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Abstract. We present a vectorial self dual morphological filter. Contrary
to many methods, our approach does not require the use of an ordering on
vectors. It relies on the minimization of the total variation with L1 norm as
data fidelity on each channel. We further constraint this minimization in
order not to create new values. It is shown that this minimization yields a
self-dual and contrast invariant filter. Although the above minimization is
not a convex problem, we propose an algorithm which computes a global
minimizer. This algorithm relies on minimum cost cut-based optimiza-
tions.

1 Introduction

It is well known that morphological filters on gray-scale images feature the
property of being invariant with respect to any change of contrast and that
they do not create new gray levels [11]. One of the main issue for mathematical
morphology is its extension to the vectorial case. The difficulty arises because a
total order between elements is required using the classical approach of lattice
theory [19]. Extensions of this approach to the vectorial case have been tackled
using vector ranking concepts [10, 20]. In this paper, we propose a new, self dual
morphological filter for vectorial images, based on total variation minimization.
Our approach does not require any order relation between vectors.

A lot of work has been devoted to the design of morphological operators
for color images as a specific case of vectorial images. Main approaches consist
in choosing a suitable color space representation and defining an ordering rela-
tionship [8, 13]. In [5], Chambolle proposes a definition for contrast invariance
of operators on colors. This definition is considered by Caselles et al. in [4] who
present a morphological operator on color images.

Vector median filters are another approach for vector filtering, originally in-
troduced by Astola et al. in [1]. The process consists of replacing the pixel value
by the median of the pixels contained in a window around it. The median is de-
fined as the value that minimizes the L1-norm between all pixels in a window.



This method has been used specially for noise filtering [14–16]. In [4], Caselles et
al. connect vector median filters, morphological operators and partial differen-
tial equations. They consider a lexicographic order to obtain these connections.
Complementary results on these links for the scalar case can be found in [11].

In [6], the author deals with the scalar case and shows that minimization of
the total variation (TV) under the L1-norm as data fidelity yields a morpholog-
ical filter. This model will be referred to as L1 + TV . Assume that an observed
image v is defined on Ω and takes values in IR. For sake of clarity, we assume
here that Ω is a rectangle of IR2 although all the results presented in the paper
apply for any convex set in any dimension. The energy associated to the model
L1 + TV is expressed as follows:

E(u) =
∫

Ω

|u(x)− v(x)|dx + β

∫
Ω

|∇u| , (1)

where the last term is the TV of u weighted by a non-negative coefficient β.
Note that the gradient is taken in the distributional sense. An efficient algorithm
is proposed in [7] to perform an exact minimization of (1), i.e, it provides a
global minimizer. In [2], Blomgren et al. propose some extensions of the total
variation definition to the vectorial case. They study them for image restoration
purposes. However, no relation with mathematical morphology is introduced.

The contributions of this paper are the following. We propose a morpho-
logical filter based on the minimization of TV. Contrary to many previous ap-
proaches, our method does not require any order relationship between vectors.
Our approach relies on extending the energy (1) to the vectorial case by simply
applying the L1 + TV model on each channel. We further constrain the energy
such that no new value is created. We show that this filter is a morphological
one. Contrary to the minimization of (1), the problem is not anymore convex.
We thus propose an algorithm which provides an exact minimizer for this new
non-convex functional. This algorithm relies on minimum-cost cut ones. To our
knowledge, these results are new.

The structure of the paper is as follows. Section 2 is dedicated to the presen-
tation of the proposed approach for the design of our vectorial morphological
filter. We present an algorithm to perform the minimization in Section 3, along
with some results.

2 Vectorial mathematical morphology

In this section we briefly review the L1 + TV model. Then we show how to
generalize the approach to the vectorial case. We define a continous change of
contrast as follows [12]: any continuous non-decreasing function on IR is called
a continuous change of contrast. The following theorem is proved in [6] and in
appendix A.

Theorem 1 Let v be an observed image and g be a continuous change of contrast.
Assume u to be a global minimizer of Ev(·). Then g(u) is a global minimizer of Eg(v)(·).
Besides, −u minimizes E−v(·).



We now deal with the vectorial case. From now on, we consider vectorial im-
ages, u = (u1, ...uN ), defined on Ω which take values into IRN . We define the
L1-norm ‖u‖L1 for a vectorial image u as the sum of L1-norms on each channel,

i.e: ‖u‖L1 =
∑N

i=1

∫
Ω
|ui(x)|dx. We extend the total variation

→
tv(u) of a vecto-

rial image u in the same way, i.e:
−→
tv(u) =

∑N
i=1

∫
Ω
|∇ui|. A straightforward

extension of the scalar model L1 + TV to the vectorial case consists in applying
independently L1 + TV on each channel, i.e:

E(u) = ‖u− v‖1 + β
−→
tv(u) . (2)

However, it is easily seen that if no constraint is added, minimization of this en-
ergy yields a minimizer which has new vectorial values. Consequently it breaks
the morphological property. Thus we add a constraint to ensure that a global
minimizer does not have new values. Let us denote by C the set of all vectorial
values appearing in the observed image v. Our goal is to find a global mini-
mizer of the following problem:

(P)

arginf
u

‖u− v‖1 + β
−→
tv(u)

s. t. ∀x ∈ Ω u(x) ∈ C
As one can see, our extension to the vectorial case reduces to the classical

L1 + TV model when images are scalar. We now give our definition for a vec-
torial change of contrast.

Definition 1 Any continuous function g : IRN 7→ IRN is called a vectorial continous
change of contrast if and only of its restriction to any canonic axis is a continuous
change of contrast.

Then it is easily seen that problem (P ) defines a morphological filter according
to our vectorial change of contrast definition (1).

Note that although minimization of the scalar model L1 + TV defined by
equation (1) is a convex problem, it is no longer the case for problem (P ). Indeed,
the objective function is still convex, but the constraint is not. An algorithm for
computing an exact solution of the non-convex problem (P ) is given in the next
section.

3 Minimization Algorithm and Results

In this section, we present an algorithm which computes a global optimizer for
a discrete version of problem (P ) along with some results. In the following we
assume that images are defined on a discrete lattice S and take values in C. We
denote by us the value taken by the image u at the site s ∈ S. Two neighboring
sites s and t are denoted s ∼ t. The discrete version of energy (2) is thus as
follows:

E(u) =
N∑

i=1

∑
s

|ui
s − vi

s|+ β
∑
(s∼t)

|ui
s − ui

t| .

Now we present our algorithm for optimizing energy E.



Start with a labeling u such that ∀s us ∈ C
do

success← false
forall α ∈ C

u′ = argmin
û

E(û) where û is an α−expansion of u

if E(u′) < E(u)
u← u′

success ← true
while success 6= false

Fig. 1. Pseudo-code for our minimization algorithm.

3.1 Minimimum Cost Cut Based Minimization

Our algorithm relies on the α-expansion moves algorithm proposed by Boykov et
al. in [3]. An α-expansion move from a current labeling is defined as follows:
given a value α, every pixel can either keep its current value or take α. We
are interested in finding the optimal α-expansion move from a current labeling
which minimizes the energy. Originally, this method is devoted to the approxi-
mation of non-convex Markovian energy [3].

In order to solve problem (P ), we iterate optimal α-expansion moves. At
each iteration we perform an optimal α-expansion move where α belongs to
the set of observed values C. The traversal on C stops when no α-expansion can
furthermore decrease the energy. This algorithm is presented in Figure 1. We
now prove, in the following proposition, that this algorithm provides a global
minimizer for the non-convex problem (P ).

Theorem 1 Let u be an image such that

E(u) > inf
u′

E(u′) .

Then, there exists uα which is within one α−expansion move of u, such that

E(u) > E(uα) .

Proof: Before giving to the proof, we recall that for a one dimensional discrete
convex function f : ZZ 7→ IR, the following inequality holds [17] :

∀x∀y∀d | (y ≥ x)∧ (0 ≤ d ≤ (y− x)), f(x) + f(y) ≥ f(x + d) + f(y− d) . (3)

Let û be a global minimizer of E, i.e., E(û) = infu′ E(u′) Given a value α ∈ C,
we define an image δ as follows:

∀s δs =

α− us if α ∈ Jus, ûsK or α ∈ Jûs, usK ,

0 else.
(4)



• We first prove the following inequality:

E(u) + E(û) ≥ E(u + δ) + E(û− δ) . (5)

We show it for the data fidelity and regularisation terms independently.
- Data fidelity terms: Since the absolute value is a convex function, we have the
following inequality (obtained using equation (3)) for all data fidelity terms:

|us − vs|+ |ûs − vs| ≥ |us + δs − vs|+ |ûs − δs − vs| .

This concludes the proof for the first case.
- A priori terms: Let Xst = us−ut, Yxt = ûs− ût and Dst = δs− δt. Assume that
Xst ≤ Yst. Thus we have by definition of δ (equation (4)), Xst ≤ Xst + Dst ≤
Yst. Applying inequality (3) we have the desired results. The case Xst > Yst is
similar to this one.
• Let us denote by M the set of global minimizers of E(·). Let us define the
norm ‖u‖1 on an image u as ‖u‖1 =

∑
s |us|. Let us define u? as follows:

u? = argmin
u′∈M

‖u′ − u‖1 . (6)

From equation (5), we have E(u) − E(u + δ) ≥ E(û − δ) − E(û) ≥ 0, since
û is a global minimizer. If the inequality is strict then the proof is finished. If
this is not the case then we have E(û − δ) = E(û). However, it is easy to show
that ‖u + δ − û‖1 < ‖u − û‖1. This is in contradiction with the definition of û
(equation (4)). This concludes the proof. �

We use a minimum cost cut technique to find the optimal α−expansion
move that must be done in order to decrease the energy [3]. This minimum cost
cut is computed on a weighted graph corresponding to the energy associated
with an α−expansion.

3.2 Results

We present some results on color images. Since, in this paper, we focus on
demonstrating the effectiveness of our filter, we applied our model to the RGB
space. We are aware that many other color spaces are available [18] and we are
currently studying more suitable spaces. Figure 2 presents some results on the
image hand. We note that the higher the coefficient β, the more the image is sim-
plified. Details of the texture are removed while the geometry is kept. Moreover,
the colors of the background of the hand do not merge. Finally, the color of the
ring is well preserved. This result gives a very good initialization for a segmen-
tation process. In [21], the authors perform the minimization of the L1 + TV
model in order to decompose the image into two parts: the first one contains
the geometry while the second one contains the textures. Figure 2 depicts the
result of such a decomposition using our filter. We performed a change of con-
trast on gray levels to enhance the content of the textured image. Note how fine
the decomposition is.



4 Conclusion

In this paper we have proposed a new morphological filter for vectorial images.
The main feature of this filter is that it does not involve any ordering between
elements. We have also presented an algorithm to perform the filtering. Many
opportunities for future work are considered. First, a faster algorithm is cur-
rently under investigation. The special case of color images must be handled
by applying this filter on color spaces other than RGB [18], such as Lab. All
these extensions will be presented in a forthcoming paper.
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A Proof of Theorem 1

We first introduce the notion of level sets of an image and give two lemma.

Definition 1 The lower level sets of an image u, referred to as uλ are defined as follows:

uλ(x) = 1lu(x)≤λ .

Before we give the proof of Theorem 1, we give a lemma proved in [11], which
stipulates that after a continuous change of contrast g, the level sets of an im-
age g(v) are some level sets of the image v.

Lemma 1 Assume g to be a continuous change of contrast and u an image defined on
Ω. The following holds: ∀λ ∃µ (g(u))λ = uµ.

Lemma 2 Let us denote χA the characteristic function of the set A. The energy Ev(u)
rewrites as follows for almost all λ:

Ev(u) =
∫

IR

Eλ
v (uλ, vλ)dλ , where

Eλ
v (uλ, vλ) =

∫
Ω

(
β |∇χuλ |+

∣∣uλ(x)− vλ(x)
∣∣ dx

)
.

Proof: The fidelity term rewrites as follows:

|u(x)− v(x)| =
∫

IR

∣∣uλ(x)− vλ(x)
∣∣ dλ .

The co-area formula [9] states that for any function which belongs to the space
of functions of bounded variation, we have:

∫
Ω
|∇u| =

∫
IR

∫
Ω
|∇χuλ | dλ , for

almost all λ. This concludes the proof of this lemma. �
Proof of theorem 1: First, we show that L1 + TV is invariant with respect to
any change of contrast. It is sufficient to prove that for any level λ, a minimizer
for g(v)λ is g(u)λ. Using lemma 1, there exists µ such that vµ = g(v)λ. A mini-
mizer of Eµ

v (·, vµ) is uµ. Thus, uµ is a minimizer of Eµ
v (·, g(v)λ). And we have

uµ = g(u)λ.
Self dual invariance is easily obtained. It is enough to note that

∫
Ω
|∇u| =∫

Ω
|∇(−u)| and that

∫
Ω
|u(x) − v(x)|dx =

∫
Ω
|(−u(x)) − (−v(x))|dx. The con-

clusion is straightforward. �



Original image β = 1.1

β = 1.7 β = 2.5

β = 3.5 Difference

Fig. 2. Minimizers of problem (P ) for different regularization coefficients for the image
hand. The last image difference is the difference between the original image and the one
for β = 3.5 (Note that we applied a change of contrast on the gray levels to enhance the
colors).


