
One-Class Ant-Miner: Selection of Majority Class
Rules for Binary Rule-based Classification

Naser GHANNAD1,2[0000−0001−8491−9150], Roland DE
GUIO1,2[0000−0002−8201−9551], and Pierre PARREND1,3[0000−0002−1680−1182]

1 ICube (Laboratoire des sciences de l’ingénieur, de l’informatique et de l’imagerie),
UMR 7357, Université de Strasbourg, CNRS, 67000 Strasbourg, France

2 INSA de Strasbourg, Strasbourg, France
3 EPITA, 5, Rue Gustave Adolphe Hirn, Strasbourg, France

Naser.Ghannad@insa-strasbourg.fr

Abstract. In recent years, high-performance models have been intro-
duced based on deep learning; however, these models do not have high
interpretability to complement their high efficiency. Rule-based classifiers
can be used to obtain explainable artificial intelligence. Rule-based clas-
sifiers use a labeled dataset to extract rules that express the relationships
between inputs and expected outputs. Although many evolutionary and
non-evolutionary algorithms have developed to solve this problem, we hy-
pothesize that rule-based evolutionary algorithms such as the AntMiner
family can provide good approximate solutions to problems that cannot
be addressed efficiently using other techniques. This study proposes a
novel supervised rule-based classifier for binary classification tasks and
evaluates the extent to which algorithms in the AntMiner family can ad-
dress this problem. First, we describe different versions of AntMiner. We
then introduce the one-class AntMiner (OCAntMiner) algorithm, which
can work with different imbalance ratios. Next, we evaluate these algo-
rithms using specific synthetic datasets based on the AUPRC, AUROC,
and MCC evaluation metrics and rank them based on these metrics.
The results demonstrate that the OCAntMiner algorithm performs bet-
ter than other versions of AntMiner in terms of the specified metrics.

Keywords: AntMiner · Evolutionary algorithm · Rule-based classifier
· Ant colony classification · Imbalanced dataset · Binary classification ·
Synthetic datasets.

1 Introduction

In recent years, various highly scalable models have been developed using deep
learning [6] and other machine learning models such as XGBoost [3]. Most of
these models are black-box models that are not interpretable by users. A few
of these models specify the importance of features to help users understand
which features are more helpful for predicting classes [10]. However, they do
not provide explicit relationships that allow human users to understand the
relationships between input and output variables, unlike a white-box model.

2 Naser GHANNAD et al.

Because rule-based classifiers [1] explicitly rely on individual variables in the
original data, they are powerful candidates for constructing white-box models.
Rule-based classifiers extract rules to explain the effects of individual variables
on a given class, as follows:

IF (Conditions) THEN (Consequent) (1)

Conditions are combinations of propositions for different input variables (terms)
bound by a logical conjunction (AND). The result of these combinations is the
consequent (i.e., classes). In this study, we focused on ordered-rule-based classi-
fiers. There are two methods for extracting rules: direct and indirect. In direct
methods, the algorithm directly operates on the data and extracts rules from the
data, as seen in the RIPPER [5], CN2 [4], PART [9], and RISE [7] algorithms, or
uses evolutionary algorithms such as the ant colony algorithm (AntMiner) [16]
to extract rules. In indirect methods, a classifier is first applied to the data and
then another method extracts rules from the classifier. Such methods include
the C4.5, J48 [18, 19], random tree [17], and REPTree [20] algorithms. These
tree-based algorithms first use a decision tree to classify data. Rules are then
extracted from the trees provided by the algorithms.

The goal of this study was to develop an algorithm to extract rules from pro-
vided datasets that works well with both imbalanced and balanced datasets, and
also determine a suitable metric for ranking algorithms based on datasets with
various imbalance ratios. Additionally, considering the lack of suitable datasets
for evaluating rule-based algorithms, we aimed to generate datasets containing
all possible instances for generating output classes so that we could determine
which algorithms could achieve the highest values for the defined metrics with the
availability of all possible instances and absence of noise. Also, with these data,
we can find out which algorithm is over-fitted or under-fitted on the data. The
remainder of this article is organized as follows. Section 2 provides an overview
of evolutionary approaches. Section 3 defines the developed one-class AntMiner
(OCAntMiner) algorithm, and Section 4 provides an evaluation of the considered
algorithms. Section 5 presents the evaluation results. Finally, Section 6 concludes
this article.

2 Related Work

Evolutionary algorithms (EAs) are used in optimization problems. They repre-
sent a subset of evolutionary computations [21]. The EA approach is inspired
by biological evolution and uses operations such as mutation, recombination
(crossover), and selection. A population evolves with the goal of maximizing a
given evaluation function. The main EAs used for learning rules are the learning
classifier system (LCS) [2] and AntMiner algorithms [16]. The LCS was intro-
duced by John Holland [11], and genetic algorithms were used to extract rules.
In contrast, AntMiner uses a simulated ant colony as a probabilistic approach
to solve graph problems and find the best path to optimize an evaluation func-
tion. Ants choose their paths based on the amount of pheromones along paths,

Title Suppressed Due to Excessive Length 3

(a) Different solutions for defining a
boundary

(b) best boundary separator between two
classes of data points

Fig. 1: Different data boundaries based on noise or new data entry

which represents how many times a path has been selected successfully before.
Releasing pheromones in an environment (along paths) is a method for ants to
communicate. The path with the most pheromones should be shorter than the
others according to the current state of the search [8].

In this study, we considered both the AUPRC and AUROC to rank different
algorithms. By using relevant datasets and metrics, we identified the limitations
of the AntMiner algorithms in terms of handling datasets with high imbalance
ratios and attempted to overcome these limitations. To this end, we developed
a novel algorithm called OCAntMiner, which is presented in section 3.

3 OCAntMiner

This section presents our proposed OCAntMiner (One-Class AntMiner) algo-
rithm. As shown in Fig1a, it is possible to define different boundaries for dis-
criminating two classes of data, which becomes particularly important when
dealing with imbalanced data (i.e., when the amount of data in one class is
significantly less than the amount of data in another class).

The amount of data that can express a minority class is very small and
noise in these data can completely distort the output of prediction. As shown
in Fig1a, only five data points belong to class Star (minority class) and all
other data belong to class Plus (majority class). Our goal in this study was to
develop an algorithm that works on existing data without the need to add or
remove data. As shown in Fig1b, if we add green data points to the existing data
(either noise or true data) and if these data are added to the minority class, they
can significantly change the boundaries of the minority class. However, for the
majority class, the addition of new data does not significantly shift the boundary
because the rest of the data can pinpoint the location of the boundary.

4 Naser GHANNAD et al.

Input : TrainingSet : all.training.cases
Output: Discovered.Rules.list[]

1 WCTP = MajorityClass;
2 while TrainingSet >Max uncovered cases do
3 t = 1 ; /*ant index*/
4 j = 1 ; /*convergence test index*/
5 pheromones = init.phermones();
6 Rule = [] ; /*empty rules*/
7 repeat
8 Rule[t] = add terms based on heuristic function and pheromones;
9 Prune Rule[t] ; /*based on quality function*/

10 if Consequent of Rule[t] != WCTP then
11 Quality[Rule[t]]=0;
12 end
13 Update the pheromones of all ants;
14 if Rule[t] is equal to Rule[t-1] then
15 j = j + 1;
16 else
17 j = 1;
18 end
19 t = t + 1;
20 until (t >= No.of.ants) OR (j >= No.rules.converged);
21 R.best =best(Rule) ; /*Rule with highest quality among all Rules*/
22 if Consequent of R.best == WCTP then
23 Add rule R.best to Discovered.Rules.List; ;
24 TrainingSet=TrainingSet-(set of cases correctly covered by R.best);
25 end
26 end

Algorithm 1: High-level pseudocode for OCAntMiner

In previous versions of AntMiner, the majority class was considered as the
default class and the algorithm searched for rules to explain the minority and
majority classes with no restrictions on finding rules for each class. As a result,
the algorithm could provide rules to describe the majority class and rules to
describe the minority class, or only rules to describe the minority class. Our idea
is to limit the algorithm to the majority class and extract rules only for that class.
The reason for choosing the majority class to extract rules instead of the minority
class is that there are more data for the majority classes in datasets, meaning
more precise rules can be derived to express such classes. If we can describe one
class very well, then another class will be easily discriminable. One goal of this
study was to evaluate the impact of integrating this approach into AntMiner-
based algorithms. The OCAntMiner pseudocode is presented in Algorithm 1.
OCAntMiner extends the original AntMiner by focusing on the extraction of
the majority class, which is defined as the class with the highest frequency in
the class distribution of training samples. The pheromone update, pheromone
initialization, heuristic, and quality functions rely on the AntMiner model. To

Title Suppressed Due to Excessive Length 5

focus on the majority class, the first step is to detect which class to predict
(WCTP), afterward, algorithm was modified to extract rules related to this class
(the modifications are highlighted by red in Algorithm 1). Most other changes
to the original version aim to prevent the algorithm from generating minority
class rules. In line 10, the algorithm checks for the consequents of extracted
rules. If the consequent does not match the value of the majority class, then the
quality of the rule is equal to zero. Similarly, in line 22, when all ants provide
their solutions (rules), the best solution (R.best) is selected based on the quality
measure. If the consequent of R.best is equal to the value of the majority class,
then R.best is added to the list of discovered rules and the cases correctly covered
by R.best are removed from the training set.

4 Evaluation

In this section, we first provide a detailed overview of our datasets and then our
methodology for evaluating algorithms. Subsequently, relevant evaluation met-
rics are identified and justified. Finally, the algorithms selected for the evaluation
process are presented with their configurations.

4.1 Selected Algorithms

To demonstrate the performance of the proposed OCAntMiner algorithm com-
pared to other algorithms, we selected algorithms from the category of evolu-
tionary algorithms for the sake of fair comparison. However, we also went a
step further and compared it to non-evolutionary algorithms to demonstrate the
power of the proposed algorithm. We selected different versions of AntMiner,
namely, the original version of AntMiner [12], cAntMinerPB [15], UCAntMin-
erPB [13], and cAntMiner [14]. For direct and non-evolutionary algorithms, we
selected RIPPER [5], PART [9], and RISE [7], and for indirect algorithms, we
selected J48 [18,19], and REPTree [20].

4.2 Algorithm parameters

We used the same input parameters for all algorithms, namely, "Size of Ant
colony" = 60, "Maximum number of iterations" = 1500, "Minimum covered
cases per rule" = 10, "Number of uncovered cases set" = 10, and "Rule quality
function" = Sensitivity × Specificity. In the next section, we present the results
of different algorithms based on the described metrics.

5 Results and Discussion

5.1 Ranking of Algorithms

In this section, we rank the algorithms using a statistical approach based on
AutoRank tools using both UCI and synthetic datasets. Because the data under

6 Naser GHANNAD et al.

analysis do not follow a normal distribution, the Friedman test with the Nemenyi
post-hoc test was applied to rank the algorithms and divide the algorithms into
different groups based on the critical distance (CD) metric. As shown in Fig 2,
the algorithms were ranked based on the AUROC metric using UCI datasets.
One can see that the most performant algorithm is the proposed OCAntMiner,
followed by J48. This figure also shows that OCAntMiner, J48, RIPPER, and
IREP are in the same group and there is no significant difference between them,
but they are significantly different from the other algorithms. It also shows that
the original version of AntMiner is in the group with the worst results along with
different versions of AntMiner. With our modifications, it jumps to the first group
and first rank. Additionally, we performed another test with 24 synthetic datasets
and 50% random sampling. The results are presented in Fig 3. As shown in this
figure, RIPPER has the highest ranking, followed by OCAntMiner. This figure
also shows that OCAntMiner provides significantly better results than the other
versions of AntMiner and is clearly in the top group. These results indicate that
despite being in the same group as RIPPER, there is still room for improving
OCAntMiner.

Fig. 2: AUPRC on UCI datasets with 10-fold cross-validation.

Fig. 3: AUPRC on synthetic datasets with 50% of data with 10-fold.

Title Suppressed Due to Excessive Length 7

6 Discussion and Conclusions

In this study, we focused on rule-based classifiers, specifically the AntMiner al-
gorithm family, for extracting classification rules from a given dataset. The most
important results for the classification task are validation results because if such
results are not calculated properly, it can lead to incorrect directions for im-
proving existing algorithms. For validation, there are two important features,
the datasets, and metrics used for validation. Most studies have used the UCI
database for evaluating algorithms in different areas with varying complexities.
However, most UCI datasets cannot provide all possible instances for data in-
puts to facilitate the measurement of the intrinsic performance of algorithms
when seeking a binary function. Interestingly, no AntMiner algorithm was able
to consistently achieve values of 100% for the metrics used when all instances
were provided. When evaluating and ranking different algorithms using synthetic
datasets with 50% of all data instances, overfitting or underfitting to the given
data may have occurred. The same phenomenon should occur with the UCI
data, but because we did not have all data instances, we could not verify this
phenomenon.

Another limitation of using UCI datasets is that we do not know the extent
to which the data used for ranking cover different complexities for the target
problem. Our contribution to solving these problems was the introduction of a
dataset generator that generates datasets with various imbalance ratios, covers
different complexities, and provides all possible instances for a given number of
input parameters. With all possible instances, we can check whether the algo-
rithm is overfitted or underfitted to the data. Therefore, we divided our tests
into two scenarios. The first scenario used 100% of the data for training and the
same data for testing. In the second scenario, we used 50% of all data instances
with random sampling for the training phase and 100% of the instances for the
testing phase. This allowed us to check how classifier rules were extracted for
all data instances. The results of the different algorithms for 100% and 50% of
all possible instances are presented in Table ??. As shown on the right side of
this table (i.e., 100% sampling), the maximum values for AUROC, AUPRC, and
MCC are 100% and the Rise algorithm can achieve these values, indicating that
this algorithm either overfits the data or fits the data properly. To understand
which one of these scenarios occurred, we should consider the results for 50% of
the data (i.e., left side of the table). As shown using 50% of data, Rise algorithm
is not ranked first anymore and shows a very poor result for the MCC metric
(i.e., 45.74%), indicating that the algorithm likely overfitted the data, which is
why the solution provided for 50% of the data is not as good as that for 100%
of the data. Another interesting point in this table is that the OCAntMiner
and RIPPER algorithms retain the same ranks for the two different sampling
percentages based on different metrics, indicating that these two algorithms are
robust to overfitting. This also indicates that they are likely not underfitted to
the data because they achieve the highest values for different metrics.

Another issue that we observed in AntMiner was that this algorithm sets the
majority class as the default class and then attempts to find rules to describe

8 Naser GHANNAD et al.

the majority and minority classes. As a result, three outputs may be generated
at the end of executing the algorithm: 1) some rules describing the majority
class and some rules describing the minority class, 2) all rules describing the
minority class, or 3) no rules extracted from the data and only the default
class is used for all data instances. As shown in Fig 1, the distribution and
boundary of majority data points are more reliable than those of minority data
samples because there may be too few instances for describing the minority
class. As a result, noise in the data or a lack of instances may confuse the
extraction of rules. This is why simply describing the majority class seems to be
a powerful approach to solving this problem. Our main contribution in this study
is highlighting the relevance of this approach, which, to the best of our knowledge,
has not yet been applied to any AntMiner-based algorithm. We implemented this
approach by modifying the first version of AntMiner and forced the algorithm
to extract rules for the majority class alone. Therefore, the algorithm used the
minority class as the default class and attempted to find the rules for majority
data instances. As shown in Table ??, after adding this feature to the first
version of AntMiner, the number of extracted rules decreased dramatically (43%)
and the classifier with fewer rules could still detect the behavior of the data.
This approach also reduced the runtime by 47%. Furthermore, the AUPRC was
improved by 15.87%. These results demonstrate that with this added feature, we
can reduce the runtime and number of rules while improving data classification
performance. Additionally, as shown in Table ??, by adding this feature, we
achieved a large jump in performance (from the second-worst AntMiner to the
best). This jump demonstrates the strength of the components added to the
algorithm to handle datasets with various imbalance ratios.
We performed a statistical test using the Demsar method to rank the algorithms
considering the uncertainty in ranking caused by the number of datasets used in
the experiments and variance of the results. As shown in Fig 2, we first ranked
the different algorithms based on the UCI datasets with 10-fold cross-validation
to demonstrate how the proposed algorithm works on datasets used in previous
studies. The results reveal that OCAntMiner ranks first among all evolutionary
and non-evolutionary algorithms. Statistically, it is in the same group as the
J48, RIPPER, and IREP algorithms. We also applied the Demsar method to
the algorithms using 50% of all possible instances, and the results are presented
in Fig 3. The results show that OCAntMiner ranks second among all algorithms,
but ranks first among the different versions of AntMiner. Additionally, this test
indicated that OCAntMiner belongs to the same group as RIPPER and IREP.
This figure also reveals that the ranking of the J48 algorithm is dramatically
reduced compared to that in the previous figure using the UCI data. Several
interpretations can explain this phenomenon. For example, synthetic datasets
are more general than UCI datasets and cover more complex problems. Under
these conditions, J48 may not classify some datasets properly or the five UCI
datasets may not be sufficient to rank the algorithm (5% error in ranking).
Finally, we demonstrated that modifying the AntMiner process can significantly
improve its results without supplementing or modifying the heuristic or quality

Title Suppressed Due to Excessive Length 9

functions. In future work, we will consider adding this feature to other AntMiner
models and analyzing the resulting algorithm behavior.

Acknowledgements This research was conducted within the framework of the
Offensive Sciences project number 13.11 "Virtual Innovative Real Time Factory"
(VIRTFac) which benefits from the financial support of the Offensive Sciences
programme of the Upper Rhine Trinational Metropolitan Region, the INTER-
REG V Upper Rhine programme and the European Regional Development Fund
(ERDF) of the European Union.

References

1. R. Agrawal, R. Srikant, and others. Fast algorithms for mining association rules.
In Proc. 20th int. conf. very large data bases, VLDB, volume 1215, pages 487–499.
Citeseer, 1994.

2. L. Bull and T. Kovacs. Foundations of learning classifier systems: An introduction.
In Foundations of Learning Classifier Systems, pages 1–17. Springer, 2005.

3. T. Chen and C. Guestrin. Xgboost: A scalable tree boosting system. In Proceedings
of the 22nd acm sigkdd international conference on knowledge discovery and data
mining, pages 785–794, 2016.

4. P. Clark and T. Niblett. The CN2 induction algorithm. Machine Learning,
3(4):261–283, Mar. 1989.

5. W. W. Cohen. Fast Efective Rule Induction. page 10, 1995.
6. S. Dargan, M. Kumar, M. R. Ayyagari, and G. Kumar. A Survey of Deep Learning

and Its Applications: A New Paradigm to Machine Learning. Archives of Compu-
tational Methods in Engineering, 27(4):1071–1092, Sept. 2020.

7. P. Domingos. Unifying instance-based and rule-based induction. Machine Learning,
24(2):141–168, Aug. 1996.

8. M. Dorigo and L. Gambardella. Ant colony system: a cooperative learning ap-
proach to the traveling salesman problem. IEEE Transactions on Evolutionary
Computation, 1(1):53–66, 1997.

9. E. Frank and I. Witten. Generating Accurate Rule Sets Without Global Optimiza-
tion. Machine Learning: Proceedings of the Fifteenth International Conference,
June 1998.

10. N. Ghannad, R. De Guio, and P. Parrend. Feature Selection-Based Approach for
Generalized Physical Contradiction Recognition. In International TRIZ Future
Conference, pages 321–339. Springer, 2020.

11. J. H. Holland. Adaptation**Research reported in this article was supported in part
by the National Science Foundation under grant DCR 71-01997. In R. ROSEN and
F. M. SNELL, editors, Progress in Theoretical Biology, pages 263–293. Academic
Press, 1976.

12. B. Liu, H. Abbass, and R. McKay. Density-based heuristic for rule discovery with
ant-miner. Jan. 2002.

13. F. E. B. Otero and A. A. Freitas. Improving the Interpretability of Classification
Rules Discovered by an Ant Colony Algorithm: Extended Results. Evolutionary
Computation, 24(3):385–409, Sept. 2016.

10 Naser GHANNAD et al.

14. F. E. B. Otero, A. A. Freitas, and C. G. Johnson. Handling continuous attributes
in ant colony classification algorithms. In Proceedings of the 2009 IEEE Symposium
on Computational Intelligence in Data Mining (CIDM 2009), pages 225–231. IEEE,
2009.

15. F. E. B. Otero, A. A. Freitas, and C. G. Johnson. A New Sequential Covering
Strategy for Inducing Classification Rules with Ant Colony Algorithms. IEEE
Transactions on Evolutionary Computation, 17(1):64–74, 2013.

16. R. S. Parpinelli, H. S. Lopes, and A. Freitas. An ant colony based system for data
mining: applications to medical data. 2001.

17. B. Pfahringer. Random model trees: an effective and scalable regression method.
2010.

18. J. R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann Pub-
lishers Inc., San Francisco, CA, USA, 1993.

19. J. R. Quinlan. C4. 5: programs for machine learning. Elsevier, 2014.
20. D. B. Srinivasan and P. Mekala. Mining social networking data for classification

using REPTree. International Journal of Advance Research in Computer Science
and Management Studies, 2(10), 2014.

21. P. A. Vikhar. Evolutionary algorithms: A critical review and its future prospects. In
2016 International Conference on Global Trends in Signal Processing, Information
Computing and Communication (ICGTSPICC), pages 261–265, 2016.

	One-Class Ant-Miner: Selection of Majority Class Rules for Binary Rule-based Classification

