
In the Proceedings of the 6th International Conference on Reliable Software
Technologies (Ada-Europe’2001), Lecture Notes in Computer Science Series,

LNCS 2043, Springer, pages 191-202, Leuven, Belgium, May 2001.
Best paper award.

Expression Templates in Ada

Alexandre Duret-Lutz

EPITA Research and Development Laboratory
14-16 rue Voltaire, F-94276 Le Kremlin-Bicêtre cedex, France

http://www.lrde.epita.fr/

Alexandre.Duret-Lutz@lrde.epita.fr

Abstract. High-order matrix or vector expressions tend to be penalized
by the use of huge temporary variables. Expression templates is a C++
technique which can be used to avoid these temporaries, in a way that is
transparent to the user. We present an Ada adaptation of this technique
which — while not transparent — addresses the same efficiency issue as
the original. We make intensive use of the signature idiom to combine
packages together, and discuss its importance in generic programming.
Finally, we express some concerns about generic programming in Ada.

1 Introduction

One of the strongest requirements on source code is its maintainability, which
essentially means that the program should be easy to understand and adjust. To
avoid cluttering the actual algorithms with low-level details, current program-
ming schemes promote abstractions. For instance, object oriented programming
makes it possible to define and use high order operations on objects. For exam-
ple, given an Integer_10x10_Matrix type and its accompanying operations, one
could write the following expression.

declare
 A, B, C : Integer_10x10_Matrix;
begin
 [...]
 A := B * 5 + C;
 [...]
end;

While easier to read and maintain, this expression has a significant draw-
back over a hand-crafted loop over the matrices elements: it uses matrix-sized
temporary variables to hold subexpressions. The penalty incurred by these tem-
porary matrices can be a serious annoyance when such expression appears in
speed critical subprograms.

There are various means to avoid temporary expressions, the most straight-
forward being a hand-crafted loop:

1

http://www.lrde.epita.fr/

declare
 A, B, C : Integer_10x10_Matrix;
begin
 [...]
 for Row in Integer_10x10_Matrix’Range (1) loop
 for Col in Integer_10x10_Matrix’Range (2) loop
 A (Row, Col) := B (Row, Col) * 5 + C (Row, Col);
 end loop;
 end loop;
 [...]
end;

The expression now uses integer-sized temporaries (which can fit in registers)
instead of matrix-sized temporaries (requiring memory usage). It is much faster
but less readable, and can get cryptic when the expression become complex.

Other alternatives provide both efficiency and conciseness. Domain Specific
Languages extend the underlying language, and “compilers” convert programs
from the extended syntax to the native language; this however require an exter-
nal tool. expression templates technique described below makes only use of the
existing C++ languages features.

Since templates were introduced to C++, and more significantly since the
introduction of STL [15,14], the C++ community developed a set of program-
ming techniques globally referred to as meta-programming (for they abuse the
compiler to perform computation or transformations at compile time) [10,11].
Most of these techniques are rather C++ specific because they rely on template
specialization, a construction which is not available in Ada (see section 5.4).
However this article presents an attempt to adapt one of these techniques to
Ada.

In 1995, the C++ generic programming community introduced the expression
templates [17,6,3]. Expression templates is a C++ programming technique which
allows expressions like the first example of this section to be compiled like the
second, i.e., preventing the need for temporary variables. This is a powerful
technique that allows to write fast and readable user code; the library, on the
other hand, is significantly more complex (mostly because the way template
functions are checked, see section 5.2).

In short, the idea is to build a type that represents the expression to as-
sign, and an instance of that type which keeps references to the various sub-
expressions of the expression. The operators of the expression don’t perform any
computation, they simply return an object whose type represents the expression
(for instance plus<plus<vector<int>,vector<int> >,vector<int> >). The actual
computation is delayed until the assignment. This technique is transparent to the
user, because the type construction is done by implicit template instantiations.

This paper tackles the adaptation of expression templates to Ada. Section 3
illustrates our solution with matrix computation, which rely heavily on the use of
signatures recalled in section 2, and whose speed is compared to other approaches
in section 4. Finally, we express some concern about the usage of Ada for generic
programming [10] in section 5.

2 Expressing Concepts with Signatures

Ada 95 allows generic packages to be used as generic formal parameters. The
Rationale [7] shows one use — also known as signature — of this possibility:
characteristics of an abstraction are grouped using the formal parameters of a
generic empty package.

This feature plays a significant role in generic programming. The STL doc-
umentation uses the term concept to designate a set of requirements (types
or function definitions, behaviors), but these concepts have no mapping in the
C++ syntax: concepts exist only in the documentation, the compiler is unaware
of them and therefore it cannot help the programmer. When U. Erlingsson and
A. Konstantinou adapted the STL to Ada [2,8], they found that signatures was
the natural way to express concepts.

We will use signatures to express the concept of matrix type and matrix
expression. In our matrix expression code, we want to let the user supply his
own matrix type. For simplicity, we assume that matrices are always stored as
double arrays1. Therefore we define the matrix type concept as a type of values,
two ranges, and an array type. An instance of Matrix_Type will then be used
everywhere matrix specifications are needed. The Matrix_Expression concept, for
example, is defined by a matrix type and a function which can return elements
from the matrix expression.

generic
 type Values is private;
 type Height_Range is range <>;
 type Width_Range is range <>;
 type Array_Type is array (Height_Range, Width_Range) of Values;
package Matrix_Type is end Matrix_Type;

with Matrix_Type;
generic
 with package Matrix_Spec is new Matrix_Type (<>);
 with function Get_Value (At_Row : in Matrix_Spec.Height_Range;
 At_Col : in Matrix_Spec.Width_Range)
 return Matrix_Spec.Values;
package Matrix_Expression is
 procedure Assign (To : out Matrix_Spec.Array_Type);
end Matrix_Expression;

Matrix_Expression additionally declares the procedure Assign which is de-
fined as follows. It will be used to evaluate a matrix expression while assigning
the result to the target matrix.

1 Supporting other kind of storage is a matter of adding Get_Value and Set_Value in
Matrix_Type and making Array_Type private.

package body Matrix_Expression is
 procedure Assign (To : out Matrix_Spec.Array_Type) is
 begin
 for Row in To’Range (1) loop
 for Col in To’Range (2) loop
 To (Row, Col) := Get_Value (Row, Col);
 end loop;
 end loop;
 end Assign;
end Matrix_Expression;

Intuitively, Assign represents the loop we would have written manually, and
Get_Value is used to evaluate the expression at the matrix cells level. Our objec-
tive is to build this function by combining generic packages.

3 Building Expressions

Matrix_Expression is the base building block for our matrix expressions. Our aim
is to build a matrix expression from other matrix expressions. For example, given
two instances of Matrix_Expression we want to apply a binary operator (element-
wise). This is naturally done using a generic package Matrix_Operators.Binary

parameterized by two matrix expressions and one operator function. Because
this package can itself be seen as a matrix expression, it defines an instance of
Matrix_Expression.

with Matrix_Expression;
generic
 with package Left_Expr is new Matrix_Expression (<>);
 with package Right_Expr is new Matrix_Expression (<>);
 with function Operator (Left : in Left_Expr.Matrix_Spec.Values;
 Right : in Right_Expr.Matrix_Spec.Values)
 return Left_Expr.Matrix_Spec.Values;
package Matrix_Operators.Binary is

 function Get_Value (At_Row : in Left_Expr.Matrix_Spec.Height_Range;
 At_Col : in Left_Expr.Matrix_Spec.Width_Range)
 Return Left_Expr.Matrix_Spec.Values;
 pragma Inline (Get_Value);

 -- Instances of Binary can be seen as a Matrix Expression:
 package Expr is
 new Matrix_Expression (Left_Expr.Matrix_Spec, Get_Value);

end Matrix_Operators.Binary;

The supplied operator is actually applied whenever Get_Value is called.

package body Matrix_Operators.Binary is
 function Get_Value (At_Row : in Left_Expr.Matrix_Spec.Height_Range;
 At_Col : in Left_Expr.Matrix_Spec.Width_Range)
 return Left_Expr.Matrix_Spec.Values
 is
 -- we need to convert At_Row and At_Col to
 -- the range types used by the right expression.
 subtype Rh is Right_Expr.Matrix_Spec.Height_Range;
 subtype Rw is Right_Expr.Matrix_Spec.Width_Range;
 begin
 return Operator (Left_Expr.Get_Value (At_Row, At_Col),
 Right_Expr.Get_Value (Rh (At_Row), Rw (At_Col)));
 end Get_Value;
end Matrix_Operators.Binary;

So far, we are able to compound matrix expressions with binary operators.
Unary operators or other specialized operation (e.g. matrix multiplication) can
be done likewise. The next step is to build atomic matrix expressions (i.e., ma-
trices). Because a matrix expression is a package, we need a mean to convert
a matrix (double array) to a package. This can be done via a generic package
which takes the matrix array as a generic parameter.

with Matrix_Type;
with Matrix_Expression;
generic
 with package Matrix_Spec is new Matrix_Type (<>);
 Object: in out Matrix_Spec.Array_Type;
 use Matrix_Spec;
package Matrix_Instance is

 -- read values from Object
 function Get_Value (At_Row : in Height_Range;
 At_Col : in Width_Range) return Values;
 pragma Inline (Get_Value);

 package Expr is new Matrix_Expression (Matrix_Spec, Get_Value);

end Matrix_Instance;

We have now all the tools required to build and evaluate an expression. The
following code creates the expression Res_Expr which can be used to compute
B*5+C.

declare
 -- the user construct his own matrix type
 type Range3 is range 0 .. 2;
 type Matrix33 is array (Range3, Range3) of Integer;

 -- then he build a specification package for his matrix,
 -- this package will be used later when building high order
 -- operations on matrices.
 package Matrix33_Spec is new Matrix_Type (Values => Integer,
 Height_Range => Range3,
 Width_Range => Range3,
 Array_Type => Matrix33);

 -- Define two dummy matrices.
 B : Matrix33 := ((1, 0, 0), (0, 1, 0), (0, 0, 1));
 C : Matrix33 := ((0, 1, 0), (0, 0, 1), (1, 0, 0));

 -- Instanciate a package for the B matrix
 -- (we map an object to a package)
 package B_Inst is new Matrix_Instance (Matrix33_Spec, B);
 -- the above package can the be used as a Matrix_Expression,
 -- it defines a Expr subpackage for this purpose.
 package B_Expr renames B_Inst.Expr;

 -- idem with the second matrix
 package C_Inst is new Matrix_Instance (Matrix33_Spec, C);
 package C_Expr renames C_Inst.Expr;

 -- Build the expression B*5
 package B5_Inst is new Scalar_Binary (B_Expr, 5, "*");
 package B5_Expr renames B5_Inst.Expr;

 -- Build the expression B*5+C
 package Res_Inst is new Binary (B5_Expr, C_Expr, "+");
 package Res_Expr renames Res_Inst.Expr;

The resulting expression, Res_Expr can now be assigned to a matrix variable
using the Assign function aforementioned. This assignment will actually evaluate
the expression.

 A : Matrix33; -- where the result will be stored
begin
 [...]
 Res_Expr.Assign (To => A);
end;

It is important to note that the B and C matrices can be modified and that
successive calls to Res_Expr.Assign will take these new values into account (this
is a consequence of the in out mode used for the Matrix_Instance.Object pa-
rameter). By combining packages, we have built a function which fills a matrix
according to the contents of B and C.

As this example shows, a somewhat large programming overhead is required
to write an expression as simple as B*5+C using expression templates. This is to
the point that the resulting code seems even more cryptic and less maintainable
than the hand-crafted loop. However, it is interesting to see that this technique
success in achieving good performance and might therefore be worth to consider
in other fields than linear algebra; and as a C++ technique adaptation, it per-
mits some comparison between the two languages for static component oriented
programming.

4 Benchmark

Figure 1 gives the timing of the evaluation of the expression Y = A + B + C
using different size of matrix and different expressions representations.

0

1

2

3

4

5

6

7

8

2 4 6 8 10 12 14 16 18 20

tim
e

matrix dimension

hand-crafted loop
package-built expression

package-built expression (w/o inline)
standard expression with temporaries

abstract expression

Fig. 1. Time required for the evaluation of expressions of the form Y = A + B
+ C
The timing account only for the evaluation of the expression, the the building of
the expression (when it is needed) is not accounted. The expression was evaluated
100000 times. The code, available from http://www.lrde.epita.fr/download/, was
compiled with gnat 3.13p and run on an K6-2 processor. The compiler options used
were -gnatfvpnwuwl -O3. -fno-inline option.

hand-crafted loop
The expression is computed using a double loop as shown in section 1.

package-built expression
The expression is built using packages, as described in section 3.

package-built expression (without inline)
Same as above, with the -fno-inline compiler option added.

standard expression
The expression is evaluated as-is, using the classical OO definition for the
operator "+" which generate temporary variables in expressions.

abstract expression
Instead of using packages and signatures, we use tagged types and ab-
stract tagged types (respectively) to build the expression. This correspond
to the more classical object-oriented way to represent an expression (e.g.
in a parser): Expression is an abstract tagged type which is derived into
Addition, Multiplication, etc.

http://www.lrde.epita.fr/download/

As it can be seen from the results, the timings of the package-built expression
are equivalent to those of the hand-crafted version. Both are twice faster than
expression computation using temporaries.

It is interesting to make a parallel between generic packages and tagged
types. Generic packages have instances, as tagged types have, and signatures are
the counterparts of abstract tagged types. Expression templates could be built
using tagged types more easily, however tagged type suffer two performance loses:
they hinder inlining, and add some overhead to handle dispatching calls. The
comparison between the abstract expression and the non inlined package-built
expression give an idea of that latter overhead. The main speedup obtained by
using generics over tagged types is thus due the inlining calls allowed by these
formers.

5 Critique of Ada

We have adapted a C++ technique to Ada (the converse is also possible, e.g.
mixin inheritance is not well known in C++). Such conversion makes it possible
to compare both languages and exhibit their weaknesses. Here, we focus on the
issues we encountered in our attempts to adapt some C++ techniques to Ada.

5.1 Implicit Instantiation

Ada and C++ behave differently with respect to generic entities. C++ templates
are instantiated implicitly the first time they are refered to. Ada generics need
to be instantiated explicitly. This actually is a source of tediousness when using
expression templates.

C++ implicit instantiation, though a source of errors, simplify the expression
templates usage because the instantiations to perform are deduced from the
expression itself.

5.2 Semantic Analysis

In C++, the semantic analysis (and in particular the type checking) of a function
or class template is only performed after the template has been instantiated. In
Ada, this analysis is done prior to any instantiation: the developer is therefore
required to declare all the functions or types used (for instance one cannot use the
"+" operator on a parameter type without declaring that this operator actually
exists). This is definitely a better behavior because it allows errors to be caught
earlier. C++ code can be wrong or make wrong assertions about the parameters,
any error will only be revealed when the template is first instantiated, i.e., when
it is first used (if it ever is).

The strong typing system of Ada is therefore a real help for the developer
of a generic library, for it enforces the expression of requirements: the entities
used by a generic package or subprogram must be listed in or deduced from the
generic formal parameters list.

However, the difficulties arise when you start to parameterize a generic with
several generic packages.

5.3 Additional Constraints on Package Parameters

The use of generic packages as formal parameters is a really powerful feature
as far as generic programming is concerned, because it can factor requirements,
allowing to express concepts (something really desired by the C++ generic pro-
gramming community [13,9]). Still, as generic parameters get more complex, the
need for constraints between parameters grows.

For instance, though the package Matrix_Operators.Binary allows to combine
two instances of Matrix_Expression, it does not ensure that these two packages
declare matrices of equal dimensions. Accesses to values out of the matrices
ranges will throw a Constraint_Error at run-time, but it would be better to
prevent the instantiation of Binary when the two operand-packages are not of
equal dimensions, because this can be known at compile-time. Basically we want
to ensure that Left_Expr.Matrix_Spec.Array_Type is the same type as Right_

Expr.Matrix_Spec.Array_Type.
One way to constrain two non-limited types parameters to be equal is to

require the availability of an equality operator for that type. For example the
Matrix_Operators.Binary parameter list would become as follow.

generic
 with package Left_Expr is new Matrix_Expression (<>);
 with package Right_Expr is new Matrix_Expression (<>);
 with function Operator (Left : in Left_Expr.Matrix_Spec.Values;
 Right : in Right_Expr.Matrix_Spec.Values)
 return Left_Expr.Matrix_Spec.Values;
 -- constraint
 with function "=" (Left : in Left_Expr.Matrix_Spec.Array_Type;
 Right : in Right_Expr.Matrix_Spec.Array_Type)
 return Boolean is <>;
[...]

If Left_Expr.Matrix_Spec.Array_Type differs from Right_Expr.Matrix_Spec.

Array_Type, the "=" function probably does not exists and an instantiation at-
tempt will lead to a compile-time error. Yet, this solution is not perfect: it won’t
work on limited types, or if the user has defined the checked "=" function. More-
over the compiler is likely to complain about the absence of matching "=", which
is not the best error message one would expect. Finally even if, to a certain ex-
tent, this can ensure the equality of two types, this does not make this equality
explicit: the developer of the body still has two types to deal with and must
perform conversion when needed because the compiler is unaware that the two
types are equal.

A nice extension to Ada would be the addition of a whole sub-language to
allow the expression of such constraints. E.g.

generic
 with package Left_Expr is new Matrix_Expression (<>);
 with package Right_Expr is new Matrix_Expression (<>);
 -- constraint (this is NOT Ada 95)
 where Left_Expr.Matrix_Spec.Array_Type
 is Right_Expr.Matrix_Spec.Array_Type;

Among the same lines, bounded genericity [1] on package parameters of gener-
ics would be useful. One doesn’t always want to parameterize a generic with a
single type of package, but for a whole set of package featuring a common in-
terface: the present solution is to use a signature to express this interface and
instantiate this signature in each package, however this is painful and hinder
reusability. Being able to qualify formal package parameters with an interface
would actually simplify expression templates implementation and usage a lot.

5.4 Template Specialization

Template specialization is among the most powerful features of C++, as far as
generic programming is concerned. A fairly good number of generic programming
techniques and idioms rely on template specialization. Ada does not support it
(and this doesn’t appear to be a trivial extension), therefore we list below some
common use of template specialization in C++ and give hints about how it can
be worked around in Ada.

Its primary use is to provide a better implementation of a generic entity for
a given set of parameters. For example the minimum of a list can be computed
more quickly when the list’s elements are booleans, therefore C++ allows you
to specialize your min function to the list<bool> case.

// generic minimum function for any (non-empty) list
template<typename T>
T min (const std::list<T>& l) {
 T m = std::numeric_limits<T>::max (); // maximum value for type T
 for (std::list<T>::const_iterator i = l.begin(); i != l.end(); ++i)
 if (*i < m)
 m = *i;
 return m;
}

// specialized version for lists of booleans
template<>
bool min (const std::list<bool>& l) {
 for (std::list<bool>::const_iterator i = l.begin(); i != l.end(); ++i)
 if (*i == false)
 return false;
 return true;
}

The C++ user will call min on a list without special care, and the compiler
will implicitly instantiate the more specialized function for that particular kind
of list. In Ada, since explicit instantiations are required anyhow, the Ada pro-
grammer would write two functions, say Generic_List_Min and Bool_List_Min,
and left to the user the responsibility to choose the best implementation. How-
ever, this is not always practical: consider the writing of a generic package which

should instantiate a Min function for one of it’s type parameters, the appropriate
implementation cannot be chosen unless min is actually a generic parameter of
that package too.

As far expression templates are concerned, template specialization can be
used to perform pattern matching on matrix expressions to call the correspond-
ing BLAS2 operations[19].

The second common use of template specialization is the building of traits
classes [12,18]: traits classes are kind of static databases built using the type
system. numeric_limits as used in the example above is a traits class defined in
the C++ standard, the definitions of its members (e.g. max()) are specialized for
the different type T available. Traits classes can be seen as an associative arrays
between a type, and a signature-like class. Such associative array cannot be done
in the Ada type system, therefore the associated signature has to be passed as
another generic formal argument by the user.

Last, template specialization allows recurring templates, i.e. templates which
instantiate themselves recursively and stop when they reach a specialized case.
This is mostly used in meta-programming, where you force the compiler to com-
pute some values at compile-time, or to perform loop unrolling [16]. Unfortu-
nately, we did not found any work-around for this in Ada.

6 Conclusion

We have tackled the adaptation of expression templates to Ada. While our adap-
tation addresses one important issue covered by the original technique — the
elimination of temporary variables — it is neither as powerful not practicable in
Ada as it is in C++ where implicit instantiation makes it invisible to the user.

However, this paper shows one intensive use of the signature construction.
This idiom is essential to generic programming, since it allows to work on static
abstractions (i.e., abstractions resolved at compile-time, without any run-time
cost), and is worth using when both high-order design and performance are
required. Most of Gamma’s design patterns [5] can be adapted to generic pro-
gramming using signatures instead of abstract classes. In a previous work [?] we
have shown such adaptations in C++; we also did some similar work in Ada,
but it is still unpublished.

Last, we have combined packages to build a function (Assign). The small size
of the building blocks used in matrix expression make the construction of such
function a rather painful process comparatively to writing the same function
manually. This technique deserves more experimentation too see how well it can
serve in contexts were building blocks are larger.

2 The BLAS (Basic Linear Algebra Subprograms) library provide optimized (and non
generic) building block for matrix operations.

References

1. Luca Cardelli and Peter Wegner. On understanding types, data abstraction, and
polymorphism. Computing Surveys, 17(4):471–522, December 1985.

2. Ulfar Erlingsson and Alexander V. Konstantinou. Implementing the C++ Stan-
dard Template Library in Ada 95. Technical Report TR96-3, CS Dept., Rensselaer
Polytechnic Institute, Troy, NY, January 1996.

3. Geoffrey Furnish. Disambiguated glommable expression templates. Computers in
Physics, 11(3):263–269, May/June 1997. Republished in [4].

4. Geoffrey Furnish. Disambiguated glommable expression templates. C++ report,
May 2000.

5. Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design patterns
– Elements of reusable object-oriented software. Professional Computing Series.
Addison Wesley, 1995.

6. Scott W. Haney. Beating the abstraction penalty in C++ using expression tem-
plates. Computers in Physics, 10(6):552–557, Nov/Dec 1996.

7. Intermetrics, Inc., Cambridge, Massachusetts. Ada 95 Rationale, January 1995.
8. Alexander V. Konstantinou, Ulfar Erlingsson, and David R. Musser. Ada standard

generic library. source code, 1998.
9. Brian McNamara and Yannis Smaragdakis. Static interfaces in C++. In Pro-

ceedings of the First Workshop on C++ Template Programming, Erfurt, Germany,
October 2000.

10. David R. Musser, editor. Dagstuhl seminar on Generic Programming,
SchloßDagstuhl, Wadern, Germany, April-May 1998.

11. David R. Musser and Alexandre A. Stepanov. Generic programming projects and
open problems. 1998.

12. Nathan C. Myers. Traits: a new and useful template technique. C++ Report,
7(5):32–35, June 1995.

13. Jeremy Siek and Andrew Lumsdaine. Concept checking: Binding parametric poly-
morphism in C++. In First Workshop on C++ Template Programming, Erfurt,
Germany, October 10 2000.

14. Alex Stepanov. Al Stevens Interviews Alex Stepanov. Dr. Dobb’s Journal, March
1995.

15. Alex Stepanov and Meng Lee. The Standard Template Library. Hewlett Packard
Laboratories, 1501 Page Mill Road, Palo Alto, CA 94304, October 1995.

16. Todd Veldhuizen. Using C++ template metaprograms. C++ Report, 7(4):36–43,
May 1995. Reprinted in C++ Gems, ed. Stanley Lippman.

17. Todd L. Veldhuizen. Expression templates. C++ Report, 7(5):26–31, June 1995.
18. Todd L. Veldhuizen. Using C++ trait classes for scientific computing, March 1996.
19. Todd L. Veldhuizen. Arrays in blitz++. In Proceedings of the 2nd International

Scientific Computing in Object-Oriented Parallel Environments (ISCOPE’98), Lec-
ture Notes in Computer Science. Springer-Verlag, 1998.

	Expression Templates in Ada

