image (b) β = 1.5

(c) β = 1.7 (d) β = 2.0

(d) β = 2.5 (e) β = 3.0

Figure 4: Minimizers of TV with L1 fidelity.
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