
Int. J. Critical Computer-Based Systems, Vol. 5, Nos. 1/2, 2014 31

LTL translation improvements in Spot 1.0

Alexandre Duret-Lutz
EPITA’s Research and Development Laboratory (LRDE),
14-16 rue Voltaire,
94270 Le Kremlin-Bicêtre, France
E-mail: adl@lrde.epita.fr

Abstract: Spot is a library of model-checking algorithms started in 2003.
This paper focuses on its module for translating linear-time temporal logic
(LTL) formulas into Büchi automata: one of the steps required in the
automata-theoretic approach to LTL model-checking. We detail the different
algorithms involved in this translation: the core translation itself, which
performs many simplifications thanks to its use of binary decision diagrams;
the pre-processing of the LTL formulas with rewriting rules chosen to help
their translation; and various post-processing algorithms whose use depends
on the intent of the translation: do we favour deterministic automata, or small
automata? Using different benchmarks, we show how Spot competes with
other LTL translators, and how it has improved over the years.

Keywords: formal methods; model checking; Büchi automata; linear-time
temporal logic; LTL; temporal logic; translation; simplifications; software;
verification; implementation.

Reference to this paper should be made as follows: Duret-Lutz, A. (2014)
‘LTL translation improvements in Spot 1.0’, Int. J. Critical Computer-Based
Systems, Vol. 5, Nos. 1/2, pp.31–54.

Biographical notes: Alexandre Duret-Lutz is a Researcher and Teacher at
EPITA, a private computer science school near Paris. He maintains Spot, a
model checking library that he started during is PhD, and is passionate about
LTL translation.

This paper is a revised and expanded version of a paper entitled ‘LTL
translation improvement in Spot’ presented at the 5th Int. Workshop
on Verification and Evaluation of Computer and Communication Systems
(VECoS’11), Tunis, September 2011.

1 Introduction

One of the first steps of the automata-theoretic approach to model checking of
linear-time properties (Vardi, 1996, 2007) is to translate the property to verify into
an ω-automaton. This automaton is then synchronised with a model of the system in
order to find executions that invalidate the property. By constructing a smaller or more

Copyright © 2014 Inderscience Enterprises Ltd.

32 A. Duret-Lutz

deterministic property automaton, we can hope (this is generally the case) to obtain a
smaller synchronised product to explore, resulting in faster model checking.

The Spot library (Duret-Lutz and Poitrenaud, 2004) offers algorithms to realise the
above automata-theoretic approach. A salient feature of Spot is its preference for using
transition-based generalised Büchi automata (TGBA) instead of the more commonly
used Büchi automata (BA). Section 2 explains the difference.

This paper attempts to give a global view of the different algorithms involved into
the LTL-to-TGBA or LTL-to-BA translation of Spot, to explain why it often produces
smaller automata than other available translators, and why it does not always produce
them as fast. Along the way, we point some steps (like the degeneralisation) that could
probably be improved. We believe the insight we provide into the implementation of
Spot should be helpful to anyone devising a new translator.

Spot actually offers four translation procedures, and we shall only discuss the most
efficient one, derived from an algorithm by Couvreur (1999).

A previous version of this paper was presented at VECOS ‘11 (Duret-Lutz, 2011).
The text has been augmented to discuss new optimisations implemented between Spot
0.7 and Spot 1.0, and presents new benchmarks featuring more linear-time temporal
logic (LTL) translators.

We assume the reader is familiar with LTL (Clarke et al., 2000) and binary decision
diagrams (Bryant, 1986), abbreviated as BDDs in the sequel.

This paper is organised as follows. Section 2 defines TGBA as opposed to BA.
Section 3 presents the core of the translation algorithm, with an emphasis on the
optimisations that are enabled by the use of BDDs, and discusses some improvements
to this translation. In Sections 4 and 5 we discuss pre-processing and post-processings.
Finally, Section 6 compares Spot with other translators on various benchmarks.

Throughout the paper, the reader is invited to play with an on-line version
of the translator at http://spot.lip6.fr/ltl2tgba.html. This page has options for many
optimisations discussed herein.

2 Two kinds of Büchi automata

Let AP be a set of atomic propositions, i.e., propositional variables that may be true or
false in the system. 2AP denotes the set of minterms (or assignments) over AP, and 22

AP
,

interpreted as the set of sums of minterms, denotes the Boolean formulas over AP.

Definition 1: A Büchi automaton is a tuple B = ⟨AP,Q, q0,F , δ⟩ where AP is a set of
atomic propositions, Q is a finite set of states, q0 ∈ Q is the initial state, F ⊆ Q is
a set of acceptance states, and δ ⊆ Q× 2AP ×Q is a transition relation in which each
transition is labelled by a Boolean assignment.
An infinite word c0c1c2 . . . ∈ (2AP)ω of assignments is accepted by B if there exists
a run of A, say (q0, l0, q1)(q1, l1, q2)(q2, l2, q3) . . . ∈ δω , that recognises the word
(∀i, ci = li) and that visits infinitely many acceptance states (∀i ≥ 0, ∃j ≥ i, qj ∈ F).

A common implementation technique is to group transitions with common source
and destination into edges labelled by Boolean formulas. E.g., the three transitions
(q1, ab̄, q2), (q1, ab, q2), and (q1, āb, q2) can be represented by one edge (q1, a ∨ b, q2).

LTL translation improvements in Spot 1.0 33

A transition-based generalised Büchi automaton (TGBA) is a Büchi automaton in
which multiple acceptance marks are carried by the transitions.

Definition 2: A TGBA is a tuple T = ⟨AP,Q, q0,F , δ⟩ where AP is a set of atomic
propositions, Q is a finite set of states, q0 ∈ Q is the initial state, F = {f1, f2, . . . , fn}
is a finite set of acceptance marks, δ ⊆ Q× 2AP × 2F ×Q is a transition relation in
which each transition is labelled by a Boolean assignment and a set of acceptance marks.

An infinite word c0c1c2 . . . ∈ (2AP)ω of assignments is accepted by T if there exists
a run of A, say (q0, l0, F0, q1)(q1, l1, F1, q2)(q2, l2, F2, q3) . . . ∈ δω , that recognises
the word (∀i, ci = li) and that visits each acceptance mark infinitely often (∀f ∈ F ,
∀i ≥ 0, ∃j ≥ i, f ∈ Fj).

Similarly, transitions that share the same source, destination and acceptance mark may
be implemented by a single edge labelled by a Boolean formula. For simplicity, we only
display these edges on the figures.

Figure 1 illustrates these definitions with two automata that recognise the LTL
property: G F a ∧ G F b. The infinite sequence a: 1 0 0 1 0 0 1 0 0 ...

b: 0 0 1 0 0 1 0 0 1 ... will be accepted by
T1 because it visits the top and right loops infinitely often, therefore all acceptance
marks are seen infinitely often. Similarly this sequence visits the only acceptance state
of B1 infinitely often.

Figure 1 Two automata recognising the LTL formula G F a ∧ G F b

s2

s0

s1 a ∧ b

¬b

¬a ∧ b

¬b

a ∧ b

¬a ∧ b

¬a

a

(B1)

a ∧ b

a ∧ ¬b

¬a ∧ b

¬a ∧ ¬b(T1)

Notes: B1: Büchi automaton with a single acceptance state (double circle). T1: TGBA with
F = { . , .}.

Spot is built around TGBAs and can perform the entire model-checking approach with
these automata. However most other model-checking tools use BA. Fortunately, TGBAs
can be degeneralised into BA by an operation discussed in Section 5.4. Automaton B1

in Figure 1 was obtained by degeneralising T1.
We will often name the states of automata with the LTL formula they accept. These

extra annotations have no influence on the behaviour of the automata.
In a Büchi automaton, we say that a strongly connected component (SCC) is

accepting if it contains some accepting state. In a TGBA an SCC is accepting if for
each acceptance mark it contains at least one marked transition.

34 A. Duret-Lutz

3 From LTL to TGBA

The algorithm of Couvreur (1999) for the translation of LTL automata into TGBA is
based on a tableau method. Although the following explanations are self-contained, we
refer the reader to Duret-Lutz and Poitrenaud (2004) for an illustration of this algorithm
as a tableau that can be used to build generalised BA with state-based or transition-based
acceptance conditions. Here we shall present the algorithm at a lower level to explain
how the use of BDDs helps the translation.

To put this algorithm in context, the complete translation procedure to go from LTL
to a Büchi automaton can be presented as four steps:

1 Simplify the LTL formula syntactically, e.g., rewrite F F a (a 3-state automaton)
into F a (2 states). These pre-processings are discussed in Section 4.

2 Translate the simplified formula into a TGBA using the algorithm presented in
this section.

3 Post-process the resulting TGBA, e.g., by pruning useless SCCs, or running
various simulation-based reductions or minimisations discussed in Section 5.

4 If desired (and needed after the previous post-processing) degeneralise the TGBA
into a Büchi automaton, as discussed in Section 5.4.

3.1 Basic translation

If we omit BDDs, the procedure is simple enough to be performed by hand on a paper
or blackboard. The algorithm generates an automaton whose states corresponds to LTL
formulas. The initial state is the formula to translate. This formula is then rewritten as
a sum of products where the only temporal operator allowed at the top level is X.

For instance if we were to translate Ψ = (X a) ∧ (bU¬a) we would use the fact
that φUψ = ψ ∨ (φ ∧ X(φUψ)) to rewrite Ψ as (¬a ∧ X a) ∨ (b ∧ X a ∧ X(bU¬a)).
Reading this formula, it is clear that a state that must recognise Ψ should either
accept an assignment compatible with ¬a and verify a at the next step, or accept an
assignment compatible with b and then verify a ∧ (bU¬a) at the next step. The start
of the automaton is thus as follows:

..(X a) ∧ (bU¬a).
.a

.a ∧ (bU¬a)

.¬a
.b

The procedure should then be applied similarly on the new states. There is little
technicality that has to be taken into account when translating the φUψ operator: the
formula ψ must be satisfied eventually, it cannot be postponed continuously. This is
solved in the translation by making a promise to fulfill ψ while rewriting the formula.
The actual rewriting rule used for U is: φUψ = ψ ∨ (φ ∧ X(φUψ) ∧ Pψ), with the
operator P denoting an explicit promise.

LTL translation improvements in Spot 1.0 35

All these formulas can be simplified using classical Boolean rules like
(α ∧ β) ∨ α = α to kill some terms (even Xφ or Pφ). This is where using BDD really
helps. The core of the translation is the rewriting function r(f) defined recursively as in
Figure 2. It encodes outgoing transitions using BDD variables of the form Var[p], Nxt[f],
P[f], created as needed to represent respectively atomic propositions, X f formulas,
and P f promises. The given definition assumes that the LTL formula is specified
into negative normal form, where negation operators appear only in front of atomic
propositions.

Applying r on our example, we obtain:

r((X a) ∧ (bU¬a)) = r(X a) ∧ r(bU¬a)
= Nxt[a] ∧ (r(¬a) ∨ (r(b) ∧ Nxt[bU¬a] ∧ P[¬a]))
= Nxt[a] ∧ (¬Var[a] ∨ (Var[b] ∧ Nxt[bU¬a] ∧ P[¬a]))
= (¬Var[a] ∧ Nxt[a]) ∨ (Var[b] ∧ Nxt[a] ∧ Nxt[bU¬a] ∧ P[¬a])

Which corresponds to:

..(X a) ∧ (bU¬a).
.a

.a ∧ (bU¬a)

.¬a

.b;P[¬a]

Figure 2 Recursive rules to translate an LTL formula into a BDD

r(f) = !"#[f]

r(>) = > r(f) = r(f) ∨ (!"#[f] ∧ $[f])

r(⊥) = ⊥ r(f) = r(f) ∧ !"#[f]

r(p) = %&'[p] r(f g) = r(g) ∨ (r(f) ∧ !"#[f g] ∧ $[g])

r(¬p) = ¬%&'[p] r(f g) = r(g) ∨ (r(f) ∧ !"#[f g])

r(f ∨ g) = r(f) ∨ r(g) r(f g) = r(g) ∧ (r(f) ∨ !"#[f g])

r(f ∧ g) = r(f) ∧ r(g) r(f g) = r(g) ∧ (r(f) ∨ (!"#[f g] ∧ $[f]))

There are several ways to turn a BDD into a sum of products, but because each term
of the sum corresponds to a transition in the automaton, redundant terms should be
avoided. Furthermore, Nxt[] and P[] variables should never be negated. We compute
prime implicants using an algorithm from Minato (1992) to that effect.

The complete translation is shown on Figure 3. This automaton is still not a TGBA
because it uses promises instead of acceptance marks. To guarantee that a promise
holds, the accepted runs of the automaton should never make promises continuously: in
other words for each promise Pφ, accepted runs should visit infinitely many transitions
that do not make such a promise.1 This can be encoded as a TGBA by labelling all
transitions that do not make promise Pφ by an acceptance mark associated to φ. There
will be as many acceptance marks as promises. Figure 4 shows the final TGBA.

The pseudo-code for the complete translation algorithm is shown on Figure 5.

36 A. Duret-Lutz

Figure 3 Translation of (X a) ∧ (bU¬a) using promises

(a) ∧ (b ¬a) a

a ∧ (b ¬a) b ¬a

>
¬a

b!"[¬a]

a
>

a ∧ b!"[¬a]
b!"[¬a]

¬a

Figure 4 Translation of (X a) ∧ (bU¬a) as a TGBA

(a) ∧ (b ¬a) a

a ∧ (b ¬a) b ¬a

>
¬a

b

a
>

a ∧ b
b

¬a

Figure 5 Pseudo-code of the algorithm of Couvreur (1999) to translate an LTL formula f
into a TGBA

()(6)+6).7%6,08f 9:

todo← {f}! all6acc← ∅
a←(%) %-)+0%)+&! a2'1)6*&*)*%(6')%)18f 9
)*!+% 8todo 6= ∅9

here← todo2$10+;16+&189

,-$.++ i !(prime6implicants6of(r(here))

"-) i %'
∧

v∈V

<%$[v] ∧
∧

v∈V
′

¬<%$[v] ∧
∧

a∈A

"[a] ∧
∧

n∈N

=>)[n]

dest←
∧

n∈N
n

!, ¬a2?%'6')%)18dest9
todo2*&'1$)8dest9

a2%@@61@.18'$A: hereB @'): destB A+&@:
∧

v∈V
v ∧

∧
v∈V ′ ¬vB /$+0*'1': A9

all6acc← all6acc ∪A

,-$.++ t !(a21@.1'89

t2%AA1/)%&A160%$C'← all6acc \ t2/$+0*'1'
$%/#$(a

Note: The function r(here) is defined on Figure 2.

At this point it should be clear that the use of BDDs simplifies every Boolean formulas
that label edges. For instance we cannot have an edge labelled by b ∧ a ∧ ¬b because
such a conjunction would be simplified by the BDD representation.

Similarly the conversion of the BDD into a sum of prime implicants helps to reduce
the number of outgoing arcs of each node.

We experimented with different BDD variable orders, and found it was better to
introduce variables in the order they are discovered while applying r recursively.

LTL translation improvements in Spot 1.0 37

3.2 Using r to identify states

A powerful BDD-based optimisation is to use r to identify some equivalent formulas.
Because BDDs have a unique representation, two formulas φ and ψ are equivalent if
their rewritings are the same BDDs r(φ) = r(ψ). The converse does not hold because
two equivalent subformulas prefixed with X might be represented by different Nxt[]
variables. Since r(φ) encodes the outgoing edges (labels, promises, and destinations) of
the state ψ, if r(φ) = r(ψ) then the states φ and ψ have exactly the same successors
and can be merged. Such a reduction occurs when translating G F a:

r(G F a) = ((Nxt[F a] ∧ P[a]) ∨ Var[a]) ∧ Nxt[G F a]
r((F a) ∧ G F a) = ((Nxt[F a] ∧ P[a]) ∨ Var[a]) ∧ Nxt[G F a]

The result of r(G F a) implies that G F a should have two successors, G F a and (F a) ∧
G F a, as shown in the first automaton of Figure 6. However r((F a) ∧ G F a) = r(G F a)
so these states can be merged.

Figure 6 Two translations of G F a

a (a) ∧ a

a

a

>
>

a a

>

Note: Since r(G F a) = r((F a) ∧ G F a) the two states of the first automaton can be merged,
yielding the second automaton.

One way to implement this ‘r-quotienting’ automatically is to index the states of the
automaton by the BDD r(φ) instead of by the LTL formula φ (the pseudo-code from
Figure 5 does not perform this reduction).

This automatic simplification may fail to merge states that have the same successors
except for a self-loop because the Nxt[] variable representing the destination of the
self-loop will be different in each state. Babiak et al. (2012) have suggested to improve
this case by introducing a unique dummy BDD variable to represent the current state.
This optimisation is implemented in their LTL translator, ltl3ba, but not yet in Spot.

3.3 Better determinism

The determinism of the automata from Figure 6 can be improved using a trick
based on the BDD representation of states. Instead of converting the equation
r(G F a) = ((Nxt[F a] ∧ P[a]) ∨ Var[a]) ∧ Nxt[G F a] into a sum of products to discover
the labels and destinations, we can instead fix one label to discover its destination(s).

Where shall we go if we read a? r(G F a) ∧ Var[a] = Var[a] ∧ Nxt[G F a].
If we read ¬a? r(G F a) ∧ ¬Var[a] = ¬Var[a] ∧ Nxt[F a] ∧ P[a] ∧ Nxt[G F a].
These equations show that all instances of ⊤ in Figure 6 can be replaced by ¬a,

yielding two deterministic automata.
In an automaton over n atomic propositions (Var[a], Var[b],. . .), there are 2n labels

to consider. However the structure of the BDD encoding the formula helps to ignore

38 A. Duret-Lutz

useless labels; and in real-world formulas, n is usually small enough to make the
enumeration of these labels not perceptible.

While an automaton constructed this way is usually more deterministic, it is not
necessarily a deterministic automaton. The result of r(φ) ∧A for some A could feature a
disjunction, i.e., multiple destinations (the reader is invited to compute r(F G a) ∧ Var[a]
for an example).

In an experiment we translated 92 LTL formulas taken from the literature and
compared their translations with and without this optimisation, by synchronising the
resulting automata with random state spaces. This technique reduced the number of
transitions in the product by 40%, and the number of states by only 0.33%.

3.4 Speeding up the translation of G formulas

In his original paper, Couvreur (1999) discussed an optimisation of this translation using
a specific rule for formulas of the form G F f : r(G F f) = (r(f) ∨ P[f]) ∧ Nxt[G F f].

This rule avoids the creation of the state F a ∧ G F a during the translation of G F a.
From a size perspective, it is entirely optional since the r-quotienting discussed in
Section 3.2 will already identify the two states. However from a time point of view, it
is more efficient to construct a single state directly, and avoid many BDD operations.
(Spot’s translator spends more than half of its run time performing BDD operations.)

We generalised this rule to apply to any subformula that is guaranteed to be repeated
in the next state. We modify the G rule of Figure 2 as: r(G f) = rG(f) ∧ Nxt[G f]
where rG is the recursive function defined by Figure 7. These rG rules, called inside
r(G f), avoid the creation of the Nxt[f] variables that would be implied by Nxt[G f]
anyway. In particular, this optimisation halves the time spent translating subformulas of
the form

∧
i G F pi or of the equivalent (but preferred) form G

∧
i F pi, either of which

occur when expressing weak fairness properties.

Figure 7 Recursive rules to translate LTL subformulas of G

r (f ∧ g) = r (f) ∧ r (g) r (f g) = r(g) ∨ r(f)

r (f) = r(f) ∨ [f] r (f g) = r (g)

r (f g) = r(g) ∨ (r(f) ∧ [g]) r (f g) = r (g) ∧ (r(f) ∨ [f])

r (f) = r(f) !" #$$ %&'() *#+(+

3.5 Simplifying promises

Consider the BDD rewriting of aU(bU c) whose complete automaton is represented
with promises on Figure 8:

r(aU(bU c))
= Var[c] ∨ (Var[b]∧Nxt[bU c]∧P[c]) ∨ (Var[a]∧Nxt[aU(bU c)]∧P[bU c])

This BDD encodes three transitions, two of which use different promises: P[c] and
P[bU c]. However these promises are always issued sequentially: first P[bU c] forbids

LTL translation improvements in Spot 1.0 39

runs that continuously stay in the initial state, then if the state bU c is reached, P[c]
rejects runs that would stay infinitely in that state. In practice, we could have made the
same promise, for instance P[c] (the name does not even matter), on all these transitions.
If we interpret P[f] as a promise to fulfill f eventually, it is clear that P[bU c] and P[c]
are two equivalent promises.

Figure 8 Translation of aU(bU c) using promises (and without using the determinisation
improvement of Section 3.3)

a (b c) b c >

a!"[b c]

b!"[c]

c

b!"[c]

c

>

Along these lines, we implement the following simplifications to limit the number of
promises introduced: P[F f] = P[f], P[f U g] = P[g], and P[f M g] = P[f].

Furthermore, if the top-level formula is a syntactic persistence, only one promise
need to be used during the translation and we rewrite any P[f] as P[⊤]. This optimisation
and the class of syntactic persistence formulas are described by Černá and Pelánek
(2003).

4 Pre-processings

Pre-processing the LTL formula before it is translated helps to speed-up the translation,
and to produce smaller automata. Spot distinguishes different kinds of LTL rewritings:

• Trivial identities are applied at any time during the construction of a formula
(e.g., while they are parsed). These are all based on idempotence of some
operators (e.g., F F a ≡ F a), or neutral/absorbent operands (e.g., X⊥ ≡ ⊥,
f ∧ ⊥ ≡ ⊥, f ∧ ⊥ ≡ ⊥, etc.).

• Basic rewritings are unconditional rewriting rules, such as G X f ≡ X G f .
• Eventual and universal rewritings apply only when some subformulas are purely

universal Etessami and Holzmann (2000), are pure eventualities Etessami and
Holzmann (2000), or are what Babiak et al. (2012) have called alternating
formulas. As an example F G F a can be rewritten as G F a because the latter is a
pure eventuality.

• Implication-based rewritings apply only in cases where one subformula can be
shown to imply another subformula. For instance under the hypothesis that f → g,
we have f U g ≡ g. There are two ways to detect such implications: they can be
approximated syntactically (Somenzi and Bloem, 2000), or decided exactly using
automata-based language containment checks (Tauriainen, 2006).

Spot implements many (but not all) rewriting rules taken from the aforementioned
sources, plus some of its own. A complete listing of all these rules is distributed along
with Spot2 and is too long to be reproduced here. We only discuss a couple of them to

40 A. Duret-Lutz

illustrate the point that these rewritings should be selected from the point of view of the
translation algorithm that will be used next.

4.1 A harmful rewriting rule

As a first example, we do not apply the rule F(φ ∧ G Fψ) ≡ (Fφ) ∧ (G Fψ) suggested
by Somenzi and Bloem (2000). Intuitively, this rule is dubious because F(φ ∧ G F(ψ))
appears less complex to translate. Indeed, translating FΦ is just a matter of creating an
initial state that accepts any letter for a finite number of step, and non-deterministically
jumps into a state that will recognise Φ when a letter matching the beginning of Φ is
found. However, translating a formula such as (Fφ) ∧ G Fψ is harder because in the
initial state you have four choices to consider: either the input can be the start of φ, or it
is the start of ψ, or it is both, or it is none. When φ and ψ are atomic propositions as in
Figure 9, these four cases can be reduced to three. It turns out that on the automaton A2

from Figure 9 the states (F a) ∧ G F b and (F a) ∧ (F b) ∧ G F b have exactly the same
outgoing transitions: they can be merged. Thanks to the BDD identification discussed
in Section 3.2, Spot will actually output an automaton similar to A1 for both formulas
F(a ∧ G F b) or (F a) ∧ G F b. This is not the case when φ and ψ are more complex.

Figure 9 Paper-and-pen translations into TGBA of F(a ∧ G F b) and (F a) ∧ G F b

A1 (a ∧ b) b b

>

a

b

>

A2 (a) ∧ b b

(a) ∧ (b) ∧ b

>

a

>

b

>
>

a>

 !"#$% & !"#$%&"'(&#$')%"'*+"),-'* ,')- ./01 -2 ∧ "'(∧ 3

This rewriting rule, which we applied in the past, also prevented other useful rules
to apply. E.g., Spot 0.5 would rewrite the formula F(φ1 ∧ G Fψ1) ∨ F(φ2 ∧ G Fψ2) as
((Fφ1) ∧ G Fψ1) ∨ (Fφ2) ∧ G Fψ2) missing the opportunity to apply the rule F(Ψ1) ∨
F(Ψ2) = F(Ψ1 ∨Ψ2). Since Spot 0.6, we rewrite this formula as F((φ1 ∧ G Fψ1) ∨
(φ2 ∧ G Fψ2)), which is easier to translate for similar reasons.

4.2 Handling the W and M operators

Figure 2 includes rules to translate the W (weak until) and M (strong release) LTL
operators. Many tools dealing with LTL formulas do not implement these operators or
treat them as syntactic sugar: they do not add expressive power and can be rewritten
using other operators. To illustrate the importance of the rewriting rules from the point
of view of the translator algorithm, we consider different rewritings for these operators.

The formula aW b is usually rewritten into (aU b) ∨ G a. For instance this is the
implementation of the W operator in Spin 6.2.2. From the point of view of an LTL
translator based on a tableau method, this is not a very good rewriting as it requires
a non-deterministic choice between aU b and G a at the very beginning. A better

LTL translation improvements in Spot 1.0 41

rewriting is aW b ≡ aU(b ∨ G a), as it postpones the choice between b and G a. This
latter rewriting was used by Dwyer et al. (1998), although they now changed their
web site (http://patterns.projects.cis.ksu.edu/documentation/patterns/ltl.shtml) to use W
for simplicity. An even better choice, although less intuitive, is aW b ≡ bR(a ∨ b), since
no promise have to be introduced.

The TGBAs corresponding to the translation of these different rewritings are shown
on Figure 10. Similar rewritings for M exist:

aM b ≡ (aR b) ∧ (F a) ≡ aR(b ∧ F a) ≡ bU(a ∧ b).

Figure 10 Four formulas equivalent to aW b and their corresponding automata

a b >

a ∧ ¬b

b

>

b (b ∨ a) >

a ∧ ¬b

b

>

a (b ∨ a)

a >

a ∧ ¬b

a ∧ ¬b b

> a

(a b) ∨ a a

a b >

a ∧ ¬b

a ∧ ¬b
b

a

a ∧ ¬b

b

>

 !"#$% &' "#$% &#%'$()* +,$-.)(+/0 0#)/1 02+-% 3#%%+*4#/1-/5)$0#')0)6

Since Spot fully supports the W and M operators, our basic rewriting rules actually
perform the reverse of all the previous rewritings (e.g., we rewrite into aW b the
formulas (aU b) ∨ G a, aU(b ∨ G a), and bR(a ∨ b)).

4.3 Implementation of LTL formulas

The implementation of all these rewriting rules benefit greatly from our representation
of a set of LTL formulas as a forest of ‘syntax DAGs’ with sharing of subformulas.

LTL formulas are reference counted and a unicity table makes sure that two equal
formulas (or subformulas) will share the same address. The operators ∧ and ∨ are
handled as n-ary operators, and their operands are always sorted. We can therefore easily
detect that a ∧ X(b) ∧ F(c) is equivalent to F(c) ∧ X(b) ∧ a because the two formula
objects will have the same address.

The uniqueness of each subformula also helps to speed up rewriting algorithms, as
they use a cache when processing subformulas recursively.

5 Post-processings

Once an LTL formula has been translated into a TGBA as described in Section 3,
Spot implements different kinds of post-processings. We first describe each processing
independently before explaining when there are used and how they are chained.

42 A. Duret-Lutz

5.1 SCC pruning

It may happen that the TGBA constructed by the translation contains states that do
not contribute to its language. A classical optimisation is therefore to remove all
non-accepting SCCs that cannot reach an accepting SCC (Somenzi and Bloem, 2000).

Since we have to traverse the entire automaton to classify its SCCs as accepting
or non-accepting, we can also perform a few other improvements along the way.
The acceptance marks of transitions that do not belong to an accepting SCC can be
removed. Similarly, acceptance marks that are always present at the same time as
another acceptance mark can be simplified.

5.2 Minimisation of weak deterministic BA

A Büchi automaton is weak if, in each SCC, either all the cycles are accepting, or all
cycles are non-accepting.

It is well known that not all BA can be determinised [Vardi, (1996), Prop. 8]. There
is a subclass of properties that can be represented by weak deterministic Büchi automata
(WDBA), and for which there exists an algorithm to compute the minimal WDBA
recognising the property (Löding, 2001). This class corresponds to the ‘obligations’ in
the temporal hierarchy of Manna and Pnueli (1990) and includes a large number of LTL
formulas used for model checking.For instance 40 formulas out of the 55 formulas from
Dwyer et al. (1998) are obligations.

Dax et al. (2007) showed how to implement this minimisation without knowing
a priori if the translated property actually is an obligation: the correctness of the
minimisation is tested a posteriori using a language equivalence test (easy to implement
because a WDBA can be complemented like deterministic finite automata, and the
original TGBA can be complemented by translating the negation of the property).

Dax et al. (2007) did a comparison of the size produced by different translators
(not Spot, which they did not know) with the size of the minimal WDBA. This revealed
that although it was deterministic, the minimal WDBA usually had a number states
smaller or equal to that of the automata produced by the translators.

This WDBA minimisation has since been integrated into Spot, and we completed the
benchmark of Dax et al. (2007) in the previous version of this paper (Duret-Lutz, 2011).
Our implementation takes a TGBA, and outputs a deterministic Büchi automaton when
the WDBA-minimisation is valid. We avoid the language equivalence test in a number
of cases by testing whether the translated formula actually belongs to the syntactic
obligation class (Černá and Pelánek, 2003).

While being able to output a minimal deterministic automaton for some class of LTL
formulas is appreciable, we have found a few cases were using such a deterministic
output was not desirable because the deterministic automaton was too large.

As an example consider the family of LTL formulas G p1 ∨ G p2 ∨ . . .G pn.
Figure 11 shows the result of the translation for n = 3 before and after WDBA
minimisation. The non-deterministic automaton has n+ 1 states, while the minimal
deterministic automaton has 2n − 1 states. Experiments on actual model checking
problems show that the smaller of these two automata has to be preferred, despite its
non-determinism, when the full product with the system must be constructed.

LTL translation improvements in Spot 1.0 43

Figure 11 Left: translation of G a ∨ G b ∨ G c. Right: its minimal WDBA

a ∨ b ∨ c

a b c

a b c

a b c

abc

ābc ab̄c abc̄

bc ac ab

b̄c bc̄ āc ac̄ āb ab̄

c b a

5.3 Simulation-based reductions

Spot implements the simulation-based reductions described by Somenzi and Bloem
(2000), which are easily adjusted to work on a TGBA. Intuitively direct simulation can
merge states based on the inclusion of the sets of infinite runs starting from these states,
while reverse simulation would merge states based on the inclusion between sets of
finite runs leading to these states.

Our implementation has the same structure as the StrongFairSimulation algorithm
of Etessami and Holzmann (2000), except that we represent the class (or colour)
of a state using BDD variables to ease inclusion checks. More details about our
implementation are given by Babiak et al. (2013).

5.4 Degeneralisation

A degeneralisation algorithm takes a generalised automaton with n states and m
acceptance marks, and produces a Büchi automaton with at most n(m+ 1) states. The
classical algorithm used to TGBA into BA (Clarke et al., 2000, Section 9.2.2) can be
adapted to transform TGBA into Büchi automata (Giannakopoulou and Lerda, 2002;
Gastin and Oddoux, 2001) as follows.

If T = ⟨AP,Q, q0,F , δ⟩ is a TGBA with m acceptance marks F =
{f1, f2, . . . , fm}, then an equivalent Büchi automaton T = ⟨AP,Q′, q′0,F ′, δ′⟩ can be
constructed as follows:

• Q′ = Q× {0, . . . ,m}, i.e., the original automaton is cloned in m+ 1 levels

• F ′ = Q× {m}, i.e., states from the last level are accepting

• δ′ = {((s, j), l, (d, levelj(F))) | (s, l, F, d) ∈ δ}

where levelj(F) =

0 if j = m

j + 1 if j < m and fj+1 ∈ F

j otherwise

i.e., for each level j < m the outgoing transitions that carry fj+1 are redirected to
the next level and all transitions from the last level are redirected to level 0

• q′0 = (q0, 0), i.e., the initial state is on the first level (but any other level would
also be correct).

44 A. Duret-Lutz

This setup guarantees that any accepting path in the degeneralised automaton will
correspond to an infinite path that sees all acceptance marks infinitely often in the
original automaton. The classical optimisation is to ‘jump levels’, i.e., when a transition
from level i < m carries acceptance marks fi+1, fi+2, and fi+3, it can be redirected to
the level i+ 3. This corresponds to the following redefinition of levelj(F):

levelj(F) =

{
max{n ∈ {j, . . . ,m} | ∀k ∈ {j + 1, . . . , n}, fk ∈ F} if j < m,

max{n ∈ {0, . . . ,m} | ∀k ∈ {1, . . . , n}, fk ∈ F} if j = m.

The automaton B1 from Figure 1 was degeneralised from T1 with this definition, in the
order f1 = ., f2 = ., and setting the initial state in the last level.

Another optimisation this is implemented in Spot is a pulling of acceptance marks.
When all outgoing transitions of a state s have a set Y of acceptance marks in common,
this set can be added to the acceptance marks of all the incoming transitions. This is
correct because if a run traverses s it will necessarily see all acceptance marks from Y ;
it makes no difference if its sees them twice.

This degeneralisation procedure offers m! possible ways to order the acceptance
marks, and there are m+ 1 possible levels on which the initial state can be located.
Changing these parameters might make some states from Q× {0, . . . ,m} unreachable,
and can thus reduce the automaton. For one TGBA, we therefore have m!(m+ 1)
possible degeneralisations using only this definition.

In Spot, the order of acceptance of sets used for the degeneralisation correspond to
the order in which the corresponding promises where introduced during the translation,
and the initial state is always on the first level. There is definitely room for improvement
here, since the initial submission of this paper, we have been working with the authors
of ltl3ba to improve the situation (Babiak et al., 2013).

Oddoux (2003, Section 6.1.2) mentions another kind of degeneralisation in which the
acceptance marks can be taken in any order and where each state of the degeneralised
automaton has to retain the set of all acceptance marks that are waited for. This can
potentially multiply the size of the original automaton with 2m if m acceptance marks
are used. But this might be worth a try when m is very small.

5.5 The complete post-processing chain

Because it is not always clear in which context the translated automaton will be used,
Spot 1.0 introduces two different options to specify the intent of the translation.

• deterministic is used to indicate that an output that is (as much as possible)
deterministic is desired. E.g., the right automaton of Figure 11 should be preferred.

In this case, we first prune useless SCC and acceptance marks in the translated
TGBA, then we apply WDBA-minimisation. If the latter succeeded, we output its
result (a Büchi automaton) as-is. In case where WDBA-minimisation was not
applicable, we reduce the TGBA by iterating both direct and reverse simulation
until the automaton is not reduced any more. The simulation-reduced TGBA is
then degeneralised if requested.

LTL translation improvements in Spot 1.0 45

• small is used to indicate that an output with less states should be favoured. We
shall still strive to make it deterministic, but if a choice like that of Figure 11
happens, we will prefer the left automaton.

The post-processing for this intent also starts by pruning useless SCCs and
acceptance marks. Then we compute two different automata, and return the
smallest: the first automaton is the result of WDBA-minimisation (if that result
exists), and the second is the result of the iterated simulation (optionally
degeneralised). If the two automata have an equal number of states, we keep the
WDBA because it is guaranteed to be deterministic.

6 Benchmarks

The following sections present different benchmarks comparing Spot with other
translators that are publicly available (including older versions of Spot).

These translators (presented in chronological order) are:

• The Spin model checker. Its -f option converts an LTL formula into a never
claim representing a (degeneralised) Büchi automaton. Spin’s LTL translator is
based on the tableau construction of Gerth et al. (1996). Spin has some trivial and
unconditional rewriting rules for LTL, and includes simple post-processings.

• LBT (Rönkkö, 1999) also implements the translation of Gerth et al. (1996), but
produces a generalised Büchi automaton. LBT only apply trivial rewriting rules. It
has no post-processings.

• wring (Somenzi and Bloem, 2000) implements some unconditional LTL
rewritings, as well as some implication-based checks. Using a tableau construction
it builds a generalised Büchi automaton with labels on states (rather than
transitions). This GBA is simplified using SCC-based and simulation-based
reductions.

• ltl2ba (Gastin and Oddoux, 2001) is a descendant of Spin’s translator in the
sense that it reused the same code base. However the translation algorithm has
been completely rewritten. LTL formulas are reduced using all classes of rewriting
rules (the implication checks are syntactic), translated into an intermediate
alternating Büchi automaton, which is then converted into a TGBA, which is
finally degeneralised into a Büchi automaton. Some simplifications (like removing
redundant transitions and useless SCCS) are performed at all these steps.

• modella (Sebastiani and Tonetta, 2003) uses a tableau construction, implements
all classes of rewriting rules (with syntactic implication checks), it also
implements simulation-based reductions on the Büchi automaton. One of the main
points of Modella’s authors was that it is worth improving the determinism of the
automaton at the expense of its size, because this will pay off when this
automaton is later synchronised with a system to check.

46 A. Duret-Lutz

• ltl2nba (Fritz, 2003) translates LTL formulas into alternating BA with
ε-transitions, and performs simulation reductions directly on that. These
alternating automata are then converted into Büchi automaton using the
Miyano-Hayashi construction. No pre- or post- processing are performed.

• ltl3ba (Babiak et al., 2012) is a reimplementation of ltl2ba in C++ with better
data structures and additional optimisations. It implements many LTL rewriting
rules, including some new ones based on a class for formulas called alternating
formulas. For instance it uses BDDs to simplify the guards of transitions. It
implements a technique called suspension that would effectively solve the problem
described in 4.1: when ltl3ba translates (Fφ) ∧ (G Fψ), it suspends the
translation of G Fψ until a point where φ must hold. This translator also
implements a direct-simulation reduction on the final Büchi automaton (option
-S), and has an option to improve determinism (option -M).

ltl2nba and wring are scripts written respectively in Python and Perl. All other tools
are compiled from C or C++. All the following experiments were ran under GNU/Linux
on an Intel Core2 Q9550 running at 2.83GHz with 8GB of RAM.

6.1 184 LTL formulas from the literature

The benchmark consists in 92 LTL formulas:

• 55 formulas from Dwyer et al. (1998) (where aW b was written as aU(b ∨ G a))
• 25 formulas from Somenzi and Bloem (2000) – their paper shows 27 formulas but

two of them are already the negations of other formulas in the list

• 12 formulas from Etessami and Holzmann (2000).

With their negations this makes a total of 184 formulas.
A summary of the translation of these formulas is presented in Table 1. The statistics

displayed in this table were gathered using ltlcross, a Spot-based reimplementation
of LBTT (Tauriainen and Heljanko, 2002) that cross compares translators in order to
detect errors (for our extensive test suite) and collect statistics (for our papers). The
tools have been clustered by type of automaton produced, with Spot appearing in two
groups depending on whether it was configured to output BA or TGBA.

As shown by the count column, Spin failed to translate 11 formulas within the ten
minutes limit we had set up (the machine was swapping before the end of these ten
minutes, meaning spin needed more than the available memory). Wring aborted in three
cases with an error message from Perl. Modella produced one incorrect automaton.

Modella and ltl2nba output automata in a format in which states need not
be declared accepting if they all are, this explains why they show less acceptance
sets/marks than translated formulas (but this difference is not important). For other
LTL-to-BA translators we used the never claim output.

LTL translation improvements in Spot 1.0 47

Table 1 Cumulative summary for the translation of 184 formulas by each tool

Tr
an
sl
at
or

C
ou
nt

Au
to
m
at
a
si
ze
s

N
on
-d
et
.

Ti
m
e

Pr
od
uc
ts

St
at
es

Ed
ge
s

Tr
an
s.

Ac
c.

SC
C

St
at
es

Au
t.

St
at
es

Tr
an
s.

SC
C

B
A

sp
in

6.
2.
2

17
3

2,
16
6

17
,4
28

62
,7
71

17
3

1,
24
2

1,
86
1

16
9

96
4.
09

28
7,
82
3

9,
98
3,
43
7

29
,5
75

lt
l2

ba
1.
1

18
4

1,
01
7

3,
38
5

30
,2
37

18
4

73
2

81
1

17
3

0.
67

19
4,
68
4

5,
63
8,
09
5

4,
39
0

lt
l2

nb
a

18
4

95
2

3,
06
5

27
,1
58

18
1

72
4

74
4

17
4

18
.7
7

17
9,
98
8

5,
47
2,
93
6

3,
47
0

mo
de

ll
a
1.
5.
9

18
3

1,
31
2

4,
39
1

23
,9
98

18
0

86
1

65
0

11
9

30
.7
8

21
9,
54
8

4,
25
8,
42
7

14
,7
53

lt
l3

ba
1.
0.
1

-S
18
4

81
2

2,
24
2

21
,3
39

18
4

62
7

60
7

17
2

1.
00

15
4,
56
7

4,
35
0,
63
6

1,
76
9

lt
l3

ba
1.
0.
1

-M
18
4

87
5

2,
63
4

15
,1
01

18
4

66
6

35
7

12
4

1.
05

16
3,
66
9

3,
09
0,
51
8

4,
13
3

lt
l3

ba
1.
0.
1

-M
-S

18
4

84
8

2,
43
7

14
,4
95

18
4

64
8

33
0

12
4

1.
07

15
8,
51
7

2,
95
3,
16
7

3,
26
0

Sp
ot

1.
0

de
te

rm
in

is
ti

c
18
4

68
3

1,
70
7

10
,6
27

18
4

49
6

93
45

4.
27

13
2,
23
9

2,
40
9,
18
1

1,
45
3

Sp
ot

1.
0

sm
al

l
18
4

67
8

1,
68
3

10
,5
17

18
4

49
5

99
50

4.
47

13
1,
85
0

2,
40
6,
92
1

1,
47
4

G
B
A

lb
t
1.
2.
2

18
4

84
15

13
0,
50
1

88
4,
15
5

33
3

4,
78
1

7,
58
8

18
0

1.
62

1,
42
3,
87
0

10
8,
03
3,
74
5

59
6,
75
4

W
rin

g
1.
1.
0

18
1

1,
47
6

4,
94
3

49
,4
16

18
2

1,
12
0

1,
02
7

16
6

31
.8
0

25
3,
35
4

7,
76
5,
88
3

74
,9
34

TG
B
A

Sp
ot

1.
0

de
te

rm
in

is
ti

c
18
4

64
1

1,
57
3

9,
96
4

19
8

49
3

84
45

4.
41

12
40
53

2,
25
8,
31
4

1,
44
6

Sp
ot

1.
0

sm
al

l
18
4

63
6

1,
54
9

9,
85
4

19
8

49
2

90
50

4.
56

12
3,
66
4

2,
25
6,
05
4

1,
46
7

N
ot
es
:
W
ith

th
e
ex
ce
pt
io
n
of

th
e
co
un
t
co
lu
m
n,

sm
al
le
r
va
lu
es

ar
e
be
tte
r.
Th

e
fir
st

da
ta

co
lu
m
n
di
sp
la
ys

th
e
to
ta
l
co
un
t
of

fo
rm

ul
as

su
cc
es
sf
ul
ly

tra
ns
la
te
d
by

ea
ch

to
ol
.T

he
re
m
ai
ni
ng

co
lu
m
ns

al
l
di
sp
la
y
ac
cu
m
ul
at
ed

va
lu
es

ov
er

al
l
su
cc
es
sf
ul

tra
ns
la
tio

ns
.

Th
e
fir
st

co
lu
m
ns

di
sp
la
y
th
e
to
ta
l
nu
m
be
r
of

st
at
es
,e

dg
es
,t
ra
ns
iti
on
s,

ac
ce
pt
an
ce

m
ar
ks

(1
fo
r
B
A
),
an
d
st
ro
ng
ly

co
nn
ec
te
d

co
m
po
ne
nt
s
in

al
l
th
e
tra

ns
la
te
d
au
to
m
at
on
.T

he
y
ar
e
fo
llo

w
ed

by
th
e
to
ta
l
nu
m
be
r
of

no
n-
de
te
rm

in
is
tic

st
at
es
,a

nd
th
e
to
ta
l

nu
m
be
r
of

no
n-
de
te
rm

in
is
tic

au
to
m
at
a
in

th
es
e
tra

ns
la
te
d
au
to
m
at
a.

Th
e
ne
xt

co
lu
m
n
gi
ve
s
nu
m
be
r
of

se
co
nd
s
it
to
ok

to
tra

ns
la
te

al
l
fo
rm

ul
as
.F

or
ea
ch

fo
rm

ul
a,

on
e
ra
nd
om

(a
nd

de
ad
lo
ck

fr
ee
)
st
at
e
sp
ac
e
of

20
0
st
at
es

w
as

cr
ea
te
d,

an
d
us
ed

to
bu
ild

s
a
sy
nc
hr
on
ou
s
pr
od
uc
t
w
ith

ea
ch

tra
ns
la
te
d
au
to
m
at
on
.T

he
si
ze

of
th
is

pr
od
uc
t
is

sh
ow

n
in

th
e
la
st

th
re
e
co
lu
m
ns
.

W
e
do

no
t
ha
ve

to
di
st
in
gu
is
h
ed
ge
s
fr
om

tra
ns
iti
on
s
in

th
e
pr
od
uc
t
be
ca
us
e
al
l
at
om

ic
pr
op
os
iti
on
s
ar
e
va
lu
ed

in
th
e

st
at
e
sp
ac
e:

ea
ch

ed
ge

m
ap
s
to

on
e
tra

ns
iti
on
.

48 A. Duret-Lutz

The product with a random state space gives some idea of the behaviour of the
automaton during model checking. The intuition is that if this state space was that of
a real model to verify, the model checking procedure would need space proportional to
the number of state in the product, and time proportional to the number of transitions in
that product. This can be used to argue for instance that although modella’s automata
are bigger than ltl2ba’s, they will yield less transition in the product, and therefore
make a faster verification. A similar effect can be seen with ltl3ba’s -M option: it
improves the determinism at the expense of the number of states, but this pays off in
terms of transitions in the products. This interpretation of the last columns should be
mitigated by the fact that these random state spaces are not real models (Pelánek, 2008),
and that an actual model checker will implement other techniques to avoid constructing
the entire product.

The statistics for Wring are slightly unfair because the nature of the automata
it generates (state-based labels, and multiple initial states) is very different from the
automata produced by other translators. In order to integrate Wring in our benchmark,
we had to add a fake initial state (connected to all the former initial states) to each
produced automata, and move the label of each state onto all its incoming transitions.
This quick transformation adds one more state per automaton, and is also accounted for
in the total run time.

On Table 1 Spot appears better than all other translator on all accounts except its run
time (which is still reasonable). The number of states in its BA output is probably even
more impressive if we additionally consider the number of nondeterministic automata:
the automata are smaller and more deterministic.

However these cumulative values hide the actual differences that may be observed
when comparing the results formula by formula. There is only one formula for which
Spot produces an automaton with one more states than other tools. However if we
distinguish automata with equal number of states by their number of transitions, then
these cases are more numerous as shown in Table 2.
Table 2 Comparing LTL-to-BA translator on 182 formulas

sp
in

ltl
2b
a

ltl
2n
ba

m
od
el
la

ltl
3b
a
-S

ltl
3b
a
-M

ltl
3b
a
-M

-S

Sp
ot

(d
et
.)

Sp
ot

(s
m
al
l)

spin 131 132 134 135 166 168 169 169
ltl2ba 2 38 69 47 160 162 156 159
ltl2nba 5 25 65 43 147 150 158 161
modella 35 104 108 116 116 116 132 132
ltl3ba -S 0 18 31 55 138 144 153 157
ltl3ba -M 0 3 18 4 22 19 82 84
ltl3ba -M -S 0 3 16 4 15 0 79 82
Spot (det.) 0 10 9 1 10 24 25 5
Spot (small) 0 7 6 1 6 20 20 0

Notes: The value on line i and column j shows how many times the automaton produced by
translator #i was strictly bigger than the automaton produced by translator #j.
Here ‘bigger’ means ‘more states’ or ‘equal number of states and more transitions’.

LTL translation improvements in Spot 1.0 49

Detailed results can be found at http://www.lrde.epita.fr/ adl/ijccbs/, and include an
interactive page that can build Table 2 for different comparison criteria.

6.2 Some formulas for which the minimal Büchi automaton is known

Cichoń et al. studied several classes of LTL formulas for which they calculated the
size (in states) of the minimal Büchi automaton that could represent the property. They
compared the output of Spot 0.4 and ltl2ba 1.1, neither of which was able to translate
all formulas efficiently. Sometimes they would take too long (hours or days), sometimes
they would produce automata larger than necessary.

Here are the five families of formulas they evaluated on both tools for n ranging
from 1 to 20:

αn = F(p1 ∧ F(p2 ∧ F(. . .F pn))) ∧ F(q1 ∧ F(q2 ∧ F(. . .F qn)))
βn = F(p ∧ X(p ∧ X(p ∧ . . .))︸ ︷︷ ︸

n occurrences of p

) ∧ F(q ∧ X(q ∧ X(q ∧ . . .))︸ ︷︷ ︸
n occurrences of q

)

β′
n = F(p ∧ X(p) ∧ X X(p) ∧ . . .︸ ︷︷ ︸

n occurrences of p

) ∧ F(q ∧ X(q) ∧ X X(q) ∧ . . .︸ ︷︷ ︸
n occurrences of q

)

φn = G F p1 ∧ G F p2 ∧ . . . ∧ G F pn
ψn = F G p1 ∨ F G p2 ∨ . . . ∨ F G pn

Nowadays Spot, as well as the new ltl3ba, are both able to translate all 100 formulas
into their optimal BA, and within reasonable time. Table 3 shows the evolution of the
total time required to translate the 100 formulas.

Table 3 Total time required to translate αn, βn, β′
n, φn, and ψn for 1 ≤ n ≤ 20

Spot 0.8.3 562 seconds
Spot 0.9 315 seconds
Spot 0.9.1 198 seconds
Spot 1.0 150 seconds
ltl3ba 1.0.1 77 seconds

The translation of αn, βn, β′
n and ψn is nearly instantaneous: α20, the longest to

translate, requires 1.7s. Therefore the larger part of the run time summed in Table 3
comes from the φn family of formulas. For instance Spot 1.0 spends 90 s computing
just φ20, and 40% of that time is spent in our inefficient degeneralisation procedure.
Comparatively, ltl3ba, which has some better handling for subformulas of that form,
will translate φ20 in only 42 s.

The variation between Spot 0.9 and Spot 0.9.1 corresponds to the introduction of the
optimised translation of G discussed in Section 3.4, which is especially pertinent for the
translation of φn: our LTL pre-processing will rewrite φn as G(F(p1) ∧ F(p2) ∧ . . . ∧
F(pn)) and from there the rules from Figure 7 will avoid the creation of many useless
Nxt[] variables for each of the F subformulas.

50 A. Duret-Lutz

6.3 LTL counter

Rozier and Vardi (2007) compared 9 LTL translators, on various families of LTL
formulas.

The first family of formulas they experimented on is scalable. For a given n they
generated an LTL formula Cn that matches an infinite sequence of bits in which
all the values of a n-bit counter have been concatenated. E.g., C3 = ((a ∧ (G(a→
(X(¬a ∧ X(¬a ∧ X a)))))) ∧ ((¬b) ∧ X(¬b ∧ X¬b)) ∧ (G((a ∧ ¬b) → (X((X X b) ∧
(((¬a) ∧ (b→ X X X b) ∧ ((¬b) → (X X X¬b)))U a))))) ∧ (G((a ∧ b) → (X((X X¬b) ∧
((b ∧ (¬a) ∧ X X X¬b)U(a ∨ ((¬a) ∧ (¬b) ∧ (X((X X b) ∧ (((¬a) ∧ (b→ X X X b) ∧
((¬b) → X X X¬b))U a))))))))))).3 Such a formula will match a sequence consisting
of a: 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 ...

b: 0 0 0 1 0 0 0 1 0 1 1 0 0 0 1 1 0 1 0 1 1 1 1 1 ... repeated infinitely. Variable a signals
the start of each value, while variable b iterates over the three bits of each value from
least to most significant bit (000, 100, 010, . . .).

From this description it should be clear that the smallest automaton that can
recognise Cn is a deterministic loop with n2n states and as many transitions. Figure 12
shows this automaton for C3. Any translator that constructs such an automaton explicitly
will have a run time that is worse than exponential in n.

Figure 12 A Büchi automaton that recognises C3

.

............

.ab̄ .̄ab̄ .̄ab̄ .ab .̄ab̄ .̄ab̄ .ab̄ .̄ab .̄ab̄ .ab .̄ab

.̄ab̄

.ab̄.̄ab̄.̄ab.ab.̄ab̄.̄ab.ab̄.̄ab.̄ab.ab.̄ab

.̄ab

Figure 13 Run time of different tools on the translation of LTL counter formulas (see online
version for colours)

C4 C6 C8 C10 C12 C14 C16 C18

0"

200"

400"

600" #$#%&'()

#$#*&'()+)

",-$(+).

",-$(+)/

",-$(+)0

",-$()+

Notes: Spot 0.4 was the version used by Rozier and Vardi (2007) in their experiments. Spot 0.7
was the version used for our experiments at VECOS ‘11 (Duret-Lutz, 2011)

Figure 13 shows the run time taken by ltl2ba, ltl3ba, and three versions of Spot
to translate Cn for increasing n. Executions were limited to 15min. Other tools are not
shown, as they already fail to translate C4 (sometimes even C1) within this limit.

LTL translation improvements in Spot 1.0 51

All these tools have been configured to not perform any pre- and post-processings.
Also we patched ltl2ba, ltl3ba, so they would stop right after having constructing
a TGBA without constructing a Büchi automaton. Therefore we are only measuring the
scalability of the core LTL-to-TGBA translation algorithm in each of these tools. (We
verified that each tool was slower with pre-processing turned on, which means that LTL
rewriting are of no help on the Cn family of formulas.)

7 Conclusions

We have presented the main ingredients of the translation module of Spot. The core of
the translation is the BDD-based tableau construction of Couvreur (1999), which has
been extended in several ways: more determinism (a suggestion of Couvreur himself),
some simplifications of the translations of subformulas of G, and a reduction of the
number of promises required. This translation is preceded by a huge number of LTL
rewriting rules, and followed by several post-processings to reduce the size of the
produced automaton. This entire chain produces small automata that tend to be very
deterministic, although not necessarily as fast as other translators such as ltl3ba.

Our implementation is extensively tested using both handwritten and random LTL
formulas, and cross-compared to other translators using tools such LBTT (Tauriainen
and Heljanko, 2002) or ltlcross, a Spot-based reimplementation.

The degeneralisation algorithm appears to be a weak point in Spot, and the historical
reason is that we seldom use it in practice. When building a model checker on top of
Spot, we implement the automata-theoretic approach using TGBA directly.

Although we have not discussed this, the implementation of this translation in
Spot has been extended to support PSL (Accellera, 2004), and our post-processings
also include algorithms to output monitors (Tabakov and Vardi, 2010) and testing
automata (BenSalem et al., 2011, 2012).

It has been argued (Cichoń et al.; Tsay et al., 2011) that rather than optimising an
algorithm to try to produce the best automata always, it would be useful to create a
database of optimal automata for commonly used formulas. However different uses may
call for different definition of optimal automaton. In the context of model-checking,
one usually wants to reduce the size of the product of the property with the system,
and translating the property into a small automaton that is the most deterministic
possible usually helps (Sebastiani and Tonetta, 2003), but it is not always clear if more
determinism justify additional states. In the context of monitoring, where an automaton
is monitoring a running process, a deterministic automaton is preferred. In the context
of synthesis of reactive systems, Ehlers and Finkbeiner (2010) prefers to minimise the
number of states at the expense of determinism.

Also different kinds of automata can be used for verification: model checking with
TGBA is usually better than model checking with Büchi automata when the formula
incur a lot of acceptance marks (Couvreur et al., 2005). Using testing automata also
appears promising (Geldenhuys and Hansen, 2006; BenSalem et al., 2011). A database
should therefore not be limited to BA.

While we agree that such a database, like the Büchi Store project (Tsay et al., 2011),
is useful, we still believe that it is important to have a translation that is efficient and
versatile enough to be tuned to the needs of a particular situation.

52 A. Duret-Lutz

Acknowledgements

The author would like to thank Kristin Rozier (Robust Software Engineering team at
NASA), Rüdiger Ehlers (Saarland University), Christian Dax (formerly at ETH Zürick),
Tomàš Babiak and Jan Strejček (both at Masaryk University) for fruitful discussions
and for sharing some of their tools. Felix Abecassis (Epita student) wrote a large part
of the WDBA minimisation in Spot. Thomas Badie (Epita student) wrote the third (and
current) implementation of the simulation algorithms. Denis Poitrenaud (LIP6) and the
anonymous reviewers reported several mistakes in draft versions of this paper.

References
Accellera (2004) Property Specification Language Reference Manual v1.1 [online]

http://www.eda.org/vfv/ (accessed September 2013).
Babiak, T., Křet́inský, M., Řeehák, V. and Strejček, J. (2012) ‘LTL to Büchi automata translation:

fast and more deterministic’, in Proc. of the 18th Int. Conf. on Tools and Algorithms for
the Construction and Analysis of Systems (TACAS ‘12), Vol. 7214 of LNCS, pp.95–109,
Springer.

Babiak, T., Badie, T., Duret-Lutz, A., Křet́inský, M. and Strejček, J. (2013) ‘Compositional
approach to suspension and other improvements to LTL translation’, in Proceedings of the
20th International SPIN Symposium on Model Checking of Software (SPIN ‘13), Vol. 7976
of Lecture Notes in Computer Science, pp.81–98, Springer.

BenSalem, A.E., Duret-Lutz, A. and Kordon, F. (2011) ‘Generalized Büchi automata versus
testing automata for model checking’, in Proc. of the second International Workshop on
Scalable and Usable Model Checking for Petri Net and other models of Concurrency
(SUMO ‘11), Vol. 626 of Workshop Proceedings, CEUR, Newcastle, UK.

BenSalem, A.E., Duret-Lutz, A. and Kordon, F. (2012) ‘Model checking using generalized testing
automata’, in Transactions on Petri Nets and Other Models of Concurrency (ToPNoC VI),
Vol. 7400 of LNCS, pp.94–112, Springer.

Bryant, R.E. (1986) ‘Graph-based algorithms for Boolean function manipulation’, IEEE
Transactions on Computers, Vol. 35, No. 8, pp.677–691.

Černá, I. and Pelánek, R. (2003) ‘Relating hierarchy of temporal properties to model checking’,
in Proc. of the 28th Int. Symp. on Mathematical Foundations of Computer Science
(MFCS ‘03), Vol. 2747 of LNCS, pp.318–327, Springer-Verlag, Bratislava, Slovak Republic.

Cichoń, J., Czubak, A. and Jasiński, A. (2009) ‘Minimal Büchi automata for certain classes of
LTL formulas’, in Proc. of the Fourth Int. Conf. on Dependability of Computer Systems
(DEPCOS ‘09), pp.17–24, IEEE Computer Society.

Clarke, E.M., Grumberg, O. and Peled, D.A. (2000) Model Checking, MIT Press, Cambridge,
MA, USA.

Couvreur, J-M., Duret-Lutz, A. and Poitrenaud, D. (2005) ‘On-the-fly emptiness checks for
generalized Büchi automata’, in Proc. of the 12th Int. SPIN Workshop on Model Checking
of Software (SPIN ‘05), Vol. 3639 of LNCS, pp.143–158, Springer.

Couvreur, J-M. (1999) ‘On-the-fly verification of temporal logic’, in Proc. of the World Congress
on Formal Methods in the Development of Computing Systems (FM ‘99), Vol. 1708 of
LNCS, pp.253–271, Springer-Verlag, Toulouse, France.

Dax, C., Eisinger, J. and Klaedtke, F. (2007) ‘Mechanizing the powerset construction for
restricted classes of ω-automata’, in Proc. of the 5th Int. Symp. on Automated Technology
for Verification and Analysis (ATVA ‘07), Vol. 4762 of LNCS, Springer.

LTL translation improvements in Spot 1.0 53

Duret-Lutz, A. and Poitrenaud, D. (2004) ‘SPOT: an extensible model checking library using
transition-based generalized Büchi automata’, in Proc. of the 12th Int. Symp. on Modeling,
Analysis, and Simulation of Computer and Telecommunication Systems (MASCOTS ‘04),
pp.76–83, IEEE Computer Society Press, Volendam, The Netherlands.

Duret-Lutz, A. (2011) ‘LTL translation improvements in Spot’, in Proc. of the 5th Int. Workshop
on Verification and Evaluation of Computer and Communication Systems (VECoS ‘11),
Electronic Workshops in Computing, British Computer Society, Tunis, Tunisia.

Dwyer, M.B., Avrunin, G.S. and Corbett, J.C. (1998) ‘Property specification patterns for
finite-state verification’, in Proc. of the 2nd Workshop on Formal Methods in Software
Practice (FMSP ‘98), pp.7–15, ACM Press, New York.

Ehlers, R. and Finkbeiner, B. (2010) ‘On the virtue of patience: minimizing Büchi automata’,
in Proc. of the 17th International SPIN Conference on Model Checking Software (SPIN
‘10), Vol. 6349 of LNCS, pp.129–145, Springer.

Etessami, K. and Holzmann, G.J. (2000) ‘Optimizing Büchi automata’, in C. Palamidessi (Ed.):
|it Proc. of the 11th Int. Conf. on Concurrency Theory (Concur ‘00), Vol. 1877 of LNCS,
pp.153–167, Springer-Verlag, Pennsylvania, USA.

Fritz, C. (2003) ‘Constructing Büchi automata from linear temporal logic using simulation
relations for alternating Büchi automata’, in Proc. of the 8th Int. Conf. on Implementation
and Application of Automata (CIAA ‘03), Vol. 2759 of LNCS, pp.35–48, Springer-Verlag,
Santa Barbara, California.

Gastin, P. and Oddoux, D. (2001) ‘Fast LTL to Büchi automata translation’, in Proc. of the
13th Int. Conf. on Computer Aided Verification (CAV ‘01), Vol. 2102 of LNCS, pp.53–65,
Springer-Verlag, Paris, France.

Geldenhuys, J. and Hansen, H. (2006) ‘Larger automata and less work for LTL model checking’,
in Proc. of the 13th Int. SPIN Workshop (SPIN ‘06), Vol. 3925 of LNCS, pp.53–70, Springer.

Gerth, R., Peled, D., Vardi, M.Y. and Wolper, P. (1996) ‘Simple on-the-fly automatic verification
of linear temporal logic’, in Proc. of the 15th Workshop on Protocol Specification Testing
and Verification (PSTV ‘95), pp.3–18, Chapman & Hall, Warsaw, Poland.

Giannakopoulou, D. and Lerda, F. (2002) ‘From states to transitions: improving translation of
LTL formulæ to Büchi automata’, in Proc. of the 22nd IFIP WG 6.1 Int. Conf. on Formal
Techniques for Networked and Distributed Systems (FORTE ‘02), Vol. 2529 of LNCS,
pp.308–326, Springer-Verlag, Houston, Texas.

Löding, C. (2001) ‘Efficient minimization of deterministic weak ω-automata’, Information
Processing Letters, Vol. 79, No. 3, pp.105–109.

Manna, Z. and Pnueli, A. (1990) ‘A hierarchy of temporal properties’, in Proc. of the Sixth
Annual ACM Symposium on Principles of Distributed Computing (PODC ‘90), pp.377–410,
ACM, New York, NY, USA.

Minato, S. (1992) ‘Fast generation of irredundant sum-of-products forms from binary decision
diagrams’, in Proc. of the third Synthesis and Simulation and Meeting International
Interchange workshop (SASIMI ‘92), pp.64–73, Kobe, Japan.

Oddoux, D. (2003) Utilisation des automates alternants pour un model-checking efficace des
logiques temporelles linéaires, PhD thesis, Universitée Paris 7, Paris, France.

Pelánek, R. (2008) ‘Properties of state spaces and their applications’, STTT, Vol. 10, No. 5,
pp.443–454.

Rönkkö, M. (1999) ‘LBT: LTL to Büchi conversion’ [online]
http://www.tcs.hut.fi/Software/maria/tools/lbt/, Implements the tableau construction
from Gerth et al. (1996) (accessed September 2013).

54 A. Duret-Lutz

Rozier, K.Y. and Vardi, M.Y. (2007) ‘LTL satisfiability checking’, in Proc. of the 12th Int. SPIN
Workshop on Model Checking of Software (SPIN ‘07), Vol. 4595 of LNCS, pp.149–167,
Springer.

Sebastiani, R. and Tonetta, S. (2003) “More deterministic’ vs. ‘smaller’ Büchi automata for
efficient LTL model checking’, in Proc. of the 12th Advanced Research Working Conference
on Correct Hardware Design and Verification Methods (CHARME ‘03), Vol. 2860 of LNCS,
pp.126–140, Springer-Verlag, L’Aquila, Italy.

Somenzi, F. and Bloem, R. (2000) ‘Efficient Büchi automata for LTL formulæ’, in Proc. of the
12th Int. Conf. on Computer Aided Verification (CAV ‘00), Vol. 1855 of LNCS, pp.247–263,
Springer-Verlag, Chicago, Illinois, USA.

Tabakov, D. and Vardi, M.Y. (2010) ‘Optimized temporal monitors for SystemC’, in Proc. of the
1st Int. Conf. on Runtime Verification (RV ‘10), Vol. 6418 of LNCS, pp.436–451, Springer.

Tauriainen, H. and Heljanko, K. (2002) ‘Testing LTL formula translation into Büchi automata’,
International Journal on Software Tools for Technology Transfer, Vol. 4, No. 1, pp.57–70.

Tauriainen, H. (2006) Automata and Linear Temporal Logic: Translation with Transition-based
Acceptance, PhD thesis, Helsinki University of Technology, Espoo, Finland.

Tsay, Y-K., Tsai, M-H., Chang, J-S. and Chang, Y-W. (2011) ‘Büchi store: an open repository of
büchi automata’, in Proc. of the 17th Int. Conf. Tools and Algorithms for the Construction
and Analysis of Systems (TACAS ‘11), Vol. 6605 of LNCS, pp.262–266, Springer.

Vardi, M.Y. (1996) ‘An automata-theoretic approach to linear temporal logic’, in F. Moller and
G.M. Birtwistle (Eds.): Proc. of the 8th Banff Higher Order Workshop (Banff ‘94), Vol. 1043
of LNCS, pp.238–266, Springer-Verlag, Banff, Alberta, Canada.

Vardi, M.Y. (2007) ‘Automata-theoretic model checking revisited’, in Proc. of the 8th Int. Conf.
on Verification, Model Checking and Abstract Interpretation (VMCAI ‘07), Vol. 4349 of
LNCS, Springer, Nice, France. Invited paper.

Notes

1 Promises should not be mistaken for co-Büchi acceptance conditions. A co-Büchi acceptance
condition F accepts runs that stay in F continuously; conversely a promise accepts runs that
do not make the promise continuously.

2 See the file doc/tl/tl.pdf in the Spot distribution.

3 After installing Spot, this formula can be generated with genltl --rv-counter-linear=3.

