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Abstract. This paper deals with the minimization of the total varia-
tion under a convex data fidelity term. We propose an algorithm which
computes an exact minimizer of this problem. The method relies on the
decomposition of an image into its level sets. Using these level sets, we
map the problem into optimizations of independent binary Markov Ran-
dom Fields. Binary solutions are found thanks to graph-cut techniques
and we show how to derive a fast algorithm. We also study the special
case when the fidelity term is the L1-norm. Finally we provide some
experiments.

1 Introduction

Minimization of the total variation (tv) for image reconstruction is of great
importance for image processing applications [1, 17, 19, 21, 22]. It has been shown
that these minimizers live in the space of bounded variation [9] which preserves
edges and allows for sharp boundaries. In this paper we propose a new and fast
algorithm which computes an exact solution of tv minimization-based problems.

Assume u is an image defined on Ω then its total variation is tv(u) =
∫

Ω
|∇u|,

where the gradient is taken in the distributional sense. A classical approach to
minimize tv is achieved by a gradient descent [24] which yields the following

evolution equation ∂u
∂t

= div
(

∇u
|∇u|+ε

)

. To avoid division by zero, ε is set to

a small positive value. In [5], Chambolle reformulates tv minimization problem
using duality. Using this formulation he proposes a fast algorithm. In [19], Pollak
et al. present a fast algorithm which provide the exact solution in one dimen-
sion. However only an approximation is available in higher dimensions. After a
discretization, tv minimization can be reformulated as a minimization problem
involving a Markov Random Field (MRF). In [4], Boykov et al. present a fast
approximation minimization algorithm based on graph cuts for MRF. An algo-
rithm which computes an exact solution for MRF where the prior is convex is
presented in [12]. It is also based on graph-cuts.



In this paper, we assume u and v are two images defined on Ω. Thus we are
interested in minimizing the following functional:

E(u) =

∫

Ω

f (u(x), v(x)) dx + β

∫

Ω

|∇u| . (1)

We assume that the attachment to data term is a convex function of u(.), such
as: f (u(x), v(x))) = |u(x) − v(x)|p for the Lp case (p = 1, 2), and that the
regularization parameter β is some positive constant. In this paper, we propose
a fast algorithm which computes an exact minimizer of problem 1. It relies on
reformulating this problem into independent binary MRFs attached to each level
set of an image. Exact minimization is performed thanks to a minimum cost cut
algorithm.

The rest of this paper is organized as follows. In section 2 we map the origi-
nal problem 1 into independent binary Markov Random Field optimizations. In
section 3, a fast algorithm based on graph cuts is presented. In section 4 we shed
new lights on tv minimization under the L1-norm as fidelity term. Finally we
draw some conclusions in section 5.

2 Formulation using Level Sets and MRF

For the rest of this paper we assume that u takes values in the discrete set
[0, L− 1] and is defined on a discrete lattice S. We denote by us the value of the
image u at the site s ∈ S. Let us decompose an image into its level sets using
the decomposition principle [11]. It corresponds to considering the thresholding
image uλ where uλ

s = 1lus≤λ. One can reconstruct the original image from its
level sets using us = min{λ, uλ

s = 1}.

2.1 Reformulation into binary MRFs

The coarea formula states that for any function u which belongs to the space

of bounded variation [9] one has tv(u) =

∫

IR

P (uλ) dλ almost surely. In the

discrete case, we write tv(u) =

L−2
∑

λ=0

P (uλ), where P (uλ) is the perimeter of uλ

(notice that uL−1
s = 1 for every s ∈ S, which explains the previous summation

up to L− 2.) Let us define the neighboring relationship between two sites s and
t as s ∼ t. The associated cliques of order two are noted as (s, t). This enables
to estimate the perimeter using the approach proposed in [14]. Thus we have

tv(u) =
L−2
∑

λ=0

∑

(s,t)

wst |u
λ
s −uλ

t |, where wst is set to 0.26 and 0.19 for the four- and

eight- connected neighborhood, respectively.



Proposition 1 The discrete version of the energy E(u) rewrites as

E(u) =

L−2
∑

λ=0

Eλ(uλ) + C , where (2)

Eλ(uλ) = β





∑

(s,t)

wst ((1 − 2uλ
t ) uλ

s + uλ
t )



 +
∑

s∈Ω

(gs(λ + 1) − gs(λ))(1 − uλ
s ) (3)

gs(x) = f(x, vs) ∀s ∈ S and C =
∑

s∈Ω

gs(0)

Proof: Using the following property for binary variables a, b: |a−b| = a+b−2ab,
and starting from the previous equality obtained from the coarea formula we have

tv(u) =
L−2
∑

λ=0

∑

(s,t)

wst

(

(1 − 2uλ
t ) uλ

s + uλ
t

)

. Moreover the following decomposi-

tion property holds for any function g :

∀k ∈ [0, L−1] g (k) =
k−1
∑

λ=0

((g(λ + 1) − g(λ))+g(0) =
L−2
∑

λ=0

(g(λ + 1) − g(λ)) 1lλ<k+g(0)

(note that this formula is coherent for both k = 0 and k = L − 1). Thus, by
defining gs(us) = f(us, vs) and since 1lλ<us

= 1 − uλ
s , we have

f (us, vs) = gs(us) =

L−2
∑

λ=0

(gs(λ + 1) − gs(λ)) (1 − uλ
s ) + gs(0) .

This concludes the proof. ¤

Note that each Eλ(uλ) is a binary MRF with an Ising prior model. To minimize
E(.) one can minimize all Eλ(.) independently. Thus we get a family {ûλ} which
are respectively minimizers of Eλ(.). Clearly the summation will be minimized
and thus we have a minimizer of E(.) provided this family is monotone:

ûλ ≤ ûµ ∀λ < µ . (4)

If this property holds then the optimal solution is given by [11] : ûs = min{λ, ûλ
s =

1} ∀s. If property 4 does not hold, then the family {uλ} is not a function.

2.2 A Lemma based on coupled Markov Chains

Since the MRF posterior energy is decomposable into levels, it is useful to define
the “local neighborhood configurations”: Ns = {ut}t∼s and Nλ

s = {uλ
t }t∼s ∀λ ∈

[0, L − 2] . In [8] the following lemma was established:

Lemma 1 If the local conditional posterior energy at each site s writes as

E(us | Ns, vs) =
L−2
∑

λ=0

( ∆φs(λ) uλ
s + χs(λ) ) (5)



where ∆φs(λ) is a non-increasing function of λ and χs(λ) does not depend on

uλ
s , then one can exhibit a “coupled” stochastic algorithm minimizing each total

posterior energy Eλ(uλ) while preserving the monotone condition: ∀s , uλ
s ↗

with λ .

In other words, given a binary solution u? to the problem Ek, there exists at
least one solution û to the problem El such that u? ≤ û ∀k ≤ l. The proof of
the Lemma relies on coupled Markov chains [20].
Proof: We endow the space of binary configurations by the following order :
u ≤ v iff us ≤ vs ∀s ∈ Ω. From the decomposition (5) the local conditional
posterior energy at level value λ is E(uλ

s | Nλ
s , vs) = ∆φs(λ) uλ

s + χs(λ). Thus
let us define the following Gibbs local conditional posterior probability:

Ps(λ) = P (uλ
s = 1 | Nλ

s , vs) =
exp−∆φs(λ)

1 + exp−∆φs(λ)
=

1

1 + exp ∆φs(λ)
. (6)

With the conditions of the Lemma 1, this latter expression is clearly a monotone
non-decreasing function of λ.
Let us now design a “coupled” Gibbs sampler for the L − 1 binary images in
the following sense: first consider a visiting order of the sites (tour). When a site
s is visited, pick up a single random number ρs uniformly distributed in [0, 1].
Then, for each value of λ, assign: uλ

s = 1 if 0 ≤ ρs ≤ Ps(λ) or else uλ
s = 0 (this

is the usual way to draw a binary value according to its probability, except that
we use here the same random number ρs for all the L− 1 binary images. ) From
the non-decreasing monotony of (6) it is seen that the set of assigned binary
values at site s satisfies uλ

s = 1 ⇒ uµ
s = 1 ∀µ > λ. The monotone property

uλ ≤ uµ ∀ λ < µ is thus preserved. Clearly, this property also extends to a
series of L − 1 coupled Gibbs samplers having the same positive temperature T
when visiting a given site s: it suffices to replace ∆φs(λ) by ∆φs(λ) / T in (6).
Hence, this property also holds for a series of L−1 coupled Simulated Annealing
algorithms [10] where a single temperature T boils down to 0 (either after each
visited site s or at the beginning of each tour [25] .) ¤

It must be noticed that our Lemma gives a sufficient condition for the simul-
taneous, “level-by-level independent” minimization of posterior energies while
preserving the monotone property. We shall now prove the following property:

Lemma 2 The requirements stated by Lemma 1 are equivalent to these:

all conditional energies E(us | Ns, vs) are convex functions of grey level us ∈
[0, L − 1], for any neighborhood configuration and local observed data.

Proof: Since from (2) the total energy is “decomposable” on the levels, so are

the local conditional energies: E(us | Ns, vs) =

L−2
∑

λ=0

Eλ(uλ
s | Nλ

s , vs) .

Besides, since the local conditional posterior energy at level λ is a function of
binary variable uλ

s , it satisfies:

Eλ(uλ
s | Nλ

s , vs)−Eλ(uλ
s = 0 | Nλ

s , vs) =
(

Eλ(uλ
s = 1 | Nλ

s , vs) − Eλ(uλ
s = 0 | Nλ

s , vs)
)

uλ
s



which yields by identification with (5):

∆φs(λ) = Eλ(uλ
s = 1 | Nλ

s , vs) − Eλ(uλ
s = 0 | Nλ

s , vs)

Now, in the transition λ → λ + 1, only the following level variable does change:
uλ

s = 1 → uλ
s = 0 . From the decomposition of conditional energies on levels, this

means that only the level component Eλ(uλ
s | Nλ

s , vs) does change and thus:

E(λ+1 | Ns, vs)−E(λ | Ns, vs) = Eλ(uλ
s = 0 | Nλ

s , vs)−Eλ(uλ
s = 1 | Nλ

s , vs) = −∆φs(λ)

The monotone non-increasing condition on ∆φs(λ) is thus equivalent to:

E(λ+1 | Ns, vs)−E(λ | Ns, vs) is a non-decreasing function on [0, L−2]. ¤

Clearly both L1 + TV and L2 + TV models enjoy this convexity property and
satisfy thus the conditions of application of Lemma 1.

3 Minimization Algorithm

Although the previous section proves that the monotone property holds, it does
not provide an algorithm to compute a solution. Our algorithm makes use of
the formulation shown in equation 2 which allows independent optimizations.
A natural algorithm, presented in [8], is to optimize independently each MRF.
This leads to an algorithm which performs L−1 optimizations on binary images
whose sizes are the same as the original image.

However, one can both drastically save computations using a divide and con-
quer approach. Such an approach requires to decompose a problem into smaller
ones, then to solve these sub-problems and to recombine the sub-solutions to
get an optimal solution. Our algorithm takes benefit of the following. Suppose
we minimize at some level λ. Then, for all pixels of the minimizer we know
whether they are below or above λ. Thus it is useless to take into account pix-
els above λ for further optimizations which only allow pixels to be lower than
λ. Obviously, the same holds for pixels which are below λ. Then, every con-
nected component (it defines a partition of the image) of the minimizer can be
optimized independently from each others. The latter corresponds to the de-
composition of the problem into subproblems. Once minimizers of subproblems
are computed, they are recombined to yield an optimal solution. The recombi-
nation is straightforward since the decomposition was a partition. This process
is depicted in Figure 1. A good choice to choose the threshold level λ is to use
a dichotomic process. For instance, suppose the minimizer is a constant image,
then our algorithm requires exactly log2(L) (we suppose L is a power of two)
binary optimizations to compute it. This is in contrast compared to the L − 1
required binary optimizations of the algorithm proposed in [8].

Optimization of a binary MRF can be performed exactly and efficiently using
graph-cut techniques. It consists of building a graph such that its minimum
cut gives an optimal labelling. We build the graph as proposed in [13]. Our
implementation uses the minimum cut algorithm described in [3]. Time results
(on a 3GHz Pentium IV) for our algorithm and the one presented in [8] are given
in Table 1 for L1 fidelity. Note how our algorithm outperforms the other one.
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Fig. 1. Illustration of our algorithm. The partition of the image after a minimization
with respect to some level λ is shown on (a). The connected components of the image (a)
are shown on (b): it corresponds to the decomposition of the problem into subproblems.
Each subproblem is solved independently and the result is depicted in (c). Finally
solutions of subproblems are recombined to yield the image (d).

Table 1. Time results (in seconds) with L1 data fidelity term for different weighted
term β. Two time results are presented: time for our algorithm and time for the algo-
rithm presented in [8] inside parentheses.

Image β = 1 β = 2 β = 3

Lena (256x256) 0.37(7.31) 0.54(14.52) 0.72(16.41)
Lena (512x512) 1.56(31.10) 2.24(53.36) 2.84(101.33)
Woman (522x232) 0.53(16.03) 0.77(20.34) 1.03(23.86)

4 Total Variation with L
1 data fidelity

The use of total variation with L1 data fidelity has already been studied in [2,
6, 15, 16]. However, the following is new as far as we know. Note that the Ising
model fulfills the necessary condition provided that the interaction is attractive
(i.e. β is non-negative) which is the case in our problems.
As a matter of fact, due to the equivalence of the Potts framework, the initial
L1 + TV restoration model (assign gs(us) = |us − vs| =

∑L−2
λ=0 |uλ

s − vλ
s | in (3))

is equivalent to an Ising model with constant magnetic field amplitude B = 1/2
and constant interaction coefficient J = β/2 over the whole range of levels.
It was shown, first semi-empirically [23] and then rigorously [18] that the 4-
connnected chessboard model exhibits a phase transition property. Namely if
the basic cell size A satisfies: A ≤ 4J/B = 4β then two ground states occur,
corresponding to uniform binary images. In the opposite case, the unique ground
state is the initial chessboard itself. In other words, and put in a rather “inex-
act” way, objects whose characteristic size is greater than 4β are conveniently
restored, whereas smaller objects are lost in the “background”. This property
holds on the whole range of levels for the L1 + TV model (See Fig. 2).
Moreover, it was shown in [7] that the continuous approach to this problem
generates extra grey levels outside the initial grey level range, which is obviously
not the case here. It happens because of the ε introduced in the numerical scheme
to avoid division by zero. Figure 3 depicts some results on the image woman.
Note how well the contrast is preserved and how level lines are simplified.



(a) Initial binary image with various cell sizes: 4, 5, 6 and 8 (from left to ri ght).

(b) Restored image with positive boundary conditions.

Fig. 2. Minimal energy configurations obtained by Simulated Annealing. Initial tem-
perature T0 = 16 with decreasing step = 0.98, β = 1.5 (4-connectivity).

Fig. 3. Minimizers of TV with L1 fidelity. From left to right: original image, then
minimizers for β = 1, β = 2.1, β = 3. Finally, some level lines of the minimizers (in
the same order). Only level lines multiples of 10 are displayed.

5 Conclusion

In this paper we have presented an algorithm which computes an exact solution
for the minization of the total variation under a convex constraint. The method
relies on the decomposition of the problem into binary ones using the level sets of
an image. Moreover, this algorithm is quite fast. Comparison to other algorithms
with respect to time complexity must be made. Extension of this method to other
type of regularization is in progress.
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