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ABSTRACT
Making the most of multispectral image time-series is a promis-
ing but still relatively under-explored research direction be-
cause of the complexity of jointly analyzing spatial, spectral
and temporal information. Capturing and characterizing tem-
poral dynamics is one of the important and challenging issues.
Our new method paves the way to capture real data dynamics
and should eventually benefit applications like unmixing or
classification. Dealing with time-series dynamics classically
requires the knowledge of a dynamical model and an observa-
tion model. The former may be incorrect or computationally
hard to handle, thus motivating data-driven strategies aiming
at learning dynamics directly from data. In this paper, we
adapt neural network architectures to learn periodic dynam-
ics of both simulated and real multispectral time-series. We
emphasize the necessity of choosing the right state variable
to capture periodic dynamics and show that our models can
reproduce the average seasonal dynamics of vegetation using
only one year of training data.

Index Terms— remote sensing, multispectral images,
time-series, spectral dynamics, recurrent neural networks

1. INTRODUCTION

The Sentinel-2 mission is part of the European Earth observa-
tion project Copernicus, a program jointly led by the European
Space Agency (ESA) and the European Commission. It in-
tends to provide authorities and interested actors with open
multispectral data reflecting Earth surface changes, with proper
natural resources management as end goal. The mission con-
sists in two polar-orbiting satellites synchronized on the same
sun orbit, and diametrically opposite to one another. As each
Sentinel-2 satellite has a temporal revisit of ten days, the com-
mon temporal revisit of a given location on earth under the
same viewing conditions goes down to five days [1].
The Sentinel-2 mission (or the soon to be launched pending
hyperspectral EnMAP mission [2]) gives access to spectral
time-series with a high temporal revisit. Such multidimen-
sional data requires a particular care to extract their rich infor-
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Télédétection Spatiale (PNTS), grant n◦PNTS-2019-4

mation, but proved to greatly increase carried out task results
when processed successfully [3–5]. The automatic learning of
spectral dynamics would provide a new spectral insight on the
observed areas. It could benefit a large panel of applications
such as spectral unmixing, anomaly detection, data assimila-
tion [6] and predictions on vulnerable species conservation
status [7]. It was proven in [8] that knowing spectral dynamics
improves an endmember estimation task on synthetic data.
In the observed scenes, pure materials of interest are varying
through time in their spectral signature or/and their spatial ex-
tent because of seasonal changes for instance. Reference [9]
showed that a state-space model is convenient to model these
evolutions. For a given material described by a n-dimensional
state variable Xt, the state equation of the model is given by
an ordinary differential equation (ODE) when only temporal
variations of the spectra are considered:

dXt

dt
= F(Xt) + ηt (1)

where F is the dynamical operator and ηt an error accounting
for both noise and model approximation. Our objective is
thereby to directly learn from data these dynamics with spe-
cific neural network (NN) architectures [8].
The contribution of this article is threefold: (i) a particular
state variable describing spectral signatures is shown effi-
cient to learn periodic dynamics with residual neural networks
(ResNets), (ii) long-run predictions on synthetic data show that
the developed architecture is clearly more adapted for such
task than a long short-term memory (LSTM) [10] architecture,
(iii) first results on real data demonstrate the potential of our
method for applications like classification or unmixing.
In the following, Section 2 focuses on methods and NNs to
learn spectral dynamics. Then, Sections 3 and 4 introduce con-
ducted experiments and results on synthetic and real Sentinel-2
data, respectively. Finally, Section 5 gathers our conclusions
on this work and its implications.

2. DYNAMICS LEARNING

2.1. ResNet architecture

Recurrent neural networks (RNNs) architectures, such as
LSTM networks [10], are natural candidates when it comes
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Fig. 1. ResNets architectures implementing (a) Euler and (b) Runge-Kutta integration schemes.

to learning and processing time-series data. Among RNNs
architectures, ResNets with shared weights across layers have
recently been proven to be particularly adapted to estimate
dynamical operators [11]. Using them allows to reformulate
the problem of learning an input/output relationship to the
learning of a deviation from the identity [11, 12], making
them suited to process data generated by differential equations.
Mathematically, we assume that spectral signatures can be ob-
tained by the following equation inherited from the integration
of the ODE (1):

st+h = st + hδ(st), (2)

st being the pixel L-dimensional reflectance at time-step (t), L
is the number of exploited spectral bands, δ is the infinitesimal
operator of the integrated ODE and h is the integration step
(herafter set to 1 without loss of generality). In the ResNet
typical architecture, a hard-cabled skip connection constrains
the learning of the difference between st+h and st, see Fig-
ure 1 (a). The problem is thus shifted to the learning of the
infinitesimal operator δ. To achieve this, two numerical inte-
gration procedures are classically considered: the first-order
Euler method and the more refined fourth-order Runge-Kutta
4 (RK4) method. These numerical integration schemes are
hard-coded in the architectures. The ResNets are then learning
the ODE through the weights attributed to the infinitesimal
operator δ.

2.2. Euler and Runge-Kutta 4 integration schemes

The classical first-order Euler method consists in approximat-
ing δ by the temporal derivative of the targeted function:

st+1 = st + s′t (3)

An approximation of s′t is therefore learned through the shared
weights of δ, see Figure 1 (a) (the rationale for the dimension
2L is further explained in section 2.3). The two layers encod-
ing δ are distributed through the whole time-series. The local
error, i.e. the error per step, is on the order O(h2) [13].
The architecture of the RK4 integration scheme is displayed
by Figure 1 (b). Here, the approximation of δ is given by a
weighted average of four slopes taken at the beginning, the

middle and the end of the integration step (their respective
weighting coefficients being k1, k2, k3 and k4), and the four
δ blocks are put in series. δ is still learned by the weights of
two consecutive fully connected layers. b, the number of con-
nections between them, is of particular interest as it regulates
the complexity given to the encoding of δ, and thus its expres-
siveness degree. Finally, the ResNets have to be provided with
enough input information to accurately learn the dynamical
operator’s nature.

2.3. State augmentation with derivatives

By modifying the initial state of the input data, i.e. more
concretely adding or removing features to the n-dimensional
vectors in entry, the RNNs can lead to very different predic-
tions. Initially, L-dimensional reflectance vectors st were used
as state variable. However, with this configuration, the tested
RNNs were not able to capture the periodicity of simulated
spectral dynamics. This was because the complete state of the
2nd order system was never observed as the derivatives were
missing [14]. Thus, the state variable was augmented with
reflectance left derivatives s′t:

Xt ←
[
st
s′t

]
∈ R2L, (4)

It explains the layers 2L output dimensions in Figure 1. Choos-
ing the right state variable allowed to learn dynamics period-
icity on simulated data during the training, see section 3. If
necessary, one can go one step further by adding higher-order
derivatives to the state variable.

2.4. Training and testing strategies

RNNs are trained on successive one time-step prediction tasks,
as depicted by Figure 2 (a). To predict s̃t, the RNNs are fed
with the ground truth st−1 at the previous date. Repeated along
the training set, this process eventually enables to reach an
interesting estimation of δ. The weights of the two fully con-
nected layers encoding the infinitesimal operator are updated
for each short-term prediction done in the training set. Such
one time-step predictions on reflectance values, introduced
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Fig. 2. (a) Training on short-term predictions and (b) test on
long-term predictions.

Fig. 3. Phase diagrams of LSTM, Euler ResNet and RK4
ResNet compared to the ground-truth trajectory. Represented
long-run predictions are of 50 time-steps, 100th spectral band.

in [8], naturally flow from the the ResNets architecture imple-
menting an integration scheme according to equation (2).
Now, the objective is to predict the reflectance of a pure pixel at
time (t+T ) knowing its trajectory until date (t) only. To do so,
successive one time-step predictions are done from date (t) up
to date (t+ T ). While the first prediction is indeed done from
known data at time-step (t), the RNN input is then fed with
the prediction at the previous time-step until the date (t+T ) is
reached, as shown by Figure 2 (b). It is a significantly harder
task than the short-term predictions done during training since
there is a higher chance that the overall error accumulates
through the successive predictions, resulting in a trajectory
drifting away from its expected behavior. Nevertheless, long-
term predictions are useful to forecast dynamics ahead of time,
and can be used to check that the learned dynamical systems
has desirable topological properties (e.g. stability, convergence
or even chaotic properties depending on the dynamics of the
data [14]).

3. VALIDATION ON SYNTHETIC DATA

Simulated data were used to develop and test the different
recurrent architectures [8]. Time-series were constructed with
hyperspectral (L = 144) albedos derived from the DFC 2013
Houston dataset [15], a daily-periodic cosine varying illu-
mination angle and simplified Hapke model from [16]. We
obtained a toy dataset following nonlinear dynamics. To learn
these synthetic dynamics, the training was typically done on a
twenty-day windows with a thirty-minute sample-step, 2500

t RMSE×10−3 SAE×10−3
+ LSTM Euler RK 4 LSTM Euler RK 4
12 27.7 31.4 0.45 4.30 18.0 0.01
24 48.5 32.9 3.01 4.30 13.0 0.01
36 27.5 92.5 2.33 4.30 10.9 0.03
120 49.8 2367 33.6 4.30 23.6 0.67

Table 1. RMSE and SAE for LSTM and ResNets long-run
predictions.

epochs and Adam optimizer. Figure 3 gathers phase diagrams
of long-run prediction from LSTM, Euler ResNet and RK4
ResNet strategies compared to the ground truth (100th spec-
tral band of the grass spectral signature). RK4 ResNet clearly
appears as the only network able to provide correct long-run
predictions (all architectures perform fine for 1 step-ahead pre-
dictions). LSTM and Euler ResNet do not manage to learn the
slightly non-linear daily-periodic variations, with predictions
respectively collapsing and diverging after some oscillations.
Table 1 presents the root-mean-square errors (RMSE) and
spectral angle errors (SAE) for (t+ T ) long-run predictions.
RK4 ResNet predictions result in very low errors for first 120
time-steps (2.5 days). Then errors eventually begin to grow,
which is reasonable given the iterative construction of long-run
predictions (see Figure 2 (b)). Finally, it is worth mentioning
that the synthetic dynamics are here the same for all spec-
tral band, though with different albedo inputs for each band.
However, this strong modeling hypothesis is likely not to be
adapted to real data.

4. EXPERIMENTS AND RESULTS ON REAL DATA

In this section, we apply the developed spectral dynamic learn-
ing methodology on real Sentinel-2 time-series data.

4.1. Data description

Images produced by Sentinel-2 satellite imaging sensors are
composed of 4 bands with 10 m spatial resolution (covering
visible and near infrared domains), 6 bands with 20 m spatial
resolution (in near-infrared and short-wave infrared domains)
and 3 bands with 60 m spatial resolution. Here, we only re-
tained 10 m and 20 m bands (L = 10), and upsampled those
latter bands with bi-cubic interpolation to reach a common
10 m spatial resolution. The chosen area, located in South
Puerto Rico, is the same as the one presented in [17], for
which auxiliary data (such as rain records) has been collected
at the close Ensenada station. The overall time-series runs
from December 19th 2018 to July 31st 2020, resulting in a
total of 118 individual images. Cloudy (thus unexploitable) im-
ages were replaced by Cressman interpolations [18] conducted
thanks to (timewise) nearby available data, with a Gaussian ra-
dius of interpolation set to R = 10 days. Finally, the complete
time-series was globally normalized, i.e. divided by the max-
imum reflectance value among all pixels, dates and spectral
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Fig. 4. Temporal evolution of a forest spectrum (a) in 2019 (whole year), (b) in 2020 (half year) and (c) 2020 long-run prediction
(whole year) for the same pixel.

Fig. 5. Four RGB images extracted from the time-series.

bands (the difference between 10 m and 20 m cells sensibility
was also taken into account). RGB images extracted from the
series are displayed in Figure 5. We trained our model with
forest pixels localized within the red rectangle. Forest indeed
has a quite high intra-class spectral variability but the proposed
approach is expected to learn an average spectral behavior. In
the following, we only use the RK4 network since it proved to
be the only one suited to long term predictions.

4.2. Obtained results

The training was done on 74 images ranging from December
19th 2018 to December 19th 2019. Figure 4 (a) displays the
spectral evolution of a given forest pixel along those dates.
Data included in the training set for a targeted pixel comprised
its four direct neighbors, leading to a batch size equal to 5.
60000 epochs were needed with Adam optimizer and MSE
loss function to reach convergence and realistic results. The
value given to b turned out to be a major success criterion, the

architecture being fixed otherwise. We found out that around
150 connections were optimal. Figure 4 (b) represents the evo-
lution of the same pixel as in Figure 4 (a) between January 8th

2020 and July 31st 2020, serving as ground truth. Finally, Fig-
ure 4 (c) represents the long-run prediction over 73 dates (from
January 8th 2020 to January 12th 2021) for this pixel. The red
portion accounts for predictions after the 31st of July 2020, to
easily compare prior predictions with the ground truth. Pre-
dictions match the spectral decreasing tendency observable on
the ground truth and peak prediction occurs slightly later than
in reality (just after the 31st of July). RK4 ResNet nonetheless
achieves to learn specific and periodic patterns. The quality
of the predictions decreases with time, but remains realistic.
RMSE on January 18th is of 5.0 × 10−2 and of 7.3 × 10−2

on April 17th. Because of the peak late prediction, it finally
reaches 1.3× 10−1 on July 26th.

5. CONCLUSION

In this work, we aimed at learning spectral dynamics patterns
and periodicity directly from data, without prior knowledge.
We showed that, using the right state variable, the developed
ResNet implementing RK4 integration scheme succeeded in
that task on simulated and real time-series multispectral data.
Long-run predictions on synthetic data were proven signifi-
cantly better than with LSTM or Euler ResNet, and realistic
enough on a real multispectral time-series to capture seasonal
variations in vegetation. Future research avenues include op-
timizing hyperparameters and adding an energy conservation
constraint to further improve the results. A prior classification
step on time-series to automatically integrate in training set
spectrally consistent zones is also a promising direction, as
is the stochastic modeling of the spectral variability of veg-
etation (prediction of a probability density instead of point
estimates). This work could eventually benefit applications for
space time interpolation of multispectral data, scene unmixing
and forecasting problems among many others.
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