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ABSTRACT

It is well-known that Total Variation (TV) minimization with L2 data fidelity terms (which cor-
responds to white Gaussian additive noise) yields a restored image which presents some loss of
contrast. The same behavior occurs for TV models with non-convex data fidelity terms that
represent speckle noise. In this note we propose a new approach to cope with the restoration of
Synthetic Aperture Radar images while preserving the contrast.
Keywords: Image Restoration, Total Variation, Energy Minimization, Levelable Functions, Syn-
thetic Aperture Radar.

1. INTRODUCTION

It is now well-known that when an image containing a bright object within a dark background
and overall Gaussian noise corruption is restored using Total Variation (TV) thregularization,21 a
significant loss of grey level contrast between recovered object and background can happen.18,23

We recently showed that TV is the paradigm of those regularization energy functionals which can
be minimized level-by-level, which we called levelable functions.9 We present in this paper the
first application of this formalism to the denoising of Synthetic Aperture Radar (SAR) images
where this loss of constrast effect can be preponderant.

Few works have addressed this loss of contrast issue under a Gaussian noise. In,20 Osher et al. pro-
pose an iterative regularization method which replaces the Total Variation prior by a generalized
Bregman distance. The method amounts to minimizing a sequence of variational problems where
each of them refine at each step a degraded image. It yields very good results compared to many
classical models, and has been extended to a time-continuous nonlinear inverse scale space.5,7

Convergence properties have been studied in 6,15 Succesful extensions to cartoon extraction from
aerial images,3 image denoising using wavelets26 and blind deconvolution.17 have been reported.

In this paper we focus on the use of variational methods or Markov Random Fields (MRFs)25 that
make use of TV as priors. Note that many other approaches that do fit into this framework are
available to perform SAR image denoising, such as.1,2, 10,14,16,19

The contributions of this paper are the following. We propose a new framework based on MRF
with levelable priors9 for restoration of images corrupted by Gaussian or Speckle noise. A theo-
retical study is conducted and describes the behavior of filters defined by Levelable-MRFs. Some
preliminary experiments suggest that this new approach performs very well. This paper is or-
ganized as follows. We introduce our notation and briefly present Levelable and Nice-Levelable
Markov Random Fields in Section 2. Section 3 is devoted to the study of the shape of the re-
stored objects using nice-levelable MRFs. Section 4 describes the loss of contrast that occurs
when regularizing with the Total Variation-prior21 (it is shown in9 that the latter is levelable).
In Section 5, we show how to prevent this loss of contrast using levelable priors. In Section 6 some
very promising results are presented for synthetic images that are corrupted by white Gaussian
additive noise and speckle noise. Finally, we draw some conclusions in Section 7.



2. LEVELABLE AND NICE-LEVELABLE MARKOV RANDOM FIELDS

In this section we briefly present Markov Random Fields with levelable priors (see details in9).

Assume an image defined on a discrete grid S of cardinal N . Grey levels take values in the
discrete set [0, L − 1], and we denote by us ∈ [0, L − 1] the label value of the image u at the site
s ∈ S. The grid is endowed with a neighborhood system and we denote by s ∼ t the neighboring
relationship between s and t and by (s, t) the second order clique. In this paper, only pairwise
interactions are considered. We consider the decomposition of an image into its level sets using the
decomposition principle12,13 i.e, we consider all thresholded images uλ where uλ

s = 1lus≤λ ∀s ∈ S.
The original image u can reconstructed via the formula us = min{λ, uλ

s = 1} ∀s ∈ S.

A function is said levelable if and only if it can be rewritten as a sum on level sets, of functions
of its variable level-sets. Since in this paper we only cope with MRFs with pairwise interactions,
we only give the form a levelable function for functions of one and two variables. A function of
one variable, f : [0, L − 1] 7→ IR , is always levelable since we have:

∀us ∈ [0, L − 1] f(us) =

L−1∑

λ=0

(f(λ + 1) − f(λ)) (1 − uλ
s ) + f(0) .

From a Markovian point of view, data fidelity terms are functions of one variable. Next we consider
functions of two variables that will corresponds to our priors. In it shown in9 that a levelable
symmetric function g of two variables, g : [0, L − 1]2 7→ IR , necessarily takes the following form

g(x, y) = F (max(x, y)) − G(min(x, y)) ,

where F and G are some functions that map [0, L − 1] to IR. Besides, if we also assume that
∀y ∈ [0, L − 1] g(·, y) attains a minimum at y, then g takes the following form:

g(x, y) = |S(x) − S(y)| + D(x) + D(y) ,

=

L−2∑

λ=0

R(λ)|1lλ<x − 1lλ<y| + D(x) + D(y) ,

where R(λ) = S(λ+1)−S(λ) is a nonnegative function on [0, L−2] and where D is some mapping:
[0, L − 1] 7→ IR. The non-negativeness of R implies that S is a non-decreasing function. In the
sequel we always assign D ≡ 0 and we say in this case that g(x, y) = |S(x) − S(y)|, with S
non-decreasing is a nice-levelable function. It is thus immediate that the Total Variation,21 which
corresponds to g(x, y) = |x − y| and S(x) = x, is a nice-levelable function.

A levelable (resp. nice-levelable) Markov Random Field is a Markov random field whose pair-
wise interaction terms are levelable (resp. nice-levelable) functions. Although a (nice) levelable
Markovian energy is generally not convex, a global minimizer can be computed by mapping the
problem to a binary submodular function minimization (for which efficient algorithms are avail-
able). We refer the reader to9 for details on this minimization. We also refer the reader to the
work of Zalesky in24 for levelable MRFs which involve higher order interaction terms. We are now
ready to study the minimizers of a levelable Markovian energy.

3. A THEOREM FOR THE SHAPE OF RESTORED OBJECTS

In this section, we assume that we observe an image v corrupted by some noise and the restored
version of v is referred to as u. We consider any nice-levelable posterior restoration energy (see
previous section) so that it takes the following form:

E(u|v) =
∑

s

U(vs|us) + β
∑

(s,t)

|S(us) − S(ut)| ,



where the fonction U measures the fidelity of the restored image u to the observed data v. For

instance, in the additive Gaussian noise case we have U(vs|us) =
(vs − us)

2

2σ2
. Recall that since

we consider nice-levelable MRFs, the function S is non-decreasing on [0, L − 1] and that for the
TV prior we have S(λ) = λ ∀λ ∈ [0, L − 1] . In the reminder of this paper the notation E(x | y)
signifies that E is a function of x while y is a parameter fixed to some value; formally we have
E(· | y) = E(·, y). We may also use the notation φs(x) = U(vs | x) which is implicit in vs.

We now generalize the results of8,22,23 and show that under reasonable conditions only the
constrast of object changes and not its shape. Levelable regularization functions are thus needed
to prevent the loss of contrast. Let us now consider a cartoon object O with perimeter L(O),
area S(O) and original luminance A, lying in a background of original luminance B. The whole
image is corrupted by some (not necessarily gaussian) noise. In the following we shall make use of
a continuous analysis, most often concerning grey levels and sometimes concerning the topology.
Also, the cardinal of some set E will be noted |E| = Card(E) if no confusion ensures. For instance
we shall often write S(O) ≈ |O| in the discrete lattice framework.

The next theorem gives some sufficient conditions on the observed object and the Markovian
energy with any nice-levelable prior so that the shape of the object in the result is preserved.

Theorem 1. If the following conditions are met:

• Assumption 1. ∀s ∈ S,∀vs ∈ IR, the data fidelity energy term φs(µ) = U(vs | us = µ)
is minimal for µ = vs .

• Assumption 2. Moreover, ∀s ∈ S,∀vs ∈ IR, φs(µ) is a quasi-convex function of parameter
µ (see Appendix A Definition 1).

• Assumption 3. The original (resp. restored) image are piecewise constant and verify:

background: brilliance B (resp. b) - object: brilliance A (resp. a)

B ≤ b ≤ a ≤ A

Then:
i) If the object O to be restored is convex, then consider the class of all homothecies with power
λ ≷ 1 whose center is interior to the object. If both object and background sizes are statistically
“significant”, then either the object disappears, or the MRF posterior energy is minimal for λ = 1
i.e., the shape of the object is preserved through MRF restoration, whatever the nice-levelable reg-
ularization function employed.

ii) Accordingly, the posterior energy of original shape position is minimal wrt. all candidate trans-
lations of original object O (whatever its shape).

Please, note that assumptions 1 and 2 apply for Nakagami, Gamma and Gaussian laws endowed
with their usual parameter.

Proof: we proceed along the same line than.22,23

i) Minimization wrt. homothecies

Let us note Oλ = Hλ O the candidate restoration object, supposed to be obtained from original
object O by homothecy Hλ. We define now a methodology for computing the total attachment

to data contribution to posterior energy U =
∑

s∈S

U(vs | us). Of course it decomposes always as:

U =
∑

s∈Oλ

U(vs | us = a) +
∑

s∈S\Oλ

U(vs | us = b) (1)

Now, in each of these two terms, some observation random variables vs are emitted (we say
“drawn”, see below) either by us = A if s ∈ O or by us = B if s ∈ S\O. Thus for homothecies it
appears that two cases have to be investigated:



Case I) λ ≥ 1: original object included in restored object O ⊂ Oλ

We split the first term of previous formula into two parts, yielding

U =
∑

s∈O

U(vs | us = a) +
∑

s∈Oλ\O

U(vs | us = a) +
∑

s∈S\Oλ

U(vs | us = b)

since for each of these respective terms (see Fig. 1 left part):

- O cardinal: |O| is drawn from P (· | µ = A) i.e., A-drawn (see Appendix A) .

- Oλ\O cardinal: |Oλ| − |O| is drawn from P (· | µ = B) i.e., B-drawn ( “ ) .

- S\Oλ cardinal: N − |Oλ| is B-drawn .
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Figure 1. Homothecies. Left : case I) - Right : case II) .

Thanks to Proposition 3 of Appendix A the expression of U writes then approximately:

U ≈ |O| U(vs = A | µ = a) + (|Oλ| − |O|) U(vs = B | µ = a) + (N − |Oλ|) U(vs = B | µ = b)

so that the total posterior energy E(λ) = E(u | v) is approximately:

E(λ) = E(u) + U ≈ β L(Oλ) (S(a) − S(b)) +

|O| U(vs = A | µ = a) + (|Oλ| − |O|) U(vs = B | µ = a) + (N − |Oλ|) U(vs = B | µ = b) ,

Here we make a continuous approximation for topology by setting: L(Oλ) ≈ λ L(O) and |Oλ| ≈
|O| λ2 . Thus the “quadratic term in λ” in previous energy formula is

|Oλ| [ U(vs = B | µ = a) − U(vs = B | µ = b) ] .

It appears that this is a positive term since U(vs = B | µ = a) − U(vs = B | µ = b) ≥ 0 .

The latter inequality results indeed from the quasi-convex Hypothesis 2 and from the piecewise
ordered Hypothesis 3: see left part of Fig. 2. Also, the linear term in λ (regularization) is positive
since a ≥ b and is thus a non-decreasing function of λ. Thus, as in Strong et al., the second-order
polynomial (in λ) E(λ) is convex non-decreasing for λ ≥ 1: see right part of Fig. 3.

Case II) λ ≤ 1: restored object included in original object Oλ ⊂ O

Using the same approach we find that in this case the attachment to data contribution writes

U =
∑

s∈Oλ

U(vs | us = a) +
∑

s∈O\Oλ

U(vs | us = b) +
∑

s∈S\O

U(vs | us = b)

≈ |Oλ| U(vs = A | µ = a) + (|O| − |Oλ|) U(vs = A | µ = b) + (N − |O|) U(vs = B | µ = b)

since for each of these respective terms (see Fig. 1 right part) :



- Oλ is A-drawn, tested for us = a .
- O\Oλ is A-drawn, tested for us = b .
- S\O is B-drawn, tested for us = b .

This quadratic term in λ (we make the same topological approximation as above) writes thus:

|Oλ| [ U(vs = A | µ = a) − U(vs = A | µ = b) ] ≤ 0

by invoking the same quasy-convexity and piecewise ordered hypotheses as above: see right part
of Fig. 2. Thus the second-order polynomial E(λ) = E(u | v) is concave for 0 ≤ λ ≤ 1 . Two
possibilities occur at this point:

a) E(λ = 0) < E(λ = 1): E(λ) is minimal at λ = 0 i.e., the object disappears completely!

b) E(λ = 0) > E(λ = 1): E(λ) is minimal at λ = 1 i.e., the shape of the object is preserved!
We find the same “concave-convex” behaviour as Strong et al. (see Fig. 3). This concludes. �

U(vs = B | µ) U(vs = A | µ)

B b a A µ B b a A µ

Figure 2. The quasi-convex behaviour of U(vs | µ) and its consequence. Left : case I) - Right : case II) .

λ 1 

Ε(λ)

a)

b)

Figure 3. Sketch of the posterior energy E(λ) as a function of the homothecy ratio λ .

Of course, some lack of accuracy of this development occurs around λ = 0 (resp. λ = 1), where
|Oλ| (resp. |O| − |Oλ|) are ”statistically small”. Thus anything concerning the precise shape of
the recovered object can happen around these ranges. Anyway we shall assume in the sequel that
the theoretical conditions of Theorem 1 are met.



ii) Minimization wrt. translations

The same arguments as above apply to the set of translations of object O. Let Ot be the
translated candidate restored object and D = O \ (O ∩Ot ) , with 0 ≤ |D| ≤ |O| . Now S can

��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������

��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������

3)

O

4)

2)1)

Ot

Figure 4. The case of translations.

be decomposed in four subsets (see Fig. 4) :

- S \ (O ∪Ot ) cardinal: N − |O| − |D| B-drawn tested for us = b
- O \ (O ∩Ot ) |D| A-drawn tested for us = b
- O ∩Ot |O| − |D| A-drawn tested for us = a
- Ot \ (O ∩Ot ) |D| B-drawn tested for us = a

Since the regularization component of posterior energy is translation invariant (!) we just cope
with the attachment to data energy, and make use of previous statistical arguments:

U ≈ (N−|O|−|D|) U(vs = B | µ = b) + |D|U(vs = A | µ = b) + (O|−|D|) U(vs = A | µ = a) + |D|U(vs = B | µ = a)

The linear component in |D| of this expression is thus

|D| [ U(vs = A | µ = b) − U(vs = A | µ = a) + U(vs = B | µ = a) − U(vs = B | µ = b) ] .

The sum of two first terms as well as that of the two last ones is positive from the quasi-convexity
hypothesis and B ≤ b ≤ a ≤ A . The posterior energy is thus minimum for |D| = 0 . �

Once again this statistical-based demonstration is no more valid for ”small” translations of the
object. Anyway we shall assume that the restored object does not move at all.

We emphasize that the whole proof holds for any nice-levelable prior. In the sequel we shall
assume that this theorem holds and moreover that the shape of the object is completely recovered.

4. A THEOREM FOR THE BRILLIANCE OF RESTORED OBJECTS

We investigate now the gray level value of the restored object. The following theorem explains
the origin of the loss of contrast when regularizing with a nice-levelable prior.

Theorem 2. If the requirements and results of Theorem 1 hold, namely:

• Hypotheses 1 and 2: ∀vs attachment to data energy φs(µ) = U(vs|µ) is a quasi-convex
function of µ, (Appendix A Definition 1) and attains its minimum at µ = vs .

• Hypothesis 3 (mild): the brilliance of piecewise constant restored image satisfies b ≤ a .

• Theorem 1: the shape and position of the object O are preserved.

Then, regularizing with a nice-levelable energy implies that the brilliance of object decreases whereas
that of background increases: B ≤ b ≤ a ≤ A : i.e., Hypothesis 3 (strong) holds.



Proof: this Theorem can be proved either in a continuous or even in a discrete grey-level frame-
work. The total posterior energy, noted E(a, b) = E(u | v) writes indeed:

E(a, b) =
∑

s∈O

U(vs | µ = a) +
∑

s∈S\O

U(vs | µ = b) + β L(O) (S(a) − S(b)) (a ≥ b)

From the statistical hypothesis that both object and backgound sizes are large, this writes as:

E(a, b) ≈ |O| U(vs = A | µ = a) + (N − |O|) U(vs = B | µ = b) + β L(O) (S(a) − S(b))

Thus for fixed b the total energy term wrt. variable a writes:

E(a) ≈ |O| U(vs = A | µ = a) + β L(O) S(a) (a ≥ b) (2)

From the quasi-convex hypothesis + the levelable hypothesis (S(·) is a non-decreasing function),
this is a non-decreasing function of a for a ≥ A. Thus the minimizer value a∗ verifies b ≤ a∗ ≤ A.
Conversely for a fixed the total energy term wrt. variable b writes as

E(b) ≈ (N − |O|) U(vs = B | µ = b) − β S(b) (b ≤ a) (3)

Using the same arguments as above this is a non-increasing function of b for b ≤ B. Thus the
minimizer value b∗ verifies a ≥ b∗ ≥ B. This concludes the proof. �

We propose in the next section a new approach to circumvent this loss of contrast obtained
using a modified TV prior.

5. WHY DO WE NEED LEVELABLE REGULARIZATION ENERGIES?

Let us apply previous results to the usual Gaussian noise case. Previous equation 2 for the
posterior energy of candidate restored object O with brilliance a writes then

E(a) = E(u | v) = S(O)
(A − a)2

2σ2
+ β L(O) S(a) (S(a) > 0)

Now, in the continuous grey level framework the following typical loss of brilliance is found by

minimizing E(a) wrt. a, i.e. by setting
∂E

∂a
= 0 :

a∗ − A = −
L(O)

S(O)
σ2 β

(
∂S

∂a

)

a∗

(

(
∂S

∂a

)

a

= 1 ∀a for TV ) .

This contrast loss will be reduced if the “effective” regularization parameter at grey level A,

namely (
∂S

∂a
)
a=A

is low ! We are thus set between two contradictory objectives: regularization

and contrast preservation. Thus we design an adapted levelable function with low (discrete)
“slope” R(λ) = S(λ + 1) − S(λ) for each of the grey level values λ = A to be recovered!
This approach can be generalized to other types of noise as Gamma and Nakagami laws for
instance. We present just an outline for this purpose: assume that minimizer a∗ ≈ A. Then

(
∂U(A | a)

∂a

)

a∗

≈

(
∂U(A | a)

∂a

)

A
︸ ︷︷ ︸

0

+ (a∗ − A)

(
∂2U(A | a)

∂a2

)

A

The minimizer value a∗ is thus given by a∗ − A ≈
L(O)

S(O)
β

(
∂S

∂a

)

A

/

(
∂2U(A | a)

∂a2

)

A

. It remains

to show that indeed a∗ ≈ A, and also that a similar reasoning holds for background (which is
more likely since its size is usually quite larger than that of the object itself).

Recall that in this section we have assumed that S is a differentiable function and that U(A|·)
is twice differentiable. Since a levelable MRF is defined on a finite set of labels, the above consid-
eration does not apply directly. However, although in this paper we have assumed that the set of
label is the discrete set {0, L − 1}, one can chose an arbitrary fine quantization of the continuous
segment [0, L − 1], i.e., {0, δ, . . . , L − δ} with δ > 0 and thus getting a fine approximation of the
first and second derivatives using classical finite difference schemes.



6. EXPERIMENTS

We present here some results on synthetic images corrupted by additive or multiplicative noise.

6.1. L2 + TV

First we investigated the validity of previous developments on the usual L2+TV model: a circle was
created with diameter D = 40, brilliance of background (resp. object) µ1 = 60 (resp. µ2 = 80) .
Gaussian noise was then added with standard deviation σ = 30 i.e., similar to that of a Rayleigh
distribution for these mean values. In our experiment the levelable function is prescribed as R(λ) =
S(λ + 1) − S(λ) = 0.01 for both λ = λ1 = 59 and λ = λ2 = 79 , whereas R(λ) = 1 ∀λ 6= λ1, λ2

as for TV ! Comparison of results with standard TV is shown on Figs. 5 and 6. We clearly see on
Fig. 6 that the minimization using the latter nice-levelable function achieves both noise removal
and contrast preservation. This is to compare to TV regularization which only successes in noise
removal, as predicted by the theory.

6.2. Rayleigh + TV model

We now generalize previous effect to M -look speckled SAR images following a Nakagami law:11

E(vs|us) = M [
v2

s

u2
s

+ 2 log us]

To this end we synthetize a mire with original grey levels 20, 40, 60 and 80 on which we superimpose
a Nakagami law of parameter M = 1 (this is a Rayleigh distribution).

This noisy image is depicted on figure 7-A. The restored images using TV and adapted levelable
regularization are respectively presented in Figure 7-B and -C. Note that for visualization purposes,
we have applied a change of contrast on these images. Although both results are visually very
similar, the effect of adaptive levelable regularization is clearly seen on figure 8: contrast is better
preserved, while still removing noise.

The size of the images in these experiments in 256 × 256. Although the minimization method
described in9 may require a huge amount of memory (almost 3 Gigabytes for the images in this
report) it takes only about 20 seconds a Pentium 4 3GHz to perform the optimization. Recall that
the obtained minimizer are exact although the functional is not convex. These time results are
much lower than the ones presented in9 (using exactly the same algorithm) which restore images
corrupted by impulsive noise using TV as a prior.We conjecture that this behavior is due to the
fact the the functionals we minimize in this paper are somehow more ”convex” than the one used
in.9 This behavior is currently under investigation. Approximate energy minimization approaches
for these problems which require much less memory will be presented in a forthcoming paper.

7. CONCLUSION

In this paper we first presented a statistical-based extension of22,23 concerning the shape conser-
vation and loss of contrast for piecewice-constant restored images with Total Variation and general
noise such as speckle. We then showed how a judicious use of levelable regularization functions i.e.,
decomposable on level sets9 can overcome this loss of contrast effect, and applied this formalism
to the denoising of Synthetic Aperture Radar (SAR) images while preserving the reflectivity of
each region of interest. Preliminary results are very promising. A main issue is how to estimate
automatically the levelable functions. This point will be addressed in a forthcoming paper.

Appendix A: recall on sufficient statistics and exponential families

In this Appendix we sketch our definitions and notations and recall the main properties of sufficient
statistics4 in the case of exponential families, which is well adapted to the MRF approach.
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Figure 5. A: original noisy image (Gaussian noise) - B: result with TV - C: adapted levelable function.
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Figure 6. Slices of the noisy and restored images at vertical line x = 128. Red: TV regularization -
Green: levelable regularization (L2+ modified TV ).
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Figure 7. A: original noisy image (Rayleigh noise)- B: result with TV - C: adapted levelable function.
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Figure 8. Slices of the noisy and restored images at horizontal line y = 128. Grey-Blue: non-noisy image
- Red: TV - Green: levelable regularization (Rayleigh + modified TV ).



Definitions and notations

Definition 1. A quasi-convex function of N variables is a function whose level-sets are convex.
When N = 1, this function is first non-increasing, attains its minimum and then increases.

Definition 2. Expectation of random variable X under parametric law Pa(·) is noted : IEa [X].

Definition 3. A subset E ⊂ S is said to be A-drawn if (V1, . . . Vs)s∈E is drawn according to the
conditional law PA(V 1, . . . Vs) = P (V 1, . . . Vs | µ = A) = P (V 1, . . . Vs | u1 = . . . us = A)

Sufficient statistics and exponential families for MRF observation pdf’s

We address a µ-drawn subset E ⊂ S with cardinal |E| = Card(E) and write:

P (V1 = v1 . . . Vs = vs | µ) = h(v1 . . . vs) exp− [ χ(µ) T (v1 . . . vs) + Γ(µ) ] (4)

∝ exp−U(v1 . . . vs | u1 = . . . = us = µ)

with U(v1 . . . vs | u1 = . . . = us = µ) = χ(µ) T (v1 . . . vs)+Γ(µ) . Here T (v1 . . . vs) is the sufficient
statistics associated to Pµ(V 1, . . . Vs). In the following we shall always assume that the random
variables V1 . . . Vs are i.i.d for sake of simplicity, which corresponds to conditional independance

of observations in the MRF framework. Thus T (V1 . . . Vs) =
∑

s∈E

T (Vs) and

U(v1 . . . vs | u1 = . . . = us = µ) =
∑

s∈E

U(vs | us = µ) = χ(µ) [
∑

s∈E

T (Vs) ] + Γ(µ) (5)

with Γ(µ) = |E| γ(µ) .

Definition of the MRF observation energy in last equation (5) is coherent, since from a MRF point
of view vs is observed and fixed. In the case of the Nakagami law, one has for instance:

T (v1 . . . vs) =
∑

s∈E

v2
s , h(v1 . . . vs) ∝

∏

s∈E

v2M−1
s , χ(µ) =

M

µ2
, Γ(µ) = |E| γ(µ) = |E| 2M log(µ).

Parameter µ in (4) can be defined up to a monotone function change. In the sequel, we shall make
the fundamental assumption that parameter µ has the following precise, physical meaning:

Hypothesis 4. For any µ-drawn subset E ⊂ S and ∀A ∈ IR fixed, the likelihood

LE(µ) = P (V1 = . . . = Vs = A | µ) = P (Vs = A | µ)|E|

is maximal at µ = A. In a MRF context, this means that the data fidelity term
∑

s∈E

U(vs = A | us = µ) is minimal for µ = A. This is in fact Hypothesis 1 of this paper.

We are now equipped to state the two following Propositions:

Proposition 1. ∀A ∈ IR and ∀E ⊂ S A-drawn : IEA [T (V1 . . . Vs)] = T (V1 = . . . Vs = A)

Proof: from the ML Hypothesis 4 one has






∂
∑

s∈E

U(Vs = A | µ)

∂µ







µ=A

=

(
∂χ(µ)

∂µ

)

µ=A

T (V1 = . . . Vs = A) +

(
∂Γ(µ)

∂µ

)

µ=A

= 0 (6)

On the other hand, a classical result in Probability establishes that for any parametric pdf Pµ(·) :

IEµ

[
∂log Pµ(V1 . . . Vs)

∂µ

]

= 0 ∀µ ∈ IR. In our case this writes as:

IEµ







∂
∑

s∈E

U(Vs | µ)

∂µ







=
∂χ(µ)

∂µ
IEµ [T (V1 . . . Vs)] +

∂Γ(µ)

∂µ
= 0 ∀µ ∈ IR



Now, setting µ = A in this formula and identifying with previous equation (6) establishes the

result, provided that χ(µ) is invertible at µ = A i.e. ,

(
∂χ(µ)

∂µ

)

µ=A

6= 0 . �

Proposition 2. Let E ⊂ S be A-drawn, and V1 . . . Vs i.i.d.

Then lim
|E|→+∞

T (V1 . . . Vs) / |E| = IEA [T (V1 . . . Vs)] / |E| = T (A)

Hence the name “sufficient statistics”: for instance, estimator of parameter µ = A for the Nak-

agami law is given by Â2 =

(
∑

s∈E

V 2
s

)

/ |E| .

Proof: this relies immediately from the (weak) law of large numbers for i.i.d. random variables
Vs and from Proposition 1. �

The next result, of significant physical interpretation, follows at once:

Proposition 3. Let E ⊂ S be A-drawn, and V1 . . . Vs i.i.d. Then:

∀µ ∈ IR, lim
|E|→+∞

(
∑

s∈E

U(vs | us = µ)

)

/ |E| = U(vs = A | us = µ)

Proof: indeed one has from (5):

Q =

(
∑

s∈E

U(vs | us = µ)

)

/ |E| = χ(µ)

(
∑

s∈E

T (v1 . . . vs)

)

/ |E| + γ(µ)

−→

|E|→+∞
χ(µ) T (A) + γ(µ) = U(vs = A | us = µ)
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