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Chapitre 1

Algorithms for mathematical morphology

1.1. Introduction

In this chapter, we deal with the very important implementation problem of various
image analysis operators, filters and methods seen in previous chapters.

In general, researchers like to present a novel operator through a mathematical
description. However, this may not always be a simple task to translate this descrip-
tion into computer code. Yet, if such an operator is of any interest at all, we should
expect to be able to use it in practice. To get there, we need to go beyond pure mathe-
matics into the realm of programming. We need to express the mathematical operator
in an applicable algorithm. Note that while a mathematical description is useful for
understanding, it is generally not so when an implementation is needed. This usually
explains why we often see more than one implementation, with varying characteris-
tics, for most proposed operators. Also, the evolution of computer architectures and
programming techniques imply that new implementations have sometimes been pro-
posed decades after the initial definition of some operators.

Rather than attempting to build a comprehensive database of all algorithms and
data structures that have ever been used for implementing morphological operators,
an undertaking that would be enormous and quite uninteresting to read, in this chapter
we concentrate on the purer algorithmic aspects of mathematical morphology. We
therefore ignore some specific implementation aspects dealing with both software and
hardware.

Chapitre rédigé par Thierry GÉRAUD, Hugues TALBOT et Marc VAN DROOGENBROECK.
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Formally, an algorithm is defined, since the Babylonian time till Ada Lovela-
ce [STU 87], as a series of operations sequenced to solve a problem by a calculation.
In mathematical morphology, filters or operators usually operate on sets or functions
and they are defined in formal mathematical terms.

An algorithm is thus the expression of an efficient solution leading to the same
result as the mathematical operator once applied on input data. This translation pro-
cess in a mathematical algorithm aims to facilitate the implementation of an operator
on a computer as a program regardless of the chosen programming language. Conse-
quently, the algorithmic description should be expressed in general and abstract terms
so to allow to decline an implementation in any environment (platform, language,
toolbox, library, ...).

Computer scientists are familiar with the formalization of the concept of an algo-
rithm and computation on a real computer with the Turing machine [TUR 36]. This
formalization makes it possible, although not in a tractable form, to implement any
correct algorithm. Rather than to describe algorithms with this formalism, we use a
more intuitive notation that, in particular, relies on non trivial data structures.

This chapter is organized as follows. In Section 1.2, we first discuss the translation
process of data structures and mathematical morphology definitions in computatio-
nal terms. Then, in Section 1.3, we deal with different aspects related to algorithms
in the scope of mathematical morphology. In particular, we propose a taxonomy, dis-
cuss possible trade-offs, and present algorithmic classes. These aspects are put into
perspective for the particular case of the morphological reconstruction operator in
Section 1.4. Finally, historical perspectives and bibliographic notes are presented in
Section 1.5.

1.2. Translation of definitions and algorithms

1.2.1. Data structures

Before discussing an algorithm, once has to describe the data to be processed and
how they materialize once they are not pure mathematical objects anymore.

An image f is a function from a space E to a space V . Since infinite spaces can
nor be stored neither be handled appropriately, these two spaces are always sampled
(or discretized) to provideE ⊂ E and V ⊂ V respectively :

f :

{

E −→ V

p 7−→ f(p).
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Figure 1.1. Illustrations of locations defined by a discrete squared grid and a

pixel.

For convenience, a discrete topology with the notion of neighborhood is often
associated to E. Let us denote an element of E by p (which stands for “point”) and a
neighboring point of p by n. In the terms of graph theory, a subset ofE is a mesh with
nodes (the points p) and a collection of edges that connect points to their neighbors.
The most common situation is given by a regular sampling of a subpart of E. The
resulting mesh is then regular and points belong to a grid. Such a classical topology
for a two-dimensional image defined on a squared grid is shown in Figure 1.1.

A point p of such an image is easily described by two integer indices (i, j), and
an image f , that links a point to a value, can be represent in memory by a two-
dimensional array of values : f(p) is then equivalent to f [i, j]. This common repre-
sentation of an image has the advantage that point values can be stored and modified
independently. In the following, the allocation procedure for a given image f of a va-
lue v ∈ V at point p ∈ E is denoted in the abstract terms f(p) := v although, from a
practical point of view, the underlying mechanism is described by f [i, j] := v.

From the implementation perspective, f is not “a mathematical function” but a
variable (or a memory) that represents a function at a given time t during the execution
process of an algorithm. Formally, an algorithm generates a series of ft functions, and
each allocation changes a function ft to a next one ft+1. In computational terms, the
f variable hides the existence of all the successive functions ; it is similar to a function
that evolves over time. The algorithm starts to deviate from mathematics.

1.2.2. Shape and size of the function domain

In the field of computer sciences, the representation of an image by an array as-
sumes that the underlying function f is defined on a finite domain. In practice, the
function domain is generally a rectangular subset of Z

2 or of N
2 for two-dimensional

images. A process that iterates on all points of such an image then accesses all the array
elements with two loops, as shown on the left-hand side of the following pseudo-code.

for i := 1 to nraws

for j := 1 to ncolumns

... // use f[i,j]
for_all p ∈ E

... // use f(p)
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But the abstract right-hand side code is to be preferred as it relates less to a spe-
cific implementation and more to the mathematics of the algorithm. In addition, it
does not exhibit any restrictive underlying assumption about f : the function domain
can have a non-rectangular shape, and its domain does not necessarily have to be
two-dimensional. An abstract expression of an algorithm is suitable to hide the de-
tails about the representation of the data, and to focus on the functionalities of the
algorithm. On the other hand, one has, as well, to provide all the details about the un-
derlying data structure, because performance and complexity issues are closely related
to the basic operations on the data. If browsing all the points of a set of N points has
a O(N) complexity, the complexity of a random access to the value of a point p has a
complexity dependent on the used data structure.

A program accesses values of an image whose data are organized in memory as
an array in constant time : reading and writing of image values at a point p have
a complexity of O(1), regardless of the used access order. The representation of an
image as an array is practical and widely spread. In addition, this representation is
compact as it has a negligible overhead to describe the structure itself compared to
the data associated to the image. But it might not always be the optimal solution.
Consider for example the case of an image that describes the contour of an object.
Coding contours of an object by a two-dimensional array guarantees a constant time
access to any point of a discrete grid to determine if it belongs to the contour. However,
this coding is inappropriate with regards to two other aspects. First of all, the required
memory size expands from the size of the contour to the size to the smallest rectangle
that encloses the object. Next, the access to any contour point requires searching in an
array : one has to search for the first contour point by scanning the image line by line,
then in the neighborhood to find the next contour point. For algorithms that operate on
a the contour of an object directly, for example a morphological dilation, it might be
advisable to use a more appropriate data structure, like a list of contour points.

The conclusion is that any data structure used by an algorithm impacts on the
complexity of the algorithm.

1.2.3. Structure of a set of points

The classical representation of a function as an array is flexible enough to be able
to define a set of points. Indeed, if the destination space of f is the set of booleans
(V = B), f can be interpreted as the characteristic function of a set of points : formally,
F = { p ∈ E | f(p) = true }. f is then a binary image. The set F ⊂ E encodes an
object while its complementary E \ F denotes the image “background”. To scan all
the points of F , it is then sufficient to look for points p in the domain E satisfying
f(p) = true. In the following, we make no notational difference between a set (F ⊆
E) and its characteristic function (F : E → B).
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1.2.4. Notation abbreviations

For convenience, we use the following notation abbreviations to describe algo-
rithms :

Extensive notation Abbreviation

Scans all the points of a set F ⊆
E

for_all p ∈ E, if F (p) = true , ... for_all p ∈ F , ...

Allocates a constant c to all the
points of an image f

for_all p ∈ E, f(p) := c f := c �

Copies the content of an image
f1 to an image f2

for_all p ∈ E, f2(p) := f1(p) f2 := f1

As explained before, with this kind of abstract formulation, it is possible to bypass
some practical difficulties. For example, there is no need for a two-dimensional image
to be rectangular (its domain may be arbitrarily shaped). One problem occurs when
dealing with the neighbors of points located on the border of the image. Again, we
define the following abstract formulation to operate on all the neighboring points of a
point p on turn, regardless of the shape of the neighborhood :

for_all n ∈ N (p)
...

With this notation, one can focus on the description of the algorithm and ignore
useless implementation details.

Finally, we use the symbol ⊲ to the denote the conventional video order to scan
all the points of an image (from the upper left corner to the bottom right corner, line
by line). A reverse video order (from the bottom right corner to the upper left corner,
line by line) is denoted by ⊳.

1.2.5. From a definition to an implementation

As said previously, if morphological operators are often described in mathematical
terms, the translation of it in algorithmic terms is not always straightforward. Expe-
rience also shows that, in the event that such a translation is possible, its efficiency
is often questionable (sometimes, it is even the worst possible implementation). This
should not come as a surprise as the purpose of a mathematical definition is to en-
sure the correctness of an algorithm rather than to provide hints for an appropriate
algorithm.
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To discuss the suitability of algorithms, let us consider a binary dilation. There are
several equivalent ways to define the dilation of a set X by a set B :

X ⊕B =
⋃

b∈B

Xb (1.1)

= { x+ b ∈ E | x ∈ X, b ∈ B } (1.2)

= { p ∈ E | ∃ b ∈ B, p− b ∈ X } (1.3)

Definition (1.1) leads to a so-called trivial algorithm given as algorithm (1) as
shown in Figure 1.2 (from line 1 to line 16). In computational terms, the main pro-
cedure is SETDILATION, which uses a function TRANSLATE. In algorithmic terms, it
is easy to see that the method derives directly from the definition, which justifies the
soundness of the algorithm.

For a processor, accesses to memory account for a significant computational cost
both in reading mode but even more in writing mode. For simplicity, let us count only
the number of memory allocations (that is, in the writing mode) to true. One can see
that the trivial algorithm requires |B| × |X | × 2 allocations, where |.| denotes the
cardinality of a set.

A second version, derived from (1.2), reduces the number of allocations by half.
It is detailed in Figure 1.2 by the DILDIRECT procedure (from line 33 to 46). But
the best approach is given by the algorithm derived from relation (1.3). It improves
significantly on the previous algorithms as the number of allocations is lowered to
|X ⊕ B|. Note that the multiplication of the sizes of X and B has been replaced
by a summation on their sizes. The corresponding algorithm is detailed in Figure 1.2
by the procedure named DILREVERSE (from line 49 to line 65). This is the “classical”
implementation of a set dilation as one can find it in several image processing software
packages.

Even with such a simple morphological operator, it appears that there is a major
difference between a concise mathematical definition and the transcription of it in an
algorithm.

The case of the dilation is representative for the issues raised during the transcrip-
tion of a definition to an algorithm. Next we consider a more complex algorithm to
highlight algorithmic strategies for a single operator.
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1 // algorithm (1)

2

3 SETDILATION(X : Image of B,

4 B : Set of Point)
5 → Image of B

6 begin
7 data Xb, U : Image of B

8 // initialization to the empty set

9 U := false �

10 for_all b ∈ B

11 // computes Xb

12 Xb := TRANSLATE(X, b)
13 // updates U

14 U := UNION(U, Xb)
15 return U

16 end
17

18 TRANSLATE(X : Image of B,

19 b : Point)
20 → Image of B

21 begin
22 data O : Image of B

23 // initialization to the empty set

24 O := false �

25 // computes the set

26 for_all p ∈ X

27 if p + b ∈ E

28 O(p + b) := true

29 return O

30 end
31

32

33

33 // algorithm (2)

34

35 DILDIRECT(X : Image of B,

36 B : Set of Point)
37 → Image of B

38 begin
39 data O : Image of B

40 O := false � // initialisation

41 for_all p ∈ E

42 for_all b ∈ B

43 if X(p) = true and p + b ∈ E

44 O(p + b) := true

45 return O

46 end
47

48

49 // algorithm (3)

50

51 DILREVERSE(X : Image of B,

52 B : Set of Point)
53 → Image of B

54 begin
55 data O : Image of B

56 for_all p ∈ E

57 for_all b ∈ B

58 if p − b ∈ E and X(p − b) = true

59 // existence of a point b

60 O(p) := true

61 goto next
62 O(p) := false // there is no candidate b

63 label next
64 return O

65 end

Figure 1.2. Dilation of a set X by B.

Most algorithms in mathematical morphology show a pseudo-polynomial com-
plexity. For example, the trivial algorithm of dilation has a complexity of O(N ×M)
where N and M denotes the number of points of the image and of the structuring
element respectively.
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1.3. Taxonomy of algorithms

For different reasons, drawing up a taxonomy of algorithms used in mathemati-
cal morphology is a hard task. First of all, several pages would not suffice to cite all
existing algorithms, because scientists continue to propose new algorithms for opera-
tors that are almost forty years old ! Also, one needs a descriptive and complete set
of criteria to propose a taxonomy that encompasses a large collection of algorithms.
Finally, it has to be noted that there is no universal algorithm valid for any morpholo-
gical operator. Algorithmic strategies are as diverse as the operators themselves, with
specific characteristics, trade-offs, underlying data structures, etc.

1.3.1. Criteria for a taxonomy

Taxonomy criteria as applicable to mathematical morphology algorithms are nu-
merous. As an illustration, a non-exhaustive list of criteria runs as follows :

– type of auxiliary or intermediate data structure (file, tree, etc) ;

– order or strategy to browse points in the image ;

– complexity of the algorithm ;

– required memory size ;

– algorithmic properties ;

– operating conditions (and thus limitations) of an algorithm ;

– concerned classes of operators or filters ;

– universality of the algorithm ;

– purpose of the algorithm ;

– processed data types.

Applications constrains lead to additional possible taxonomy criteria : domain of
applicability, data range and precision, application objectives, etc.

It would take too long to analyze algorithms with respect to all these criteria. Note
however that some criteria lead to a classification of algorithms and that other criteria
only permit to distinguish between them. The following tables illustrate some criteria
for both cases.
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criterion : universality of the algorithm
restricted large
decomposition of the structuring ele-
ment (to speed up computations of di-
lations and erosions) ;

Dijkstra’s algorithm (for the computa-
tion of a distance function) ; Viterbi’s al-
gorithm (for the pruning filter as des-
cribed in Chapter ??) ; Prim’s or Krus-
kal’s algorithm (for a segmentation pro-
cess based on the computation of the
minimum spanning tree as described in
Chapter ??).

criterion : algorithmic properties
parallel sequential
classical dilation or erosion algorithm
by a structuring element (version (3) as
described in Section 1.2.5) ; detection of
simple points

chamfer’s distance (see Chapter ??.4.3) ;
alternate sequential filters (see Chap-
ter ??.2.7)

criterion : data range and precision
small quantization step1 large quantization step
distribution sort or radix sort ; use of tree
representations (see Chapter ??.2)

fast sorting, heapsort

criterion : browsing order
propagation of a front all points on turn
distance based dilation ; most algorithms
to compute the watershed (see Chap-
ters ??.5 and 4)

trivial dilation ; hit-and-miss transform
(see Chapter ??.1.3)

The following table elaborates on criteria useful to discriminate between algo-
rithms.

criterion : auxiliary structures
arrays, files, priority queues, trees, graphs, etc.

criterion : purpose
data simplification, resulting transform, computations / estimations on the data, par-
titioning, etc.

criterion : processed data type
pixels, textures, objects, regions, contours, etc.
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1.3.2. Trade-offs

An image processing chain is a particular case of the transcription of a scientific
calculus by a processing unit. When part of this chain relates to a morphological ope-
rator, it is constrained by a general framework. In particular, a typical constraint is the
need to find an appropriate balance between three antagonistic notions, as described
hereafter.

– Expected computational time or speed. Some applications require to run in real
time ; other are less severe on the processing delay. But the absolute execution time is
only one part of the discussion related to the implementation of an algorithm. It is also
important to analyze the variability of the running time. A hardware implementation
will favor a constant execution time, even at the cost of an increased execution time.

– Storage space. Resources proper to the algorithm in terms of disk space or me-
mory usage are generally limited. Likewise, the amount of data handled by an appli-
cation can be bounded. Therefore available storage capacity plays a crucial role in the
choice of an algorithm and adequate auxiliary data structures.

– The results of a computation have a given level of precision. They could be exact
or approximated, which then requires to elaborate on the expected level of precision.
Many practical situations do not intrinsically require an exact calculation, or at least
not for all points.

Practitioners are motivated by application requirements when they implement a
morphological operator but they are constrained by the trade-off triangle made of three
antagonistic notions, as illustrated on Figure 1.3. If execution speed is favored, then
precision is lowered or computational resources are increased. Note however that mo-
dern architectures are capable to perform many morphological operations in real time
so that questions about precision become meaningless.

speed
(processing time)

(memory, disk usage)

precision

approximation level)

storage
(correctness or

Figure 1.3. Trade-off triangle.

1.3.3. Classes of algorithms and canvases

Any algorithm running on images usually relies on those following features :
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1 POINT_WISE(f : Image,
2 h : Function)
3 → o : Image
4

5 begin
6 for_all p ∈ E

7 o(p) := h(f(p))
8 end

1 SLIDING_WINDOW(f : Image,
2 w : Window,

3 h : Function)
4 → o : Image
5 begin
6 for_all p ∈ E

7 o(p) = h( { f(q) | q ∈ w(p) } )
8 end

Figure 1.4. “Point-wise” canvas (left) and “sliding window” canvas (right).

– one or several ways of browsing pixels ;

– auxiliary data structures (images and/or any other kind of structures, classical or
not) ;

– a processing rationale composed of several steps, most of the time “initialization,
loops, and finalization” ;

– and, often, a definition of neighborhood, crucial in mathematical morphology to
inspect data around each pixel.

Let us consider the large set of algorithms dedicated to morphological operators.
We can observe that it can be split up into several different groups of algorithms sha-
ring the same algorithmic scheme, that is, the same sequence of operations, the same
use of control structures (such as loops), and the same auxiliary structures. This leads
us to algorithm classes.

In the following we use the term canvas to name the description of a class of
algorithms. Such a description looks like an algorithm template with some blank parts
corresponding to the variability of algorithms belonging in this class. This canvas, or
algorithmic scheme, is comparable to use a “pattern” to make clothes where the choice
of fabric, color, and ornaments remains to be defined.

Figure 1.4 depicts a couple of canvases that are very common in image processing.
The left one is a point-wise operator on image values ; the value at the point p in the
output image o is obtained by applying a function h to the value of p in the input
image f : o(p) := h( f(p) ). With h = C (complementation function), this canvas
becomes the complementation operator ; with h = lum (luminance function), it is
then a conversion of a color image into a gray-scale image.

The canvas in the right part of Figure 1.4 computes o(p) from the set of values
belonging to a window w centered at p in the input image. It is therefore the canvas of
convolutions ψ(f) = f ∗ g when h( { f(q) | q ∈ w(p) } ) =

∑

q g(p − q) f(q), and
of dilations ψ(f) = δw(f) when h = ∨ (supremum).



24 Morphologie Mathématique Anglais

Algorithmic canvases are interesting for many reasons :

– Firstly, they are general. Each canvas is not specifically dedicated to a single
particular operator. To the contrary, a canvas has the ability of being “transposed” in
order to handle several operators ; to that aim, one just has to define its variable parts
(h in the previous examples).

– Secondly, they are intrinsically abstract. Their expression does not introduce any
constraint that would restrict their use to a limited set of input data. For instance,
having a double loop over the coordinates of points in the canvases of Figure 1.4
would implicitly state that they are only applicable on bi-dimensional images, which
is clearly wrong.

– Lastly, they are helpful for educational purpose. Each canvas translates a meta-
algorithm ; understanding it from an algorithmic point of view leads to comprehend
any operator that can be derived from this canvas.

1.4. Geodesic reconstruction example

The different classes of algorithms presented in the following did not appear at the
same time in the litterature. They belong to an historical perspective which is discussed
in Section 1.5.

To illustrate those classes, we will show different algorithms that map the same
morphological operator : the geodesic reconstruction by dilation of a function (a gray-
scale image for instance) [VIN 93b].

This example, taking the form of an exercise of style, nicely illustrates different
algorithmic schemes used by many other operators in mathematical morphology.

1.4.1. The mathematical version : parallel algorithm

As a first step, we can start by implementing the geodesic reconstruction by dila-
tion from its mathematical definition :

Rδ
g(f) = lim

n→∞

δn
g (f) = δ∞g (f)

where :
δ1g(f) = δ(f)

∧

g,

δn+1
g (f) = δ( δn

g (f) )
∧

g.

This reconstruction definition is close to the one given in Chapter ??.2.2 ; more
precisely, it is its generalization to functions. Here δ is the geodesic dilation : δ(f) =
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1 RD_PARALLEL(f : Image,
2 g : Image)
3 → o : Image
4 begin
5

6 data
7 o′ : Image
8 stability : B

9

10 // initialization

11 o := f

12

13 // iterations

14 repeat
15 o′ := o // swap

16

17 // dilation...

18 for_all p ∈ E

19 o(p) := max{ o′(q) |
20 q ∈ N (p) ∪ {p} }
21

22

23 // ...under condition

24 for_all p ∈ E

25 o(p) := min{ o(p), g(p)}
26

27 stability := (o = o′)
28 until stability
29 return o
30

31 end

32 RD_SEQUENTIAL(f : Image,
33 g : Image)
34 → o : Image
35 begin
36

37 data
38 o′ : Image
39 stability : B

40

41 // initialization

42 o := f

43

44 // iterations

45 repeat
46 o′ := o // memorization

47

48 // first pass (forward)

49 for_all p ∈ E ⊲

50 o(p) := min{ max{ o(q) |
51 q ∈ N−(p) ∪ {p} }, g(p) }
52

53 // second pass (backward)

54 for_all p ∈ E ⊳

55 o(p) := min{ max{ o(q) |
56 q ∈ N+(p) ∪ {p} }, g(p) }
57

58 stability := (o = o′)
59 until stability
60 return o
61

62 end

Figure 1.5. Reconstruction canvases (part 1/2) : Parallel algorithm (left) and

sequential algorithm (right), described in Sections 1.4.1 and 1.4.2 respectively.

f⊕B, whereB = N (0)∪{0}, with N the considered neighborhood and 0 the spatial
origin.

An implicit but compulsory assumption for this operator to be valid is that f ≤ g.
Put differently, the marker function f to be dilated shall be “under” the mask function
g. As in the case of sets, the reconstruction on functions aims at reconstructing some
details of g from a simplified image f .
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The definition of this reconstruction is itself an algorithm : it is the result of ite-
rations repeated until convergence of a geodesic dilation followed by a point-wise
condition.

Such a recursion is implemented with a loop and the algorithm terminates when the
result is stable (when no modification has been noticed during the last iteration). The
convergence of this algorithm is mathematically ensured, yet it is very slow in practice.
Indeed, consecutive passes reconsider parts of the image where local convergence
has been reached during previous steps. This algorithm is illustrated by the routine
RD_PARALLEL in Figure 1.5.

1.4.1.1. Similar algorithms

This kind of algorithm, « repeat modifications until stability, » does not belong
exclusively to the area of mathematical morphology ; it is also used, for instance, to
compute diffusions.

The complexity of one pass is pseudo-polynomial with respect to the number N
of image points and to the connectivity M . In the worst case (as for a Peano curve
image), this algorithm has a complexity of O(M × N2). Practically, you should not
use this algorithm, except if you are ready to wait for a long time...

A point in favor of this algorithm is that it is easily parallelizable. One just has
to observe that the computations performed at every points within both loops only
depend on the image obtained at the end of the previous iteration. Those loops thus can
be split into several independent tasks, each task running on a single part of an image
partition. From that point of view, this algorithm highly contrasts with the alternative
ones presented hereafter : with the present parallel version only, there is no dependence
between the computation at point p and the computation of its neighbors during the
same iteration.

1.4.2. Sequential algorithm

Getting an acceptable complexity for the reconstruction can be achieved once one
notices that this filter can be expressed in a sequential way. Yet, we will see that it is
not a sufficient.

In the parallel version, lines 18 and 20 of Figure 1.5, each dilation is performed
independently from the ones of previous iterations, and the current image o is obtained
by dilation of the image o′ resulting from the previous iteration.

In the sequential version, the auxiliary image o′ is not used during the dilation step
anymore ; each dilation is performed in-place, see lines 50 to 56 of Figure 1.5. At a
given point p, the local dilation value is computed from the neighbor values of p in
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o and immediately written in the work image o. Consequently, a modification of o
appearing at point p can propagate to other points during the same pass.

In order to ease the comparison between the parallel and the sequential algorithms,
we keep a copy o′ of o to test the stability condition. Please note that we can get rid of
o′ if we count the number of modifications in o during the forward-backward pair of
passes to test stability.

Despite the propagation mechanism, the complexity of the sequential algorithm is
not improved w.r.t. the parallel algorithm ! Again, in the particular unfavorable case of
an image representing a Peano curve, the reconstruction requires a number of passes
proportional to the number of pixels. However, for convex objects, a forward step and a
backward step suffice to obtain the result. In practice, natural images have a lot of such
locally convex parts and then those parts are efficiently processed. That explains why
one usually observes that this sequential algorithm outperforms the parallel version.

1.4.2.1. Similar algorithms

The class corresponding to this sequential algorithm is large. In particular, it in-
cludes discrete distance map computation, such as chamfer distances, and the pseudo-
Euclidean distance of Danielsson [DAN 80].

1.4.3. Queue-based algorithm

In this algorithm version of the reconstruction, another data structure is used : a
queue, First-In-First-Out (FIFO) structure. The general idea is to dilate through a front
that propagates into the whole image, while remaining under the condition imposed
by g (line 90).

The two main advantages of this approach are its very simple formulation and the
one-pass dilation. To the contrary of the previous versions, the need for browsing seve-
ral times the image pixels is avoided, thus meaning that useless operations (precisely
browsing stable regions) are avoided and that complexity is significantly lowered.

Most of queue-based algorithms rely on the same scheme :

– the queue is initialized with some particular points ;

– while the queue is not empty do :
1) remove the point at the front of the queue file,
2) perform a given computation at that point,
3) add some neighbors of that point at the back of the queue.

This scheme is precisely a breath-first traversal of the neighborhood graph of the
image starting from the points pushed in the queue during the initialization step. Some
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63 RD_QUEUE_BASED(f : Image,
64 g : Image)
65 → o : Image
66 begin
67 data
68 q : Queue of Point
69 M : Image
70

71 // initialization

72 M := REGIONAL_MAXIMA(f )
73 for_all p ∈ M

74 for_all n ∈ N (p)
75 if n 6∈ M

76 q.PUSH(p)
77 o := f

78

79

80

81

82

83

84

85 // propagation

86 while not q.EMPTY()
87 p := q.FIRST()
88 for_all n ∈ N (p)
89 if o(n) < o(p) and o(n) 6= g(n)
90 o(n) := min{o(p), g(n)}
91 q.PUSH(n)
92

93 return o

94 end

95 RD_HYBRID(f : Image,
96 g : Image)
97 → o : Image
98 begin
99 data

100 q : Queue of Point
101

102 // initialization

103 o := f

104

105 // two−pass sequence...

106 for_all p ∈ E ⊲

107 o(p) := min{ max{ o(q) |
108 q ∈ N−(p) ∪ {p} }, g(p) }
109 for_all p ∈ E ⊳

110 o(p) := min{ max{ o(q) |
111 q ∈ N+(p) ∪ {p} }, g(p) }
112 // ...with enqueuing

113 for_all n ∈ N+(p)
114 if o(n) < o(p) and o(n) < g(n)
115 q.PUSH(p)
116

117 // propagation

118 while not q.EMPTY()
119 p := q.FIRST()
120 for_all n ∈ N (p)
121 if o(n) < o(p) and o(n) 6= g(n)
122 o(n) := min{o(p), g(n)}
123 q.PUSH(n)
124

125 return o

126 end

Figure 1.6. Reconstruction canvases (part 2/2) : Queue-based algorithm (left)

and hybrid algorithm (right) are respectively described in Sections 1.4.4

and 1.4.3.

other kinds of browsing are possible ; for instance, we get a depth-first traversal if we
switch steps 1 and 3.

In the case of the reconstruction, the initialization starts from the detection of re-
gional maxima and the points of their external contour are pushed in the queue. Those
maxima are then propagated by the queue. The operation managed by the queue is
not really a “common” dilation, in the sense that the propagation performs neither a
dilation with a structuring element, nor a geodesic one. Only maxima values of f are
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dilated. Yet, it is an algebraic dilation (see Chapter ??). Since the dilation is only ef-
fective under the condition imposed by the mask g, we get the expected reconstruction
by dilation, as defined previously [VIN 93b].

The core of the algorithm, given in the left column of Figure 1.6, lies in the pro-
pagation process (lines 85 to 91). One can easily notice that every point p is only
inspected once, which contrasts with the previous given algorithms. This part of the
algorithm thus has a linear complexity.

On the other hand, the initialization step requires to compute the regional maxima
of f (line 72) which can be as costly as the propagation step ! Such an operation is
equivalent to a connected component labeling, the complexity of which being quasi-
linear thanks the Union-Find algorithm [TAR 75].

More generally, using a random-access structure such as a queue or a stack is ef-
ficient when the initialization stage extracts adequate information. One can relate that
issue with the notion of redundancy of information. In a dilation process relevant in-
formation are the localization and the value of local maxima. Algorithms can either
ignore such information (those are content blind algorithms), or rely on those informa-
tion and propagate them. Amongst the fastest (and also the most complex) algorithmic
approaches, we have those that detect relevant information and propagate them during
the same browsing of image points. To understand how detection and propagation can
merge into a single step, one can look at the algorithm proposed in [Van 05] for the
morphological opening. The queue-based reconstruction given in this section does not
feature such an elaborate scheme ; in the following, we see that it is possible to get a
more efficient reconstruction than the current version.

1.4.3.1. Remarks

Similar algorithms : Amongst algorithms similar to the queue-based reconstruc-
tion we can cite,

– for the breath-first traversal : distance functions [RAG 93], SKIZ, skeletoniza-
tion [VIN 91a], ordered dilations [ZAM 80],

– and for the depth-first traversal : the component tree computation given
in [SAL 92].

Stack instead of queue : Using a stack, either a simple Last-In-First-Out structure
or a pushdown automaton, instead of a queue, can be relevant when combined with the
storage of some information related to data. Yet it should often be avoided when the
behavior of the algorithm containing it is recursive. Indeed, in such cases, computation
calls are stacked so that can be executed later. So, even if the algorithm is theorically
correct, it may become inefficient when the size of the stack grows too much (note
that its size may be as large as the image).
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Priority queue : A simple queue ensures only one property of the contained ele-
ments : they are ordered as they were pushed in the queue. This ordering usually cor-
responds to a particular spatial ordering of the image domain. It is sometimes useful to
get a more general property about the element ordering in the queue. For instance, we
may want points to be sorted first by their values and then by their introduction order
in the queue. To that aim, a particular structure has been proposed by F. Meyer in the
context of a watershed transform algorithm : the hierarchical queue [MEY 91]. This
is an array of queues whose size as large as the number of values ; it is thus efficient
if and only if the values are encoded with a few bits (typically less than 12 bit). Note,
however, that it is a particular case of the more general and very common priority

queue structure, that can be implemented thanks to a heap or a self-balancing binary
search tree.

Complexity : Some data structures are more appropriate than others depending on
the algorithms, on the nature of input images, and on the operations that rely on those
structures. A study of the most classical data structures that we can find in morphology
has been realized by E. Breen and D. Monro [BRE 94] ; furthermore they also empha-
sized the distance existing between theory and practical results, related to the use of
those structures. In particular Fibonacci heaps [L. 87], though theoretically efficient,
happen to be rather slow when involved in effective algorithms. As a piece of advice,
when an efficient priority queue is required, maintaining a stable sort (that is, with the
insertion order of elements always preserved in the queue), regardless of the data type
used for priorities, then splay-queues are often an appropriate choice [SLE 85].

1.4.4. Hybrid algorithm

In the hybrid algorithm, given in the right column of Figure 1.6, we can recognize
first a sequential part but limited to a couple of passes. During those passes, the re-
construction is thus performed in convex regions of the input image. In the second part
of the algorithm, we have the propagation of the queue-based algorithm. This last part
completes the reconstruction when the convergence is achieved.

The advantage of this method over the previous one is manifold. The computation
of regional maxima is avoided since the queue is initialized with the frontier obtai-
ned after the sequential passes. Furthermore, in the case of non-pathological images,
most of the reconstruction is actually achieved during this sequential part and the fi-
nal propagation, much more costly, is only performed on a small part of the image
domain.

Please note that hybrid algorithms, where an actual synergy exists between the
different approaches they mix, are rather rare in the literature.
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1.4.4.1. Remarks

We have again the worst cases of the previous algorithms with image represen-
ting fractal patterns. In those cases, the queue size remains small but many loops are
required for the algorithm to converge.

A way to get better performances from this algorithm is to use a queue imple-
mented by a circular array (more compact in memory and faster when inserting and
suppressing elements).

This hybrid version highlights the important relationship between the algorithm in
itself and the data structures it rely on. Authors usually study the complexity of the
algorithms they propose with respect to the number of manipulation of image data, that
is the number of input/output (reading/writing) performed on points. Unfortunately
many authors forget to take into account the effective cost of the auxiliary structures
involved in those algorithms. The simplest form of such structures is a data buffer in
memory, where even a writing operation is not negligible, depending on the buffer
size and the amount of RAM available. On the other hand, being able to precisely
characterize the cost of an algorithm including its auxiliary structures is a tricky task,
in particular because it also highly depends on machine hardware.

1.4.5. Algorithm based on Union-Find

The “Union-Find” algorithm is an identification of the equivalence classes of a
graph. It is presented in Figure 1.7. This algorithm is relatively complex ; yet, if we do
not fully explain it, we will try to describe it roughly. It is composed of three steps :
an initialization, a union stage, and a labeling stage (find).

1.4.5.1. Rough sketch of the algorithm

The cornerstone of this algorithm lies in a change of representation for images :
we move from the notion of pixels, with no connectivity information but local, to a
structure of tree, where a node can represent a large connected component of an image.
In this tree, the root node maps the whole image domain, whereas leaves relate to local
components.

During the initialization, the points of image g are sorted by decreasing value of
gray levels and stored in the array S (line 164).

During the union stage, points are browsed as stored in S. The current point can
be isolated, in the sense that its neighbors have not yet been inspected ; it thus belongs
to a regional maxima. This point then forms a singleton set. If not isolated, it is thus
connected to a regional maximum of g ; it is then merged with the corresponding tree
and becomes its new root. A key property to understand this algorithm is to realize
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126 MAKE_SET(p : Point)
127 begin // creates singleton { p }
128 parent(p) := p

129 end
130

131 IS_ROOT(p : Point) → B

132 begin // tests if p is root

133 return parent(p) = p

134 end
135

136 FIND_ROOT(p : Point) → Point
137 begin // finds the root of p

138 if IS_ROOT(p)
139 return p

140 else
141 parent(p) := FIND_ROOT(parent(p))
142 return parent(p)
143 end
144

145 DO_UNION(n : Point, p : Point)
146 begin // merges two trees

147 r := FIND_ROOT(n)
148 if r 6= p

149 if g(r) = g(p) or g(p) ≥ o(r)
150 parent(r) := p

151 o(p) := max(o(r), o(p))
152 else
153 o(p) := MAX
154 end

154 RD_UNION_FIND(f : Image,
155 g : Image)
156 → o : Image
157 begin
158 data
159 parent : Image of Point
160 S : Array of Point
161

162 // initialization

163 o := f

164 S := SORT(g) // w.r.t. ⊲ and g(p) ↓
165

166 // first pass

167 for_all p ∈ S

168 MAKE_SET(p)
169 for_all n ∈ N (p) if DEJA_VU(n)
170 DO_UNION(n, p)
171

172 // second pass

173 for_all p ∈ S−1

174 if is_root(p)
175 begin
176 if o(p) = MAX, o(p) := g(p)
177 end
178 else
179 o(p) := o(parent(p))
180

181 return o

182 end

Figure 1.7. Reconstruction by dilation with union-find . This algorithm is

described in Section 1.4.5.

that this regional maximum of g is related to a regional maximum of f . During the
process of browsing S, a forest of trees is created that progressively spans the image
domain.

In the final phase (find), we differently handle the points such as g > f , that
receive the maximum value of f in the connected component containing the local
regional maximum of g, and the points such as g = f , whose value is kept unchanged.

Eventually f has been dilated under the constraint of g and the result is the expec-
ted reconstruction.
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1.4.5.2. Details

During the union stage, the output image o is used as auxiliary data to store the
state of all components/trees : eithermax(f) when dilating is effective (f < g locally)
or MAX when the constraint applies. o only takes its final values during the last step
of the algorithm.

For every flat zones where it is sure that we will get o = g, no tree is computed
and the flat zone points are all singletons.

The DEJA_VU function can be evaluated on the fly so this auxiliary structure can
be saved.

If g is an image with low-quantized values (for instance an 8-bit image), one can
sort points in linear time thanks to a radix sort (a distributed sort based on histogram
computation).

1.4.5.3. Complexity

In this chapter, a very particular version of the union-find based algorithm is
presented (Figure 1.7). It relies on a path compression technique, embedded in the
FIND_ROOT routine (line 141), so that the number of recursive calls to this routine is
reduced. Yet it is not sufficient to get the best complexity of the union-find algorithm.
To minimize the number of recursive calls, it is also necessary to keep all trees as most
balanced as possible. For that, one has to add to the version presented here the “union-
by-rank” technique. We have voluntarily eluded this technique to make this algorithm
more “readable”.

Actually, the union-find based reconstruction is quasi-linear in the case of g being
a low-quantized image [TAR 75] ; otherwise, for floating data for instance, the com-
plexity is O(N log(N)) due to the sorting step.

1.4.5.4. Comparison with previous versions

Although the union-find algorithm is more efficient in theory than the other presen-
ted versions, in practice it is not always faster than the hybrid algorithm. However it
is emblematic of modern implementations of connected operators : algebraic attribute
openings and closings, levellings, watershed transforms [BRE 96, JON 99, MEI 02,
GÉR 05]. The representation of image contents as a tree forest allows for a exceptio-
nally rich theoretical description of connected operators [FAL 04, NAJ 06]. See also
Chapters ?? and ??.

With the parallel and sequential approaches, the limiting factor w.r.t. complexity
was the number of passes to perform to reach convergence. With the queue-based and
the hybrid approaches, the risk came from the queue structure becoming too huge. In
the case of the union-find algorithm, the bottleneck is located in the tree root search.
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1.4.6. Algorithm comparison

In order to compare the five algorithms described earlier, we shall reuse some of
the criteria laid out in section 1.3.1. The table below illustrates on the one hand the
large diversity of algorithms available to translate a single operator, and on the other
hand the difficulty in using the criteria effectively. Indeed, some of these algorithms
are not monolithic : they correspond to several criteria at once. The hybrid algorithm,
for instance, is only “half-sequential” : it uses both video passes on the image and a
propagation front. Regarding the Union-Find algorithm, we could classify it as “se-
quential” as between the initialization (the sorting pass) and the two other passes,
every image pixel is considered exactly three times. However, the order in which they
are considered are not the usual video and anti-video sequences.

algorithm name algorithm class pixel order data structures
parallel parallel video passes none extra
sequential sequential video passes none extra
queue-based queue-based front standard queue
hybrid 1/2 sequential 2 passes + front standard queue
Union-Find pseudo-sequential 3 passes array and tree

To compare the performance of these five algorithms for the geodesic reconstruc-
tion by dilation, we took as g the standard lena 512×512 pixels gray-level image, and
for f the pixelwise maximum of g and g rotated 90 degrees clockwise. The neighbo-
rhood relation is the 4-connectivity. As we seek a comparison amongst algorithms, we
did not perform any compiler-level optimization or used particular techniques such as
pointer arithmetic, although they could have resulted in significantly improved running
times. The algorithm performance order would have remained the same, however.

algorithm running time
(in sec.)

parallel 25.28
sequential 3.18
queue-based 0.65
hybrid 0.34
Union-Find 0.34

This table illustrates, with performance ranging within a rough factor of 100 to
1, that translating in practice a mathematical operator into actual code can result in
widely different results. Producing a “good” algorithm with properties in accordance
with what the practitioner expects is indeed an art and a science in itself.
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1.5. Historical perspectives and bibliography notes

The history of various algorithms and their links to mathematical morphology as
well as other related disciplines would require a book by itself. We lay out in the next
section a few, hopefully useful notes.

1.5.1. Before and around morphology

Like all scientific endeavors, mathematical morphology was not born, and neither
does it evolve in a scientific vacuum. It represents a step toward a better understanding
of spatial representations pertaining to physical or virtual objects. Before MATHERON

and SERRA named their discipline in 1962 [MAT 02], image analysis already existed
and many algorithms had already been developed in comparable disciplines. As well,
morphology continued to evolve in a moving context. It is perhaps useful to specify
some algorithmic markers in this creative broth.

1.5.1.1. Graph-based algorithms

Images are most often represented on regular graphs. As such it is not really sur-
prising that so many mathematical morphology algorithm derive from classical graph
algorithms. We may mention Dijkstra’s minimal paths [DIJ 59], the minimum span-
ning tree problem [JOS 56, PRI 57], and the classical Union-Find algorithm [TAR 75].
A good source on many important algorithms is the Cormen et al. book [COR 09].

It is more than likely that not all the classical or recent literature on algorithm
on graphs has been fully exploited in the context of mathematical morphology. It is
probably a very good source of future results.

1.5.1.2. Discrete geometry and discrete topology algorithms

Discrete geometry is an active field of research very closely linked to mathematical
morphology. The goal of discrete geometry is to redefine and algorithmically exploit
the objects and operators of classical geometry, in a purely discrete framework. For
instance, lines, planes, intersections, vectors and so on have been partially redefined
in such a way [RÉV 91]. Properties of these new objects, although obviously related
to the classical ones, are markedly different and usually much more amenable to their
use in an algorithmic setting. A recent book on the topic is [GOO 04].

Amongst the most useful algorithms in discrete geometry, also used in mathemati-
cal morphology, we can mention distance transforms [ROS 66, BOR 84, SHI 92], that
are very useful by themselves, but can also be used to implement binary erosions and
dilations [RAG 92].

Discrete topology is a discipline that seek to define topological operators in dis-
crete spaces such as images, but also on arbitrary graphs, on discrete manifolds such as
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triangulated surfaces, or on complexes [KON 89, BER 07]. The link with morphology
is very strong especially in the areas of thinning operators [KON 95] and skeletoniza-
tion algorithms [MAN 02]. The watershed transform can also be seen as a topological
operator [COU 05, COU 10]. The topological watershed, of grey-level image I , for
instance, is the smallest image, on the lattice of numerical functions, with the same
topology as I . The topological watershed operator is also the most efficient known
watershed algorithm (with quasi-linear complexity).

1.5.1.3. Continuous-domain algorithms

The continuum is not representable exactly on computers, however, some mathe-
matical objects are intrinsically continuous, such as partial derivative equations, and
can be used to solve image analysis problems. This approach leads to some interesting
algorithms.

Taking as starting point segmentation algorithms such as active contours [KAS 98],
it is possible to find links with skeletonization [LEY 92], as well as generalizations of
the watershed transform, for instance including some curvature constraints [NGU 03].

Fast marching algorithms [SET 96a] are in essence equivalent to a flexible algo-
rithm for computing the geodesic Euclidean distance transform [SOI 91]. This applies
to scalar or tensorial metrics [SET 01]. These algorithms make it possible to pro-
pose, in some contexts, a mathematical morphology formulation in the continuous
domain [SAP 93]. It is important to note that the original SETHIAN algorithm is only
first-order accurate. A fast method to compute the exact geodesic Euclidean distance
transform is an open problem at the time of writing.

These methods have been used in morphology for instance in connected filte-
ring [MEY 00], by replacing the dilation operator by a continuous propagation. For-
mulation of the watershed transform in the continuous domain have been proposed by
several authors [NAJ 93, MAR 96], and can be solved using fast marching methods.

The principal benefit derived from a continuous formulation is to abstract away the
notion of pixel. Up to an approximation, it is possible to define a dilation of arbitrary,
and not only integer radius. It is also possible to propose morphological operators on
arbitrary manifolds, for instance on triangulated surfaces, although discrete formula-
tion have been proposed in this context as well.

We will explore other links with the continuous domain through algorithms inspi-
red by linear theories.

1.5.1.4. Discrete and continuous optimization for segmentation

Active-contour [KAS 98] or level-set [OSH 88, MER 94, SET 96b] types algo-
rithms are comparable in their approach to segmentation. The idea is to propose a
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gradient-descent optimization procedure, under some constraints. Common constraints
include the necessity of closed contours, the inclusion and/or exclusion of certain
zones, topology preservation, etc. These algorithms work in 2D or 3D, and are fairly
flexible with respect to the kind of cost function they can optimize. For instance, it
is possible to affect costs to region content, motion analysis, regularity, etc. However,
the more complex formulations most often cannot be optimized globally.

More recently the image analysis and computer vision communities have found a
renewed interest in simpler formulation, but that can be optimized globally, for ins-
tance using graph cuts [BOY 04], continuous maximum flows [APP 06], or random
walks [GRA 06]. Indeed these formulations are less flexible, but are more reliable and
less sensitive to noise. There are some strong links between these techniques and the
watershed transform [ALL 07, COU 09].

1.5.1.5. Linear analysis algorithms

Here linear analysis means the domain of operators linked to linear integral trans-
forms, such as the FOURIER, RADON and wavelets transforms. These historically
were adapted to images from signal processing. In this domain, the basic structure
is the classical group, with the addition as base operator. For signals and for some
kinds of images (X-Ray, or tomography images) this makes perfect sense as superpo-
sition of signals is a reasonable hypothesis. For some kinds of problems this is also a
perfectly suited structure. For instance, many sources of noise such as sampling noise
is approximated by Gaussian additive white noise, for which there exists an optimal
deconvolution in the least square sense.

Mathematical morphology is not linear, and the basic structure is the complete
lattice, with infimum and supremum as operators. However there are some links bet-
ween the two approaches. Of course this is true at the level of applications, but also
some tools and approaches are similar. As an example we can cite several works on
multi-resolution [HEI 00] and scale-space [JAC 96, VAC 01].

To finish, we present a curiosity : it is possible to define the dilation from a convo-
lution operator :

δB[I] = (I ⋆ B) > 0, (1.4)

where I is a binary image and B an arbitrary structuring element. Using the FFT, this
algorithm can be implemented in constant time with respect to B, which is the only
known implementation with this characteristic.

1.5.2. Historical perspective onmathematicalmorphology algorithmic developments

From the very beginning, the development of mathematical morphology as both a
practical and theoretical area was linked to software and hardware developments. The
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texture analyzer was the first machine implementing morphological operators, and
was developed at the Ecole des Mines in Paris [MAT 02]. Following this, many ad-
vances in this field were the result of a constant synergy between applications, theory,
algorithmic and hardware developments.

In the early days, dedicated architectures for image processing were a necessity,
due to the relatively weak computing powers of general-purpose architectures. On
dedicated hardware, most often access to data can only be realized in an ordered,
sequential manner, using video passes on the image. This necessarily also drove the
development of corresponding algorithmic techniques.

1.5.2.1. Parallel algorithms

The use of video passes on the images and the limited memory of early architec-
tures (typically only three lines could be loaded in main memory at any given time)
is a limitation that is still found today, for instance in embedded architectures such
as mobile phones. These limitations, amongst others, force the use of parallel algo-
rithms. Here this term means a type of processing such that the result on any arbitrary
pixel is independent of the result on other pixels. This implies order-independence,
and does imply that it is relatively easy to implement such algorithms on massively
parallel architectures, but the actual architecture the algorithm is run on does not mat-
ter as such. An illustration of this type of algorithm is given on Fig. 1.5 on the left-
hand side, and is also described in section 1.4.1. In hardware terms, these algorithms
are well-suited to SIMD Single Instruction Multiple Data and to the limit case of
the so-called artificial retina, where each pixel is equipped with its own little pro-
cessor [MAN 00]. Amongst hardware developments that were known to use parallel
morphological algorithms are the Morpho-Pericolor [BIL 92] and the Cambridge Ins-
trument Quantimet 570 [KLE 90] as well as the ASIC (Application-Specific Integrated
Circuit) PIMM1 [KLE 89].

The first algorithms implementing the watershed transform, the skeletonization
and morphological filters were described and implemented in a parallel fashion. See
for instance [BEU 79, MON 68].

1.5.2.2. Sequential algorithms

Some (but not all) algorithms can be expressed in a sequential manner, which
here designates an implementation that uses the current result to derive the next one,
most often adopting a particular pixel scanning order. This is illustrated on Fig. 1.5
on the right-hand side, and is also described in section 1.4.2. Sequential algorithms,
sometimes also incorrectly called recursive algorithms are often more efficient than
parallel ones, at least on most general-purpose computers, because they can make
use of the local redundancy in many natural images. A typical sequential algorithm
is the classical distance transform of ROSENFELD et al. [ROS 66], that computes the
distance transform in two passes over the image : one in the video scanning order, and
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the second in the anti-video order. At the hardware level, few sequential algorithms
have been implemented, but LEMONNIER [LEM 96], among others, has proposed a
sequential watershed transform algorithm.

1.5.2.3. Breadth first algorithms

As general-purpose computers became more powerful, the idea of exploring pixels
from the border of objects without necessarily following a scanning order imposed by
the hardware (in particular the memory wiring) took more hold. This is achieved using
a suitable data structure. Among this family of algorithms, we can mention those
using boundary paths [SCH 89], queues [VIN 90] and priority queues [MEY 90a].
A classical algorithm belonging to that class is the watershed transform from floo-
ding [VIN 91c, MEY 90b]. This kind of algorithm is on the other hand not well suited
to hardware implementations, mostly because the underlying data structure imposes
that memory bandwidth be the limit, not computation speed.

1.5.2.4. Graph-inspired algorithms

Breadth-first algorithms are a classical approach in graph-based problems. The
idea of continuing in this direction and adapt other class of graph algorithms to image
data was therefore natural. Among graph-inspired morphological algorithm, we can
cite the Image Foresting Transform (IFT) [FAL 04], which is used in segmentation
and classification. More recently, the idea of considering an image truly as a graph
and to also assign values to edges imposed itself. This makes it possible to define
a discrete gradient in a natural way : simply by the numerical difference between
two vertices linked by an edge [COU 07]. This had already been proposed earlier by
the graph-cut community [BOY 01, BOY 04]. This notion defines a border between
regions as a series of edge cuts and not a path of vertices, which solves numerous
topological problems. It also paved the way for a unifying framework encompassing
many segmentation methods [COU 09].

1.5.2.5. Topological algorithms

Beyond the essential notion of simple point, which is the starting point for many
efficient topology-preserving algorithms, many works have considered the essential
notion of image topology. An important notion is the component tree, used in Sec-
tion 1.4.5.1 in this chapter, and also described in details in Chapter ??. The com-
ponent tree, through its efficient representation of regions and catchment basins, can
be used in many interesting algorithms, involving for instance hierarchical segmenta-
tion, levelings and other filters [NAJ 06]. This staple of morphological algorithms, the
watershed transform, can also be seen as a topological transform [BER 05, COU 05].
For details on the topological watershed, see Chapter ??.

1.5.2.6. Morphological filtering algorithms

Morphological filtering algorithms form an interesting class by themselves. As
a starting point, useful literature on morphological filtering includes the two books
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by SERRA [SER 82, SER 88], an article on the theory of morphological filtering by
SERRA and VINCENT [SER 92] and the articles by HEIJMANS and RONSE [HEI 90,
RON 91]. A more introductory article by HEIJMANS is [HEI 96]. None of these ar-
ticles discuss algorithmic aspects, which are nonetheless essential. The following is an
incomplete but illustrative list of some problems studied in mathematical morphology.

1) Fast erosions and dilations. The topic of fast implementations of basic morpho-
logical operator has been studied by many authors. In spite of this, many libraries of
mathematical morphology software (including well-known and expensive ones) com-
pute a min or max filter on a window usingO(MN) comparisons, withM the number
of pixels in the image and N the number of pixels in the window. It is often possible
to decompose structuring elements into more readily computable sub-parts [XU 91].
Among the most commonly use SE are the regular convex polygons in 2D. These can
easily be decomposed into operations using line segments. A significant achievement
by the community has been to propose increasingly efficient algorithms to compute
the basic morphological operators in arbitrary 1D segment windows, including arbi-
trary orientation [HER 92, BRE 93, GIL 02, Van 05]. As a result, the computation of
all four basic morphological operators with convex regular polygonal windows can be
achieved in constant time with respect to N in 2D. Note that at the time of writing,
an equivalent result in 3D or more is still an open problem, except for some particular
cases.

Regarding arbitrary structuring elements in nD, there exists an algorithm with
complexity O(

n

n−1

√
NM) [VAN 96]. A faster algorithm for 2D but extensible to

more has been proposed [URB 08]. Several algorithms have been proposed in the
binary case [JI 89, VIN 91b], with complexity asymptotically linear with respect to
M . The FFT-based algorithm mentioned in section ?? has complexityM logM .

2) Algebraic openings and thinnings . Filtering in mathematical morphology tends
to rely more on openings and closings than erosions and dilations. It is common to
define a notion of opening or closing that is not directly related to that of structuring
element, but is rather based on the concepts of attribute and connectivity [CRE 93,
CRE 97, HEI 99]. These ideas are close to the notion of reconstruction seen in this
chapter, and were also presented in the introductory chapter of this book ??.

Thanks to connected and attribute filtering, many very effective operators were
proposed in the last decade. Historically, from the algorithmic point of view, the first
implementation of a connected filter is due to VINCENT [VIN 92, VIN 93a, VIN 94],
with the area filter. The general notion was extended to attributes [BRE 96] that are not
necessarily increasing, leading to operators that were no longer openings or closings,
but algebraic thinnings, however using very similar principles. An efficient implemen-
tation was proposed in [MEI 02], followed by a generalization using the component
tree and the Union-Find in [GÉR 05]. More recently, the notion of connectivity was
extended to hyper-connectivity [WIL 06] to account for overlaps.

Path connectivity is also both a topological and a connectivity notion. By adding
constraints to acceptable paths, from straight line segments [SOI 01] to more flexible
paths [HEI 05, TAL 07], it is possible to enable the filtering of notoriously difficult
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thin objects in various applications [VAL 09b, VAL 09a].

3) Spatially variant filtering. More recently, efficient operators using filtering by
non translation-invariant (or spatially variant) filters have been proposed. From the
theoretical point of view, spatially variant filters have been known at least since
SERRA [SER 82], but were recently given some more theoretical treatment [CHA 94,
BOU 08a, BOU 08b]. This kind of filtering method is adaptive in the sense that a dif-
ferent structuring element is used at each point, depending on the local content of the
image (for instance depending on the orientation, perspective, or texture) [LER 06,
VER 08]. These filters can be effective in the context of inverse filtering, for thin fea-
ture extrapolation [TAN 09a, TAN 09b].

4) Extension to nD. Mathematical morphology is, from the theoretical point of
view, largely dimensional-agnostic, meaning most operators can be defined irrespec-
tive of the dimension of the underlying space [GES 90, GRA 93]. However there are
some practical difficulties as dimension increases. For instance, from the geometrical
and topological point of view, while the hexagonal grid is a useful vertices arrange-
ment in 2D that is naturally relatively isotropic and self-dual with respect to connecti-
vity, no such arrangement exist in 3D, and little is known of higher dimensions. From
the direction sampling point of view, which is often used in orientation-based filtering,
it is possible to sample the 2D plane directionally in such a way that is both regular
and of arbitrary resolution (say every degree or more or less). This is impossible in
3D and more : a result which is known since PLATON and EUCLID [HEA 56]. Of
course 3D (and more) filtering requires more resources, but thanks to recent advances
in sensors, instruments and computers, it has become increasingly common and im-
portant. Application fields include medical imaging, materials science, biological and
bio-molecular imaging.

1.6. Conclusions

In this chapter, we have sought to express the distance that exists between the
mathematical formulation of an operator and its actual algorithmic translation. From a
simple but representative example, we have also shown that in general there does not
exist a single best way to express the implementation of an operator, but several, for
which characteristics can be markedly different.

Algorithmic research, dedicated to mathematical morphology or not, remains a
wide open field. As time progresses, increasingly sophisticated operators are being
proposed, with correspondingly demanding computation loads. Together with the ever
increasing size and complexity of the data itself. This can only mean that it becomes
increasingly more important to devote sufficient time and resources to the development
of efficient implementations of image analysis operators, whether this implementation
be in hardware or software.

We can also anticipate a few fresh challenges on the algorithmic frontier :
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First, external and internal observers (for instance users, but also article reviewers),
have noticed increasing difficulties in reproducing methods and results presented in
the scientific community. From a scientific article, the way leading to an actual piece
of working code can be very long. At the understanding of the proposed operators and
algorithms can be added the difficult and painful programming and debugging tasks.
As a direct consequence, a loss of information capital and of knowledge can be obser-
ved. Many, if not most, solutions proposed in the literature are simply abandoned or
ignored, and few articles propose comparison with a significant number of solutions.
In our opinion, the morphological community should make the effort to endow the
public at large with a working library of computer code implementing its efforts. This
could take the form of a mutual, open platform for code repository.

A second challenge concerns the implementation of algorithms. Algorithms are by
their nature abstract. Indeed in this chapter we have kept an abstract presentation as
much as possible, reflecting the fact that they might work just as well on 1D signal
as on 3D volume data, irrespective of sampling, grid and topology issues, unless spe-
cified. Unfortunately, the actual translation of algorithms to code is almost inevitably
accompanied by a loss of generality : such library of code will only work on 2D, gray-
level, square grid images. Another will be devoted to satellite images, yet another to
3D medical volumes, and so on. Most libraries do not accept arbitrary-shaped struc-
turing elements for instance. Even a “simple” dilation as given by algorithm (3) on
Fig. 1.2 become, once implemented, a dilation restricted to a limited number of cases.
We note, however, that generic solutions exist, allowing users to apply algorithms to
vastly different datasets without necessarily sacrificing efficiency [LEV 09].

A third challenge concerns community effort. It is increasingly understood, that
to be acceptable during and after publication, to be reviewed effectively and to be
cited, an algorithm description should be accompanied by an implementation, freely
accessible to the researcher or individual user. Indeed, re-implementation efforts are
usually simply duplicated work. In other communities, like computer vision, discrete
geometry or computational geometry, active repository of code exist. This is not yet
the case with mathematical morphology, although various attempts have been made,
and it is the personal belief of the authors of this chapter that this has hindered the
adoption of many effective algorithm in the larger community of researchers and users
of image analysis. Of course, making code freely available does not always sit nicely
with intellectual property demands of funding agencies and institutions, so this is yet
another challenge for which solution have been proposed, such as dual licensing.

Finally, a last challenge is in the evolution of computer architectures. We are now
in the era of generalized multi-processors and cheaply available massively parallel co-
processors and clusters. This means that the tools of image analysis and in particular
algorithms, must yet again adapt themselves to this changing environment.



Bibliographie

[ALL 07] ALLÈNE C., AUDIBERT J.-Y., COUPRIE M., COUSTY J., KERIVEN R., « Some
links between min-cuts, optimal spanning forests and watersheds », BANON G. J. F., BAR-
RERA J., BRAGA-NETO U. D. M., HIRATA N. S. T., Eds., Proceedings, vol. 1, São José
dos Campos, Universidade de São Paulo (USP), Instituto Nacional de Pesquisas Espaciais
(INPE), p. 253–264, October 10–13, 2007 2007.

[APP 06] APPLETON B., TALBOT H., « Globally Minimal Surfaces by Continuous Maximal
Flows », IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 28, n˚1,
p. 106-118, 2006.

[BER 05] BERTRAND G., « On topological watersheds », Journal of Mathematical Imaging

and Vision, vol. 22, n˚2-3, p. 217-230, mai 2005.

[BER 07] BERTRAND G., « On critical kernels », Comptes Rendus de l’Académie des

Sciences, Série Math., vol. I, n˚345, p. 363-367, 2007.

[BEU 79] BEUCHER S., LANTUÉJOUL C., Sur l’utilisation de la ligne de partage des eaux en
détection de contours, Rapport n˚N-598, Ecole des Mines de Paris, mai 1979.

[BIL 92] BILODEAU M., Architecture logicielle pour processeur de morphologie mathéma-
tique, Thèse de doctorat, Ecole Nationale Supérieure des Mines de Paris, 1992.

[BOR 84] BORGEFORS G., « Distance transformations in arbitrary dimensions », Computer

Vision, Graphics, and Image Processing, vol. 27, p. 321-345, 1984.

[BOU 08a] BOUAYNAYA N., CHARIF-CHEFCHAOUNI M., SCHONFELD D., « Theoretical
Foundations of Spatially-Variant Mathematical Morphology Part I : Binary Images », IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 30, n˚5, p. 823–836, IEEE
Computer Society, 2008.

[BOU 08b] BOUAYNAYA N., SCHONFELD D., « Theoretical Foundations of Spatially-Variant
Mathematical Morphology Part II : Gray-Level Images », IEEE Transactions on Pattern

Analysis and Machine Intelligence, vol. 30, n˚5, p. 837–850, IEEE Computer Society, 2008.

[BOY 01] BOYKOV Y., VEKSLER O., ZABIH R., « Fast Approximate Energy Minimization
via Graph Cuts », IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 23,
n˚11, p. 1222-1239, 2001.

43



44 Morphologie Mathématique Anglais

[BOY 04] BOYKOV Y., KOLMOGOROV V., « An experimental comparison of min-cut/max-
flow algorithms for energy minimization in vision », IEEE Transactions on Pattern Analysis

and Machine Intelligence, vol. 26, n˚9, p. 1124-1137, septembre 2004.

[BRE 93] BREEN E., SOILLE P., « Generalization of van Herk recursive erosion/dilation algo-
rithm to lines at arbitrary angles », FUNG K., GINIGE A., Eds., Proc. DICTA’93 : Digital

Image Computing : Techniques and Applications, Sydney, Australian Pattern Recognition
Society, p. 549-555, décembre 1993.

[BRE 94] BREEN E., MONRO D., « An evaluation of priority queues for mathematical mor-
phology », SERRA J., SOILLE P., Eds., Mathematical Morphology and its Applications to

Image Processing, p. 249–256, Kluwer Academic Publishers, 1994.

[BRE 96] BREEN E., JONES R., « Attribute openings, thinnings, and granulometries », Com-
puter Vision and Image Understanding, vol. 64, n˚3, p. 377-389, 1996.

[CHA 94] CHARIF-CHEFCHAOUNI M., SCHONFELD D., « Spatially-variant mathematical
morphology », IEEE International Conference on Image Processing (ICIP), vol. 2, p. 555-
559 vol.2, novembre 1994.

[COR 09] CORMEN T. H., LEISERSON C. E., RIVEST R. L., STEIN C., Introduction to Al-

gorithms, The MIT Press, 3rd édition, 2009.

[COU 05] COUPRIE M., NAJMAN L., BERTRAND G., « Quasi-linear algorithms for the topo-
logical watershed », Journal of Mathematical Imaging and Vision, vol. 22, n˚2-3, p. 231-
249, mai 2005, Special issue on Mathematical Morphology.

[COU 07] COUSTY J., BERTRAND G., NAJMAN L., COUPRIE M., Watersheds, minimum
spanning forests, and the drop of water principle, Rapport n˚IGM2007-01, Université de
Marne-la-Vallée, 2007, submitted.

[COU 09] COUPRIE C., GRADY L., NAJMAN L., TALBOT H., « Power watersheds, A new
segmentation framework extending graph cuts, random walker and optimal spanning fo-
rest », 2009, submitted.

[COU 10] COUSTY J., BERTRAND G., COUPRIE M., NAJMAN L., « Watersheds and col-
lapses in pseudomanifolds of arbitrary dimension », In preparation, 2010.

[CRE 93] CRESPO J., SERRA J., SCHAFER R., « Image segmentation using connected fil-
ters », SERRA J., SALEMBIER P., Eds., Mathematical morphology and its applications to

signal processing, Universitat Politècnica de Catalunya, Barcelone, Espagne, p. 52-57, mai
1993.

[CRE 97] CRESPO J., SCHAFER R. W., « Locality and Adjacency Stability Constraints for
Morphological Connected Operators », Journal of Mathematical Imaging and Vision, vol. 7,
p. 85-102, 1997.

[DAN 80] DANIELSSON P.-E., « Euclidean distance mapping », Computer Graphics and

Image Processing, vol. 14, p. 227-248, 1980.

[DIJ 59] DIJKSTRA E., « A note on two problems in connexion with graphs », Numerische

Mathematik, vol. 1, p. 269-271, 1959.

[FAL 04] FALCAO A. X., STOLFI J., DE ALENCAR LOTUFO R., « The Image Foresting Trans-
form : Theory, Algorithms, and Applications », IEEE Transactions on Pattern Analysis and



Bibliographie 45

Machine Intelligence, vol. 26, n˚1, p. 19–29, IEEE Computer Society, 2004.

[GÉR 05] GÉRAUD T., « Ruminations on Tarjan’s Union-Find algorithm and connected ope-
rators », Mathematical Morphology : 40 Years On, Proceedings of the International Sym-

posium (ISMM), vol. 30 de Computational Imaging and Vision, Paris, France, Kluwer,
p. 105–116, April 2005.

[GES 90] GESBERT S., HOWARD V., JEULIN D., MEYER F., « The use of basic morpholo-
gical operations for 3D biological image analysis », Trans. Roy. Microsc. Soc., vol. 1,
London, p. 293-296, juillet 1990.

[GIL 02] GIL J., KIMMEL R., « Efficient dilation, erosion, opening and closing algorithms »,
IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 24, n˚12, p. 1606–
1617, 2002.

[GOO 04] GOODMAN J. E., O’ROURKE J., Handbook of Discrete and Computational Geo-

metry, Chapman & Hall / CRC, Boca Raton, 2nd édition, 2004.
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