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Abstract

Carrier Sense Multiple Access/Collision Detection (CSMA/CD) is the protocol
for carrier transmission access in Ethernet networks (international standard IEEE
802.3). On Ethernet, any Network Interface Card (NIC) can try to send a packet
in a channel at any time. If another NIC tries to send a packet at the same time,
a collision is said to occur and the packets are discarded. The CSMA/CD proto-
col was designed to avoid this problem, more precisely to allow a NIC to send its
packet without collision. This is done by way of a randomized exponential backoff
process. In this paper, we analyse the correctness of the CSMA/CD protocol, using
techniques from probabilistic model checking and approximate probabilistic model
checking. The tools that we use are PRISM and APMC. Moreover, we provide a
quantitative analysis of some CSMA/CD properties.

1 Introduction

The Carrier Sense Multiple Access/Collision Detection (CSMA/CD) pro-
tocol is a fundamental distributed protocol for networks. Indeed, it is one of
the most important part of the IEEE 802.3 international standard (Ethernet
Network Communication protocol). In Ethernet, multiple Network Interface
Cards (NIC) may be connected via the same channel. Since two NICs may
send packets simultaneously, collisions may occur, thus discarding both pack-
ets. Both the NICs will detect this collision, but cannot re-send the packets
at once, since it would induce a new collision. So, when a collision happens,
the CSMA/CD protocol forces each NIC to pick at random an integer-valued
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delay from a bounded interval, and to wait for a length of time proportional
to this integer-valued delay before re-sending the packet.

This paper considers an application of probabilistic model checking tech-
niques to the IEEE 802.3 CSMA/CD protocol. Here, we are interested in
establishing quantitative properties of the protocol, such a computing the
probability that a given event occurs before a certain deadline. Other values
are also computed, like the maximum expected time needed to send a packet.

Following [21,23], we model the protocol in the framework of probabilistic

timed automata (PTA). PTA [24] are extensions of timed automata [1] which
incorporate probability distributions of discrete transitions. A PTA has an
infinite number of states due to the presence of real-valued clock variables.
However, for the class of reachability properties that we consider here, one
can always derive an equivalent finite-state transition system (see [23]). We
adopt here a method (referred to as “integer semantics” method, in [8,23,22]),
where clocks are viewed as counters storing non-negative integer values, which
increment as time goes. The PTA modelling the system then reduces to a
finite-state Markov decision process [10]. We then use the model-checking
tool PRISM [30] in order to analyse the resulting Markov decision process for
the CSMA/CD protocol. However, the original constants used by the pro-
tocol lead to a model of prohibitively large size. Therefore, the verification
with PRISM is done only with smaller constants. A way to partially alleviate
this limitation consists in removing the sources of nondeterminism, replacing
nondeterministic choices (originating from the timed transitions and the asyn-
chrounous product of components of the system) by probabilistic distributions.
The underlying Markov decision process then becomes a “fully probabilistic
system” (or, in other terms, a Markov chain), and can then be analysed via
the tool APMC [13]. The same input format (Reactives Modules, [2]) is used
for processing the model in both tools.

The interest of using these tools together is twofold:

(i) PRISM allows to verify models with nondeterministic choices, but of
smaller size (due to the state space explosion phenomenon), while APMC
allows the verification of larger models (viz actual values of the CSMA/CD
protocol), but only on fully probabilistic systems (after replacement of
nondeterministic choices by probability distributions).

(ii) Moreover, using two different tools based on different approach allows to
give more confidence on the experimental results given by both tools.

Structure of the paper

After a description of the related work (sections 2), the paper proceeds
by giving a presentation of CSMA/CD and its modelling in the framework
of Markov decision processes (sections 3 and 4). In the rest of the paper,
sections 5 and 6, we present the two tools dedicated to the model checking
of probabilistic systems together with a brief description of their theoretical
framework and the results of several experiments. We discuss these results,
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validating again the CSMA/CD protocol. This is the first time this is done
using probabilistic and approximate model checking techniques.

2 Related Work

CSMA/CD is a widely studied protocol using various techniques. We focus
here on techniques related to model checking and approximation.

Previous studies of CSMA/CD LAN have mainly concerned performance
evaluation by using two approaches: analytical models [12,26] or simulation
[29]. Several models were developped to analyse both throughput link and
packet delay: from simple traditional model [26] to more complex models
[6,18]. Other authors based performance studies on detailed simulation and
measurement to avoid some of the simplifying assumptions that analytical
models employ [9]. Very few papers consider automatic verification of tem-
poral and probabilistic specifications over a timed model. [14] give temporal
constraints for this protocol in some discrete time model. In [31], the behavior
of the system is described by a product timed automaton. Then, the timed
automata model checking tool KRONOS is used to verify properties such as

• “a collision is detected whenever the two senders are simultaneously trans-
mitting”,

• “a collision is detected in a given bounded delay”,

• “when one of the senders begins transmitting, there must exist an execution
leading to a successfull transmission”.

Timed automata model checking tools as UPPAAL [27] and KRONOS [11]
do not allow to verify the satisfaction of probabilistic specifications.

To our knowledge, only one attempt has been made so far to verify CSMA/CD
using a probabilistic model-checker. In [17], the tool RAPTURE has been
used to compute an upper bound of the probability for a device to have N
consecutive collisions. The tool uses abstraction and refinement techniques
to decrease the state space before performing the verification, thus obtaining
approximate results more efficiently.

In [21], the probabilistic model checking tool PRISM [30,20] is used to
verify probabilistic properties of the IEEE 802.11 protocol (CSMA/CA for
WLAN). For example, it is possible to compute the minimal probability of
both stations eventually sending their packet correctly and the minimum prob-
ability of a station delivering a packet within some deadline.

3 Sketch of the CSMA/CD protocol

The CSMA/CD protocol (Carrier Sense Multiple Access with Collision
Detection) is a network arbitration protocol which regulates communication
between several agents who communicates by a unique channel. The IEEE
802.3 [5] standard describes precisely the differents aspects of the protocol.
We focus on the half duplex version of the protocol (only one message can be
carried at a time).
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Fig. 1. Scheme of collision.

Emission

All agents are equal in their ability to send messages onto the network
(Multiple Access). Roughly speaking, each agent must sense the channel
(Carrier Sense), and wait for the absence of signal before starting an emis-
sion. As signals take a bounded amount of time (denoted here σ) to travel,
two agents may both sense the channel as free, thus starting to emit (almost)
simultaneously, which yields a subsequent message collision. The detection of
collision thus takes at most 2σ µs (see Fig. 1). After this amount of time,
if no signal of collision has been detected, the sender can safely complete the
emission. The time for emitting completely a message is assumed here to be
a constant number of µs, denoted λ. (For example, for a communication over
Ethernet 10 Mbps with σ = 24µs, we have a time of transit of around 780µs
for a message of size 1024 bytes.)

Conflict

If a collision occurs, the messages get lost and agents are informed of the
event, upon reception of a garbled signal. They choose then independently a
random waiting time before attempting to transmit again. To minimize the
chance of another collision, the waiting time is chosen uniformly in an interval
[0, 2m], where m denotes the minimum between α, a given constant, and the
number of collisions since the last good transmission. Thus, the higher the
number of collisions is, the longer this interval becomes, and the more the
chance of a new collision decreases.

4 Modelling

Following [21,23], we use the framework of probabilistic timed automata

for modelling the protocol under study. Probabilistic timed automata are
extensions of classical timed automata [1] with the ability to express relative
likelihoods of state transitions under the form of probability distributions [24].

The model of the CSMA/CD protocol consists of three components oper-
ating in parallel, namely Sender1, Sender2 (sending stations) and Chan (the
channel). In the synchronized product Sender1‖Sender2‖Chan the set X of
clocks is a triple {x1, x2, y} where x1 represents the clock of Sender1, x2 the
clock of Sender2, and y a clock, which is never reset, used for measuring time
bounds on reachability properties. A state s of the system is a pair (l, v)
with l = (l1, l2, c), where li is the location of Senderi of the form (si, coli)
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not)
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6 Collision detected

7 Wait a random time before
reemission

8 Message correctly sent

Fig. 2. Template for the sender stations.

(for i = 1, 2), c the location of Chan, and v is a valuation of {x1, x2, y}. In
the location li = (si, coli) of Senderi the component coli stores the number
of collisions which have occurred for Senderi since the last correct emission.
In the following, we assume familiarity with the graphical representation of
timed automata. The presentation is much inspired from [21].

Senders Automata

These automata describe the behavior of each sender. It contains a clock
(x) and a variable storing the random waiting time (alea). The template for
the senders is shown in Figure 2. There are eight locations, among which,
locations 2′, 4, 6 and 8 (represented as dashed circles) are urgent intermediate
locations, where no time can pass. Note that the events busy, free and
garbled are the urgent events of the sender. The initial location is 0. When
the sender wants to emit a message, the automaton goes from location 0 to 1.
This transition is preceded by a certain amount of time in location 0, which
corresponds to one source of nondeterminism. If the channel is free, then the
sender goes to location 2 where it waits for σ µs before going to the urgent
location 2′ where it tests the channel. If the channel is busy, the sender enters
the backoff procedure (transition from location 2 to 6). Otherwise, the sender
goes from location 2′ to 3, starting to send the packet (transition labelled
‘send’). In location 3, the sender waits again for σ time units, and goes to the
urgent location 4, where it tests the channel (transition labelled ‘verify’). If the
channel is garbled, the sender enters the backoff procedure (going to location
6). Otherwise, the sender goes to location 5 where it completes the message
emission (going to the urgent location 8), then returns to the initial location
0 (transition labelled ‘finish’). The backoff procedure consists in setting the
backoff value according to the random assignment alea := RANDOM(col)
(transition from 6 to 7). Here, col represents the number of collisions since the
last successful emission, and RANDOM(col) is a number chosen uniformly
between 0 and 2m − 1 with m = min(col, α). When the value of x reaches
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Fig. 3. Template for the channel.

alea, the sender starts re-sending its packet (transition from 7 to 1).

Channel Automaton

The probabilistic automaton Chan, which represents the channel, is shown
in Figure 3. The initial location Idle corresponds to the case where the channel
is free. From this location, receipt of a message (event send1, sent by Sender1)
triggers the transition to location Check1; then this message can either finish
successfully (event verify1 followed by finish1) making the channel return
to location Idle, or collide with a message from Sender2 (event send2) making
the channel proceed to location Conflict. Once the collision has been detected
(event verify1), the channel goes to location CD where a garbled signal is
propagated (event garbled), and returns to location Idle after reception of
the finish events from the senders.

Properties

We are interested in the verification of differents kinds of properties

• Minimum and maximum probabilistic reachability properties over proba-
bilistic timed automata:
· the minimum probability that a sender sends correctly a message within

a deadline of d µs:

Pmin[s→∗ {s | (x1 = 8 ∨ x2 = 8) ∧ y ≤ d}],

· the minimum and maximum probabilities that at least N collisions occur
after d µs:

Pmin[s→∗ {s | col1 ≥ N ∧ y ≤ d}]

Pmax[s→
∗ {s | col1 ≥ N ∧ y ≤ d}].

Informally, given a set F of target states, Pmax(s→
∗ F ) (resp. Pmin(s→

∗

F )) represents the probability that the probabilistic system reaches F , when
all nondeterministic choices are as favorable (resp. unfavorable) as possible.

• Time bounded probabilistic reachability properties over fully probabilistic
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systems:
· the probability that a sender sends correctly a message within a deadline

of d µs: Prob[s→∗ {s | (x1 = 8 ∨ x2 = 8) ∧ y ≤ d}],
· the probability that at least N collisions occur after d µs: Prob[s →∗

{s | col1 ≥ N ∧ y ≤ d}].
Informally, given a set F of target states, Prob[s→∗ F ] is the probability

that the fully probabilistic system reaches F .

5 Verification using the PRISM tool

For verifying probabilistic reachability properties, we must derive an equiv-
alent finite-state (probabilistic) system. In the non-probabilistic framework,
possible methods of reduction are: “region equivalence” [1], “forward explo-
ration” [11,27], “integer semantics” [8]. These methods have been extended
to the probabilistic framework [21,23]. As explained in [23] (Sec. 3.2), the two
first methods require in practice the preliminary construction of an abstraction
of the original probabilistic timed automaton. For the sake of simplicity, we
chose the third approach (integer semantics), which allows us to work directly
at the level of the original probabilistic timed automaton (see [23,22]). In such
a method, clocks are viewed as counters storing non-negative integer values,
which increment as time goes. The PTA modelling the system can then be
seen as a finite-state Markov decision process [10].

5.1 Theoretical foundations of PRISM

Markov Decision Processes (MDP) (also called Probabilistic Nondetermin-
istic Systems (PNS) [7]) allow accurate modelling of systems which exhibit
both probabilistic and nondeterministic behavior. A common example of this
is the interleaved parallel composition of several probabilistic processes, but
nondeterminism can also be useful to leave parts of a system underspecified
and to model interaction with an unknown environment. Formally:

Definition 5.1 A Markov decision process (MDP) is a tuple (S, s, Act, Steps)
where S is a finite set of states, s is the initial state, Act is a set of actions
and Steps ⊆ S × Act×Dist(S) is a probabilistic transition relation.

An MDP transition s
a,µ
−→ s′ is made from a state s ∈ S first by nonde-

terministically selecting an action-distribution pair (a, µ) such that (s, a, µ) ∈
steps, and second by making a probabilistic choice of the target state s′ accord-
ing to the distribution µ, such that µ(s′) > 0. A path represents a particular
resolution of both nondeterminism and probability: it is a non-empty finite
or infinite sequence of probabilistic transitions π = s0

a0,µ0

−−−→ s1
a1,µ1

−−−→ · · · such
that s0 = s. We denote by π(i) the (i + 1)-th state of π and last(π) the
last state of π if π is finite. An adversary represents a particular resolution
of nondeterminism only. Formally, an adversary of a MDP is a function A
mapping every finite path π to a pair (a, µ) such that (last(π), a, µ) ∈ Steps.

The evolution of the MDP according to a particular adversary A is a
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measurable set of infinite paths associated with A, which can classically be
provided with a probability measure. Given a set F ⊆ S of target states, let:

P (s
A
−→

∗

F ) denote the probability of reaching F starting from the initial state
under A.

The maximal reachability probability Pmax(s→
∗ F ), (resp. minimal reach-

ability probability Pmin(s →∗ F )), is the maximum (resp. minimum) proba-
bility over all the adversaries, with which a given set of states can be reached

from the initial state: Pmax(s →
∗ F ) = maxA{P (s

A
−→

∗

F )} (resp. Pmin(s →∗

F ) = minA{P (s
A
−→

∗

F )}).

Informally, Pmax(s→
∗ F ) (resp. Pmin(s→

∗ F )) represents the probability
that the MDP reaches F , when all non deterministic choices are as favorable
(resp. unfavorable) as possible.

Specification of reachability properties to be checked on a MDP may be
expressed in PCTL, which is a probabilistic extension of the popular temporal
logic CTL. In [7] the authors provide an algorithm to enrich the usual algo-
rithm to check a CTL formula on a finite state system, with the computation
of maximal and minimal probabilities. This can be done in polynomial time
by solving linear programming systems.

PRISM [20] is a probabilistic model checker which provides support for
analysis of Markov decision processes and performs verification of PCTL for-
mulae for MDPs, using the model checking algorithm of [7]. The most expen-
sive part of this is the computation of reachability probabilities. For this there
are two options, either solution of a linear optimization problem or iterative
numerical solution techniques (based on dynamic programming). PRISM uses
the second of these. Each iteration computes new values for the reachability
probabilities, tending towards the exact solution. The computation is ter-
minated when it has converged to within the desired precision (parameter ε
specified by the user).

To analyse an MDP, PRISM has to construct the full reachable state space
and the transition matrix which represents it. However, the tool can often
handle very large models because it uses symbolic model checking techniques.
It uses BDD (binary decision diagram) based data structures, in particular
MTBDDs (multi-terminal BDDs, see e.g. [15]).

In this paper, we have made use of a prototype extension of PRISM which
provides support for analysis of properties based on costs (or conversely, re-
wards) [22]. Each state or transition of the model can be assigned a cost.
PRISM allows computation of, for example, the expected amount of cost cu-
mulated before a certain set of states is reached. Because we use MDPs,
we must compute either the minimum or maximum expected cost (over all
resolutions of nondeterminism). In PRISM, these properties are expressed as

(i) Rmin[true Ugoal ]

(ii) Rmax[true Ugoal ].
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PRISM uses the algorithms of [3] to perform model checking of these for-
mulas.

5.2 Experiments

All experiments were run using a Pentium IV 2.80GHz with 1 Gb of RAM.
Due to the size of the models (up to dozens of millions states), we have used the
MTBDD engine of PRISM which is usually more efficient for larger systems.
We set the approximation parameter epsilon to 10−6. The main reason why
the models become so large is the variable needed to count the time (for
bounded probabilistic reachability). For the expected time, since the costs are
not stored in the states of the model, the state space is reasonably small.

The main difference with APMC (see section 6) is that PRISM can handle
the inherent nondeterminism of the model. By effectively building the model
it can then choose the “best” or “worst” resolutions of the nondeterminism,
and give a realistic analysis of the worst and best cases, for example here with
the probability to have at least N collisions. It is also possible to model the
case in which the choice to send or not a message is made nondeterministically,
as we will see later.

Verification of probabilistic reachability properties

Due to the size of the model, it was impossible to verify it with PRISM
using the real values of the constants λ and σ. Nevertheless, we have preserved
the ratio of these two constants. We have also set the maximum number of
collisions α (used to compute the random delay after before sending a new
message after a collision) to 6. The three main properties we have verified are
the following:

• Property 1 represents the minimum probability to reach a state in which at
least one of the senders has successfully sent a message before deadline d.
This is written (in PCTL):

Pmin[true U((s1 = 8|s2 = 8) & y ≤ d)] 8

• Properties 2-3 represent respectively the minimum and maximum proba-
bility to reach a state where at least N collisions (with 1 ≤ N ≤ α) have
occurred for sender 1 before deadline d 9 . This writes:

Pmin[true U(col1 = N & y ≤ d)]

Pmax[true U(col1 = N & y ≤ d)].

Figure 4(a) shows the probability to satisfy property 1 for different values
of the deadline d. There are three curves, corresponding to the degree of non-
determinism of the modelled system. There are indeed two main sources of
nondeterminism in our model. The first source originates from the unbounded

8 We focus on Pmin because Pmax converges quickly towards 1
9 Since the system is symmetric, this probability is the same for sender 1 and sender 2.
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Fig. 4. PRISM measurements with (deadline = 210, λ = 96, σ = 3, α = 6)

waiting period in location 0 of Sender1 (resp. Sender2): when a sender is at
location 0, it decides nondeterministically every time unit whether it will start
the emission or not 10 . The other source of nondeterminism originates from
the interleaving of asynchronous actions of Sender1 and Sender2 such as send1

and send2. The first curve corresponds to the original nondeterministic model.
The second curve has been obtained by replacing the nondeterministic branch
at location 0 of each sender by a uniform probabilistic transition. The third
one has been obtained by replacing every nondeterministic choice of the com-
posed system by a uniform probabilistic transition. (This corresponds to a
fully probabilistic option provided by PRISM.) Note that the latter curve is
the same as the approximated one obtained with APMC, as shown in Fig-
ure 5(a). The verification of property 1 took from under a second (for smaller
deadlines) to 2 hours, 65 min and 9 min for a deadline of 200 time units
and fully probabilistic, probabilistic send and nondeterministic send models
respectively.

Properties 2-3 are shown on figure 4(b) for constants λ = 96, α = 6 and
σ = 3 and for deadline d = 210. We have set the deadline to 210 because at
that time, the probability for a message to be delivered is very high (greater
than 0.98). The probability is very high to have at least three collisions, but
quickly decreases afterwards until the maximum number of collisions α we have
considered, which is 6. These curves illustrate the influence of nondeterminism
on the possible number of collisions. The verification of properties 2 and 3
took (depending on N) from 12 to 78 minutes for a deadline of 210. Properties
2 and 3 are similar to those studied in [17]. In their model, since a sender
gives up after a fixed number of retries, all executions are finite and they do
not need to set a deadline. This gives a much smaller model which enables
them to consider three senders. Here, since we have a counter for the time,
we are able to compute time-bounded reachability as well as expected time as

10 In this case, we assume that at least one sender tries to send a message, because, if
nobody tries to send a message, then the probability for at least one message to be received
is always 0!
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we will see in the next section.

Expected time

Using the prototype extension of PRISM which enables the computation of
expected costs, we have computed (for a maximum number of collisions of 6)
the maximum expected time to send a message: Rmax[true U((s1 = 8)|(s2 =
8))]. The results are 144.4 for the model with probabilistic sending, and
147.0 for the one with nondeterministic sending. There is not much difference
between these two results.

Concerning expected time, we have also considered the maximum expected
time to reach a state in which a given sender has successfully sent a message
(since the system is symmetric, this probability is the same for both senders):
Rmax[true U(s1 = 8)]. In this case the effect of choosing nondeterministic or
probabilistic sending is crucial. The results are 707 time units for probabilistic
sending and 5750 for nondeterministic sending. This shows that, by trying
repeatedly to send messages (as long as it is allowed to do so by the protocol),
one sender can delay the other one for quite a long time. This phenomenon
is due to the fact that if a sender success to transmit a message, its counter
of collision is resetted, although the counter of the other is not. Thus, it is
easier to a sender who already success, to transmit again. This last result
illustrates the importance to be able to really model the nondeterminism.
For this last property, the “worst case” expected time is very far from the
expected time associated with the probabilistic approximation we had made.
The above four expected time computations took respecively 8 min, 35 min, 4
hours and 6 hours. Figure 4(a) demonstrates that the fully probabilistic and
the nondeterministic models have a similar general behavior and justifies the
approach followed in section 6.

6 Verification using the APMC tool

APMC is an approximate probabilistic model checker dedicated to the veri-
fication of quantitative properties over Discrete Time Markov Chains (DTMCs,
that is fully probabilistic systems). It uses the same input language as PRISM
(reactive modules).

6.1 Theoretical foundations of APMC

The APMC approach [13] uses an efficient Monte-Carlo method to approx-
imate satisfaction probabilities of monotone properties over fully probabilistic
transitions systems. Properties to be checked are expressed in LTL: Linear
Temporal Logic.

APMC method

Definition 6.1 A fully probabilistic transition system (PTS or DTMC) is a
tuple M = (S, s, P ) where S is a set of states, s is the initial state, and P is
a transition probability function.

11



We denote by Path(s) the set of paths whose first state is s. The length of
a path π is the number of states in the path and is denoted by |π|, this length
can be infinite. The probability measure Prob over the set Path(s) is defined
in a classical way [19]. We denote by Prob[φ] the measure of the set of paths
{π | π(0) = s and M, π |= φ} (see [28])Let Pathk(s) be the set of all paths of
length k > 0 starting at s in a PTS. The probability of an LTL formula φ on
Pathk(s) is the measure of paths satisfying φ in Pathk(s) and is denoted by
Probk[φ].

Definition 6.2 An LTL formula φ is monotone if and only if for all k > 0,
for all paths π of length k, M, π |= φ =⇒ M, π+ |= φ, where π+ is any path
of which π is a prefix.

A basic property of monotone formulas is the following one: if φ is a
monotone formula, 0 < b ≤ 1 and if there exists some k ∈ N

∗ such that
Probk[φ] ≥ b, then Prob[φ] ≥ b.

In order to verify some probabilistic specification Prob[φ] ≥ b, we choose
a first value of k = O(log|S|), then we approximate the probability Probk[φ]
and test if the result is greater than b. If Probk[φ] ≥ b is true, then the
monotonicity of the property guarantees that Prob[φ] ≥ b is true. Otherwise,
we increment the value of k and approximate again Probk[φ]. We iterate this
procedure within a certain bound which, in many cases, is logarithmic in the
number of states. In the worst case, this bound is strongly related to the
rapid mixing rate of the underlying Markov chain [25]. If the results of all
tests Probk[ψ] ≥ b are negative, then we can conclude that Prob[ψ] 6≥ b. If
we are interested only with probabilistic time bounded properties, as here, we
can set k to the maximum time bound in subformulas of the specification.

Randomized approximation scheme

In order to estimate the probabilities of monotone properties with a simple
randomized algorithm, we generate random paths in the probabilistic space
underlying the DTMC structure of depth k and compute a random variable
A/N which estimates Probk[ψ]. To verify a statement Probk[ψ] ≥ b, we
test whether A/N > b − ε. Our decision is correct with confidence (1 − δ)
after a number of samples polynomial in 1

ε
and log 1

δ
. The main advantage of

the method is that we can proceed with just a succinct representation of the
transition graph, that is a succinct description in an input language, which is
the same in PRISM [2]. Our approximation problem is defined by giving as
input x a succinct representation of a MDP, a formula and a positive integer
k. The succinct representation is used to generate a set of execution paths
of length k. A randomized approximation scheme is a randomized algorithm
which computes with high confidence a good approximation of the probability
measure µ(x) of the formula φ over the set of execution paths.

Definition 6.3 A fully polynomial randomized approximation scheme (FPRAS)
for a probability problem is a randomized algorithm A that takes an input x,
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two real numbers 0 < ε, δ < 1 and produces a value A(x, ε, δ) such that:

Prob
[

|A(x, ε, δ) − µ(x)| ≤ ε
]

≥ 1 − δ.

The running time of A is polynomial in |x|, 1
ε

and log 1
δ
.

The probability is taken over the random choices of the algorithm. We call
ε the approximation parameter and δ the confidence parameter. The APMC
approximation algorithm consists in generating O( 1

ε2 . log 1
δ
) paths, verifying

the formula φ on each path and computing the fraction of satisfying paths.

Theorem 6.4 The APMC approximation algorithm is a fully randomized ap-

proximation scheme for the probability p = Probk[ψ] of an LTL formula ψ if

p ∈]0, 1[.

This result is obtained by using Chernoff-Hoeffding bounds [16] on the tail
of the distribution of a sum of independent random variables. The complexity
of the algorithm depends on log(1/δ), this allows us to set δ to very small
values. The dependence in ε is much more crucial, since the complexity is
quadratic in 1/ε.

6.2 Experiments

We used APMC on the same model as in the PRISM experiment. APMC
is a distributed approximate model checker [13] that uses a client/server com-
putation model to distribute path generation and verification on a cluster of
machines. The model, formula and other parameters are entered by the user
via the Graphical User Interface which runs on the server (master). Both
the model and formula are translated into C source code, compiled and sent
to clients (the workers) when they request a job. Regularly, workers send
current verification results, receiving an acknowledgment from the master,
to know whether they have to continue or stop the computation. Since the
workers only need memory to store the generated code and one path, the ver-
ification requires very little memory. Furthermore, since each path is verified
independently, there is no problem of load balancing.

Experimental conditions

all experiments were run using a cluster of 75 Pentium IV 2GHz with 512
Mb of RAM. We set the approximation parameter ε = 10−2 and the confi-
dence parameter δ = 10−10. The model for CSMA/CD is parameterized by
3 variables: λ, σ and α. We ran several experiments, for each of them we
fixed different values of these three parameters. In the following paragraphs,
we present our experiments. For each verified property, we provide two re-
sults: one with the same parameters as used when verifying with PRISM (see
section 5.2), the other one with the actual values of the CSMA/CD protocol
(that is λ = 780, σ = 24, and α = 10).
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Fig. 5. Probability of emission as function of the deadline.
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Fig. 6. Probability of having more than N collisions, as function of N .

Verification of probabilistic reachability properties

here, we approximate the probability of either sender correctly delivering
its packet before a given deadline (property 1 of section 5.2). As a validation of
the approximate method, we first compute this probability for λ = 96, σ = 3
and α = 6. The results are presented in figure 5(a). As expected, the results
obtained with APMC are exactly the same than the results of figure 4(a).
Figure 5(b) presents the results of the verification of the same property, using
the actual values of the protocol.

Time bounded probability of collisions

We approximate the probability to get at least N collisions in an execution
of the protocol, for different values of N (properties 2 and 3 of section 5.2)
before a given deadline. As a validation of the approximate method, we first
compute this probability for λ = 96, σ = 3, α = 6 and N ∈ [1; 6]. We used
a value of 210 for the deadline. The results are presented in figure 6(a). As
expected, this figure demonstrates that the probability computed by APMC
is lower and upper bounded by the minimum and maximum probabilities
computed by PRISM in properties 2 and 3. Figure 6(b) presents the same
measure for the actual values, with a deadline of 2000. We ran a set of
experiments with lesser values for the deadline, showing that the number of
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collisions decreases when the deadline decrease.

6.3 Analysis

Figure 6(b) analyses the probability of having at least N collisions (1 ≤
N ≤ 10), for the actual values of the CSMA/CD protocol, with two senders
emitting on a single channel. We can see that while 2N ≤ σ, the probability of
having N collisions is almost 1. As soon as 2N > σ, this probability decreases
quickly (this is also shown in figure 4(b) for σ = 3). Since the two senders
begin in same state, there is a first collision with great probability. They have
the same initial value of col, so they pick at random a backoff in the same
interval. For small values of N , the interval is not large enough to guarantee
that the time difference between the two backoff is larger than σ. Now, when
this difference is smaller than σ, none of the senders detects that the channel
is busy, so they produce a new collision.

One can observe that the protocol does not introduce too many collisions:
the protocol is calibrated to handle at most 10 collisions, which seems sound,
since in our experiment, where the senders start in the same initial state (the
worst case for this measurement), we observe that the probability of having
10 collisions is very low.

Figure 5(a) and 5(b) analyse the probability of successfully sending a mes-
sage from one of the two senders, as function of the deadline. We can see a
gap from the zero probability to a non-zero probability of emission on both
figures. The time T0 of the first non-zero probability is given by the following
formula deduced from the modelling, and confirmed by a set of complemen-
tary experiments: T0 ' TBackoff(Nmin) + 3 × Nmin × σ + λ, where Nmin is the
minimum number of unavoidable collisions, as given in figures 6(a) and 6(b),
and TBackoff(Nmin) is the average time spent during the corresponding backoff.
For the actual values of the protocol, Nmin = 5, and TBackoff(Nmin) = 31. Note
that this is not a strict equality, since in our modelling, we spend a constant
number of time units waiting that one of the two senders enter the sending
state. After this gap, the probability of emission increases quickly up to an
asymptotic behavior, close to 1. This meets a goal of the protocol, being that
the probability a message is transmitted after a short delay is high (for exam-
ple, after two times its transmission delay the probability that a message is
effectively transmitted is greater than 0.9).

Last, one can observe on the curve a persistent plateaux phenomenon. It is
due to deadlines which are not large enough for a sender to enter the backoff
process, and thus successfully send its packet. It is not a surprising result,
since it was already shown in [12,29], using other techniques, like simulation.
We conducted some extra experiments which suggest that plateaux’s length
is a linear function of σ and is independent of λ.
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7 Discussion

In this paper we apply probabilistic and approximate model checking tech-
niques to the verification of quantitatives properties of the CSMA/CD proto-
col. To our knowledge, this is the first study on the complementarity of these
two techniques for such a model. Here, we considered two different frame-
works: MDPs and DTMCs. Some measurement can be achieved only on the
DTMC model, which provide less accurate information. So, we first checked
that the results of the DTMC model were as meaningful as the results on
the MDP model. Figure 4(b) shows that for the experiment of the minimum
number of collisions, it seems reasonable to consider fully probabilistic mod-
els. Indeed, one can see that the fully probabilistic measure follows the same
tendency as the minimum probability.

Since both tools use different theories, another concern was to ensure that
results from PRISM and APMC are equivalent. Figures 6(a) and 5(a) shows
that the two tools obtain the same measures (up to the approximation param-
eter) for the same fully probabilistic models. We assumed that this property
hold for other values of the parameters of the CSMA/CD protocol. On one
hand, using PRISM, we were able to verify the protocol as a probabilistic
system with nondeterminism, thus modelling the asynchronous behavior in it,
but with parameters smaller than the “real-life” protocol values. On the other
hand, using APMC we were able to verify the protocol with the actual values,
but with nondeterministic choices replaced by probabilistic choices.
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