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Abstract
We tested factor analysis models having various numbers of
speaker factors on the core condition and the extended data con-
dition of the 2006 NIST speaker recognition evaluation. In or-
der to ensure strict disjointness between training and testsets,
the factor analysis models were trained without using any ofthe
data made available for the 2005 evaluation. The factor analysis
training set consisted primarily of Switchboard data and sowas
to some degree mismatched with the 2006 test data (drawn from
the Mixer collection). Consequently, our initial results were not
as good as those submitted for the 2006 evaluation. However
we found that we could compensate for this by a simple mod-
ification to our score normalization strategy, namely by using
1000z-norm utterances inzt-norm.

Our purpose in varying the number of speaker factors was to
evaluate the eigenvoice MAP and classical MAP components of
the inter-speaker variability model in factor analysis. Wefound
that on the core condition (i.e. 2–3 minutes of enrollment data),
only the eigenvoice MAP component plays a useful role. On
the other hand, on the extended data condition (i.e. 15–20 min-
utes of enrollment data) both the classical MAP component and
the eigenvoice component proved to be useful provided that the
number of speaker factors was limited. Our best result on the
extended data condition (all trials) was an equal error rateof
2.2% and a detection cost of 0.011.

1. Introduction
Classical MAP adaptation [1, 2] is by far the most popular type
of speaker modeling in text independent speaker recognition but
our experience has been that MAP adaptation using speaker fac-
tors [3, 4, 5] is generally more effective, at least in situations
where limited amounts of enrollment data are available. The
reason for this is that factor analysis is capable of explaining
most inter-speaker variability using a relatively small number
of hidden variables, so that only a small number of free pa-
rameters need to be estimated at enrollment time (contrary to
classical MAP). However if large amounts of enrollment data
are available, the assumption that speaker variability canbe ac-
counted for in such an economical way could prove to be harm-
ful. Our principal purpose in this paper is to explore this ques-
tion in the context of the extended data condition of the NIST
speaker recognition evaluations (SRE’s) where 15–20 minutes
of enrollment data are available for each target speaker.

In the 2006 NIST SRE we reported an equal error rate
(EER) of 1.7% and a detection cost function (DCF) value of
0.009 on the English language trials of the extended data con-
dition. We suspected that these results were too good to be true

considering that they were obtained with a stand-alone system
using only short term acoustic features and suggested that they
may be attributable in part to the fact that NIST had recycled
some of the 2005 data for the 2006 evaluation and we had used
the 2005 data in training our factor analysis models. (In [6]we
reported how failing to keep the training and test sets disjoint
could produce extremely misleading results.)

Thus in performing the experiments reported here we were
careful to exclude the 2005 SRE data from our factor analy-
sis training set. As a result, the proportion of Mixer data inour
training set decreased from 50% to 20%. This introduced a mis-
match between our training set and the 2006 test set which we
knew from previous experience [4] was likely to adversely af-
fect the performance of the factor analysis model. However we
found that we could compensate for this in large measure by in-
creasing the dimension of our acoustic feature vectors from26
to 40 and by substantially increasing the number of imposters
used for score normalization. (In particular, we found it helpful
to use 1000z-norm imposter utterances for each gender.) Fi-
nally, by optimizing the number of speaker factors used in the
extended data condition, we found that we could obtain results
almost identical to those submitted in 2006 (an EER of 1.9%
and a DCF of 0.010).

2. Two ways of modeling inter-speaker
variability

Joint factor analysis is a model of speaker and session variabil-
ity in Gaussian mixture models (GMM’s). We have described
elsewhere how we estimate the hyperparameters that specifya
factor analysis model and how we use it for speaker verifica-
tion [4, 5]. In order to formulate precisely the problem thatwe
address in this paper we will begin by recapitulating the basic
assumptions in factor analysis.

Let C be the number of components in the universal back-
ground model andF the dimension of the acoustic feature
vectors. We use the term supervector to refer to theCF di-
mensional vector obtained by concatenating theF dimensional
mean vectors in the GMM corresponding to a given utterance.

Our assumptions are as follows. Firstly we assume that a
speaker and channel-dependent supervectorM can be decom-
posed into a sum of two supervectors, a speaker supervectors

and a channel supervectorc:

M = s + c (1)

wheres andc are statistically independent and normally dis-
tributed.



Secondly, we assume that the distribution ofc has a hidden
variable description of the form

c = ux (2)

whereu is a rectangular matrix of low rank andx is a normally
distributed random vector. We refer to the components ofx as
channel factors. (This assumption is equivalent to saying that
c is normally distributed with mean0 and covariance matrix
uu∗ .)

Thirdly, we assume that the distribution ofs has a hidden
variable description of the form

s = m + vy + dz (3)

wherem is aCF × 1 supervector;v is a rectangular matrix of
low rank andy is a normally distributed random vector whose
components are referred to as speaker factors;d is aCF ×CF

diagonal matrix andz is a normally distributedCF dimen-
sional random vector. (This assumption is equivalent to saying
thats is normally distributed with meanm and covariance ma-
trix d2 + vv∗.) Our concern in this paper is with the relative
importance of the termsvy anddz in (3).

If v = 0 andu = 0 then our third assumption is the same
as in classical MAP [1]; on the other hand ifd = 0 andu = 0

the assumption is the same as in eigenvoice MAP [7]. In the
latter case, the speaker supervectors is constrained to lie in the
affine spacem + Range(vv∗) (we refer to this as the speaker
space) but no such constraint is imposed in classical MAP.

Classical MAP adaptation can only adapt those Gaussians
which are seen in the enrollment data but, if large amounts of
enrollment data are available, the subspace constraint maybe a
hindrance in getting a good estimate of the speaker supervector
s.

On the other hand the subspace constraint is helpful if only
small amounts of enrollment data are available, since only a
small number of free parameters need to be estimated at enroll-
ment time. The fact that the supervector covariance matrix is
full rather than diagonal in this case ensures that MAP adap-
tation takes account of the correlations between the different
Gaussians in a speaker supervector so that all of the Gaussians
are updated at enrollment time even if only a small fraction of
them are observed.

An extreme example of the effectiveness of speaker factors
can be found in [8] which is concerned with the use of factor
analysis to model syllable-level prosodic features. The num-
ber of feature vectors per conversation side is only about 400;
it is unrealistic to expect classical MAP adaptation to be very
effective in this situation. In working with the core condition of
the 2005 evaluation we also found the most effective method of
speaker modeling was to use a large number (300) of speaker
factors [5].

Much of the mathematical complexity in [3] is a result of
including the termdz in (3); on the other hand essentially no
simplification can be achieved by settingv = 0. Thus it is
very tempting to suppress the termdz altogether but it would
be premature to do so until we have determined whether there
any situations in which it might prove to be effective. This is
the motivation for the experiments in this paper

3. Experimental setup
In this section we describe the set up common to all of our ex-
periments.

3.1. Enrollment and test data

Our experiments are carried out on the core condition and the
8 conversation training condition (also known as the extended
data condition) of the NIST 2006 speaker recognition evaluation
(SRE) [9].

For the core condition, there were 350 male and 461 female
target speakers and there were and 51,448 test utterances. For
the 8 conversation training condition, there were 298 male and
402 female target speakers and 32,509 test utterances.

3.2. Feature Extraction

We used 19 cepstral coefficients rather than 12 as in our previ-
ous work.

These coefficients together with a log energy feature were
extracted using a 25 ms Hamming window and a 10 ms frame
advance and they were subjected to feature warping [10] using
a 3 s sliding window. Delta coefficients were calculated using a
5 frame window giving a total of 40 features.

3.3. Factor analysis training data

We trained 2 gender dependent universal background models
(UBM’s) having 1024 Gaussians and several gender dependent
factor analysis models using the algorithms described in [5].
These factor analysis models differed from each other as regards
the number of speaker factors but the number of channel factors
was fixed at 50 in all cases.

For training UBM’s we used Switchboard II, Phases 2 and
3; Switchboard Cellular, Parts 1 and 2; the Fisher English Cor-
pus, Part 1; the NIST 2003 Language recognition evaluation
data set; and the NIST 2004 SRE enrollment and test data.
(About 200 hours of speech data for each gender.)

For training factor analysis models we used the LDC re-
leases of Switchboard II, Phases 2 and 3; Switchboard Cellular,
Parts 1 and 2; and the NIST 2004 SRE data. (For each speaker
with more than 5 recordings, we used all of the recordings of
the speaker for factor analysis training.)

3.4. Imposters

The verification decision scores obtained with the factor anal-
ysis models were normalized usingzt-norm. We used 283t-
norm speakers in the female case and 227 in the male case. We
used 1000z-norm utterances for each gender. The imposter
utterances and speakers were chosen randomly from the factor
analysis training data. Our motivation for using such a large
number ofz-norm utterances was to test the top-norm method
proposed by Zigel and Wasserblat in [11].

3.5. Reference systems

We use the results submitted at the time of the NIST 2006 SRE
as a reference [12]. These results were obtained using gender
dependent factor analysis models having 300 speaker factors
and 75 channel factors. The UBM’s had 2048 Gaussians and
we used 12 cepstral coefficients rather than 19.

These UBM’s and factor analysis models were trained on
essentially the same data as for the experiments in the present
paper with one exception: the NIST 2005 SRE enrollment and
test data were included in the training set used to obtain the
reference results. (Note that 2005 SRE data was not includedin
list given in Section 3.3).
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Figure 1:DET curves for various types of score normalization
using large numbers of imposters. Core condition of the NIST
2006 SRE, English language trials only.

4. Score normalization
In setting thresholds for making verification decisions with fac-
tor analysis models, we have always foundz-norm to be much
more effective thant-norm and thatzt-norm is (by far) the most
effective score normalization procedure. This prompted usto
explore the top-norm method proposed by Zigel and Wasserblat
[11]. This is a modification ofz-norm which consists in select-
ing, for each target speaker, anN -best list of imposters from a
very large number ofz-norm utterances (e.g. 1000). We also ex-
perimented with the analogous top-norm procedure in the case
of t-norm, where for each test utterance, we select the topN

t-norm speakers as imposters.
For the experiments in this section we used a factor anal-

ysis model with 300 speaker factors and 50 channel factors
trained using the data sets described in Section 3.3 and thet-
norm speakers andz-norm utterances described in Section 3.4;
we used the core condition of the 2006 SRE for testing.

Our first concern was to find out what would happen if
we implementedzt-norm in the usual way using the very large
numbers of imposters described in Section 3.4. As a benchmark
we used 100z-norm utterances and 100t-norm speakers and
found thatzt-norm gave an EER of 4.8% and a DCF of 0.025
on the English language trials in the core condition. Using 1000
z-norm utterances and several hundredt-norm speakers gave a
substantial improvement, namely an EER of 3.5% and a DCF of
0.021. The DET curves corresponding tot-norm, z-norm and
zt-norm are shown in Fig. 1.

We found a similar pattern when we replicated these ex-
periments on all trials of the core condition rather than theEn-
glish language subset. The benchmark results were 7.2% (EER)
and 0.036 (DCF); using all of the imposters give an EER of
5.0% and a DCF of 0.027. The DET curves corresponding tot-
norm,z-norm andzt-norm in this situation are shown in Fig. 2.
The outstanding effectiveness ofzt-norm compared with both
z-norm andt-norm is apparent in both sets of DET curves.
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Figure 2:DET curves for various types of score normalization
using large numbers of imposters. Core condition of the NIST
2006 SRE, all trials.

The results we obtained when we replicated the top-norm
experiment in [11] on the common subset (i.e. English language
trials) of the core condition of the 2006 SRE are summarized in
Table 1. The results in thez-norm column show that selecting
the top 100z-norm utterances for each target speaker is indeed
more effective than using all of thez-norm utterances. How-
ever, the results in thezt-norm column show that restricting the
number ofz-norm speakers is harmful.

Table 1:Topz-norm results on the English trials of core condi-
tion of the NIST 2006 SRE.

z-norm zt-norm
EER DCF EER DCF

top 100z-norm 4.6% 0.025 3.8% 0.023
top 200z-norm 4.6% 0.026 3.8% 0.022
top 300z-norm 4.7% 0.027 3.8% 0.022
top 400z-norm 4.7% 0.027 3.6% 0.022
top 500z-norm 4.7% 0.027 3.6% 0.022

all z-norm 4.7% 0.027 3.5% 0.021

The question arises whether applying a similar top-norm
selection tot-norm speakers could be beneficial. Becauset-
norm is computationally expensive, it is difficult to experiment
with this idea on a large scale; the results in Table 2 indicate
that small improvements might be achievable.

For completeness, we present the corresponding results on
all trials of the core condition of the NIST 2006 SRE in Tables3
and 4. Patterns similar to those in Table 1 can be observed in Ta-
ble 3. The results in Table 4, like those in Table 2, again suggest
that small improvements in performance might be obtained by
applying top-norm tot-norm speakers but, for the experiments
reported in the remainder of the paper, we usedzt-norm with
all of the imposters described in Section 3.4.

In conducting these experiments we observed thatzt-norm



Table 2:Topt-norm results on the English trials of core condi-
tion of the NIST 2006 SRE.

t-norm zt-norm
EER DCF EER DCF

top 100t-norm 6.7% 0.030 3.5% 0.020
top 150t-norm 6.6% 0.030 3.4% 0.020
top 200t-norm 6.6% 0.032 3.6% 0.020

all t-norm 6.5% 0.031 3.5% 0.021

Table 3:Topz-norm results on all trials of the core condition of
the NIST 2006 SRE.

z-norm zt-norm
EER DCF EER DCF

top 100z-norm 7.3% 0.036 5.4% 0.029
top 200z-norm 7.3% 0.037 5.2% 0.029
top 300z-norm 7.3% 0.037 5.2% 0.028
top 400z-norm 7.3% 0.038 5.1% 0.028
top 500z-norm 7.5% 0.039 5.1% 0.028

all z-norm 7.5% 0.043 5.0% 0.027

consistently resulted in large improvements compared withno
score normalization. These improvements seem larger than
those obtained byzt-norm in comparable systems so, after we
had finished running all of our experiments, we returned to this
question to see if we could get a better understanding of why
zt-norm made such a big difference in our system.

One respect in which our speaker enrollment procedure dif-
fers from that of other systems is that it provides an estimate of
the uncertainty in MAP estimation of a target speaker’s super-
vectors which arises from the fact that the speaker’s enrollment
data is of limited duration. This uncertainty is expressed as a
diagonalCF × CF covariance matrix which we denoted by
Cov(s, s) in [5]. The uncertainty is typically quite large (about
10% of the variance of the speaker population in a 300 speaker
factor model and much larger in the case of no speaker factors)
and it will only be zero if the amount of enrollment data is infi-
nite.

We included the covariance matrixCov(s, s) in the func-
tion which evaluates the score of a verification trial (equation
(19) in [5]). The effect of this is to decrease the score of a
verification trial if the uncertainty in estimating the hypothe-
sized speaker’s supervector is large. (The idea is to penalize
target speakers having small amounts of enrollment data.) In
the light of the experiments conducted here, it occurred to us
that zt-norm must actually be undoing the effect of including
Cov(s, s) in the likelihood evaluation because the purpose of
z-norm is to fit the scores of imposter trials forall target speak-
ers to a common bell curve (irrespective of the amounts of en-

Table 4:Topt-norm results on all trials of the core condition of
the NIST 2006 SRE.

t-norm zt-norm
EER DCF EER DCF

top 100t-norm 8.0% 0.039 4.8% 0.025
top 150t-norm 7.9% 0.039 4.8% 0.026
top 200t-norm 8.2% 0.042 4.8% 0.026

all t-norm 8.2% 0.041 5.0% 0.027

rollment data available for the different target speakers). So we
ran some experiments to see the effect of suppressing the contri-
bution of these covariance matrices. For these experiments, we
used the female portion of the NIST 2006 core condition (En-
glish language trials only). The results are summarized in Table
5. Note that, as we anticipated, uncertainty modeling has noef-

Table 5:The effect ofzt-score normalization with and without
uncertainty modeling. Female portion of the NIST 2006 core
condition, English language trials only.

With Uncertainty Without
EER DCF EER DCF

1000z-norm utterances 4.1% 0.024 4.1% 0.024
222z-norm utterances 4.5% 0.024 4.5% 0.024

no norm 7.7% 0.035 6.3% 0.032

fect whatever in the presence ofzt-norm. However, it actually
hurts in the absence of score normalization (line 3) so this seems
to explain part of the large performance gains that we attributed
to zt score normalization. Note that when uncertainty modeling
is turned off, it is still the case that 1000z-norm utterances give
better results than a more ‘reasonable’ number, 222.

We no longer use uncertainty modeling in our system. Al-
though the results that we will report in the remainder of the
paper were obtained with uncertainty modeling, there is no rea-
son to believe that they were affected by this.

5. Varying the number of speaker factors in
the core condition

We trained gender dependent factor analysis models, each hav-
ing 50 channel factors but different numbers of speaker factors,
on the data sets described in Section 3.3 and tested these mod-
els on the core condition of the NIST 2006 SRE. The results
are summarized in Table 6 where it is apparent that the larger
the number of speaker factors, the better the performance. (The
expression “0 speaker factors” refers to the case wherev = 0

in (3); the expressiond 6= 0 indicates explicitly that the term
dz was included in (3).)

Table 6: Results obtained on the core condition of the NIST
2006 SRE with varying numbers of speaker factors.

All trials English trials
EER DCF EER DCF

d 6= 0, 0 speaker factors 6.2% 0.030 4.6% 0.025
d 6= 0, 100 speaker factors 5.3% 0.029 4.1% 0.024
d 6= 0, 300 speaker factors 5.0% 0.027 3.5% 0.021

These results are not surprising; we found exactly the same
pattern in our experiments on the core condition of the NIST
2005 SRE reported in [5]. A question which we did not at-
tempt to explore in that article was whether performance would
continue to improve as we increased the number of speaker fac-
tors beyond 300. The main obstacle here is the computational
burden of training factor analysis models with very large num-
bers of speaker factors. This can be alleviated by modifying
the training algorithm so as to suppress the termdz in (3) al-
together and by using MAP estimates of the hidden variables
rather than integrating over them. (The simplification hereis
analogous to the difference between the forward-backward al-



gorithm and Viterbi decoding.) We rewrote our software ac-
cordingly but since the new version was designed to work with
full covariance universal background models, and since we are
using very large numbers of imposters in our experiments, it
runs slowly at verification time and we have been restricted in
the number of experiments we can perform with it. Thus we
will only report results on the female portion of the test set. The

Table 7:Results on the female portion of the core condition of
the NIST 2006 SRE (English trials only) obtained with large
numbers of speaker factors

English trials
EER DCF

d 6= 0, 300 speaker factors 4.1% 0.024
d = 0, 500 speaker factors, full covariances4.3% 0.023
d = 0, 700 speaker factors, full covariances4.2% 0.022

results presented in Table 7 show that small improvements inthe
DCF can be obtained by increasing the number of speaker fac-
tors in this way, but for practical purposes, performance seems
to saturate at about 300 speaker factors.

These results also suggest that only minor improvements
(as measured by the DCF) can be obtained with full covariance
GMM/UBM systems and that these improvements may be off-
set by minor degradations (as measured by the EER). This line
of experimentation was partly motivated by the impressive re-
sults obtained with HLDA in [13]. If HLDA is implemented
without dimensionality reduction (i.e. MLLT) then its roleis
to compensate for the inadequacies of the diagonal covariance
matrix assumption in conventional Gaussian mixture modeling.
But this assumption is probably no longer necessary: there is no
shortage of speech data with which to train large full covariance
UBM’s for speaker recognition. In speech recognition, MLLT
has already been superseded to some extent by full covariance
HMM modeling. (IBM has developed speech recognizers with
more than 100 K full covariance Gaussians [14].) Our prelim-
inary results notwithstanding, it seems quite likely that full co-
variance GMM/UBM systems will eventually prove to be useful
in speaker recognition. Another motivation for experimenting
with full covariance UBM’s was to see if we could find any
useful information about speaker and/or channel effects insec-
ond order Baum-Welch statistics. However we had no success
at all with that problem.

Finally we can compare our best results with the results sub-
mitted for the 2006 evaluation. (This is the “reference system”
mentioned in Table 8.) The performance of the two systems
is very similar but it is clear that excluding the 2005 SRE data
from factor analysis training has cost us a few points in terms
of the DCF on the English language trials of the core condition
despite our improved score normalization and extended acous-
tic feature set.

Table 8:Comparison of our best results on the core condition of
the NIST 2006 SRE with the results submitted for the evaluation.

All trials English trials
EER DCF EER DCF

d 6= 0, 300 speaker factors 5.0% 0.027 3.5% 0.021
d 6= 0, Reference system 5.1% 0.027 3.3% 0.017

6. Varying the number of speaker factors in
the extended data condition

We now report the results of replicating the experiments in Sec-
tion 5 on the extended data condition of the 2006 NIST SRE.

Returning to the factor analysis models with 0, 100 and 300
speaker factors described in Section 5, Table 9 summarizes the
results we obtained when we used these models in the extended
data condition of the 2006 evaluation. Here we observe a differ-
ent pattern from Table 6: the best performance is achieved with
100 rather than 300 speaker factors. Note also that, at leastas
measured by the EER, the performance with 100 speaker factors
is much better than with no speaker factors.

Table 9:Results obtained on the extended data condition of the
NIST 2006 SRE with varying numbers of speaker factors.

All trials English trials
EER DCF EER DCF

d 6= 0, 0 speaker factors 3.0% 0.014 2.7% 0.013
d 6= 0, 100 speaker factors 2.2% 0.011 1.9% 0.010
d 6= 0, 300 speaker factors 2.4% 0.012 2.1% 0.011

To interpret these results it is helpful to compare the the
matrix tracestr(d2) and tr(vv∗) in the 100 and 300 speaker
factor case. For the 100 speaker factor model (female gender)
we found

tr(d2) = 53.85, tr(vv
∗) = 400.71 (4)

and for the 300 speaker factor model

tr(d2) = 10.77, tr(vv
∗) = 465.52. (5)

Thus, for the 300 speaker factor model, almost all of the
speaker variability is confined to the speaker space (i.e.m +
Rangevv∗) and tr(d2) is much smaller than in the case of
the 100 speaker factor model. (It is reasonable that most of the
speaker variability should be accounted for byv in both cases
sincev has many more free parameters thand.)

As was first pointed out in [15], even ifd is small, it will
always contribute something in estimating a speaker model pro-
vided that there is sufficient enrollment data for the speaker. For
the 300 speaker factor model,d is so small that this effect is not
manifest even if there are 15–20 minutes of enrollment data.
On the other hand, for the 100 speaker factor model, both of the
termsdz andvy in (3) are contributing in the extended data
condition.

Again, the question arises whether increasing the dimen-
sionality of the speaker space beyond 300 can improve perfor-
mance. We obtained some results on the female subset of the
extended data condition using the full covariance factor analysis
models with 500 and 700 speaker factors described in Section
5. These results are summarized in Table 10; they show that
performance has already saturated at 100 speaker factors.

Finally we can compare our best results with the results sub-
mitted for the 2006 evaluation. (This is the “reference system”
mentioned in Table 11.) We see that the two sets of results are
very similar on the English language trials of the extended data
condition and that the results obtained with the rebuilt factor
analysis system on all trials of the extended data conditionare
better than those of the reference system.



Table 10: Results on the female portion of the extended data
condition of the NIST 2006 SRE (English trials only) obtained
with large numbers of speaker factors

English trials
EER DCF

d 6= 0, 100 speaker factors 1.9% 0.010
d 6= 0, 300 speaker factors 2.1% 0.011
d = 0, 500 speaker factors, full covariances2.3% 0.014
d = 0, 700 speaker factors, full covariances2.1% 0.014

Table 11:Comparison of our best results on the extended data
condition of the NIST 2006 SRE with the results submitted for
the evaluation.

All trials English trials
EER DCF EER DCF

d 6= 0,100 speaker factors 2.2% 0.011 1.9% 0.010
d 6= 0, Reference system 2.4% 0.015 1.7% 0.009

7. Conclusions
A factor analysis system with several hundred speaker factors
that has been trained with data consisting of multiple record-
ings of, say, 1000 speakers is capable of memorizing the char-
acteristics of individual speakers in the training set so that, if
the system is tested on the training speakers, the results can be
quite misleading. We first observed this phenomenon in [6].

Some of the data from the 2005 NIST SRE was recycled
for the extended data task of the 2006 evaluation. Since we
used this data for factor analysis training, there was some doubt
about the validity of the results we submitted.

We therefore decided to exclude the 2005 data from fac-
tor analysis training in order to experiment properly with the
2006 extended data test set. The restricted training set consists
principally of Switchboard rather than Mixer data so we did not
expect to obtain particularly good results. However we found
(as in [5]) that some simple experiments in score normalization
gave dramatic improvements in performance. Thus by using a
very large number ofz-norm speakers forzt-norm we were able
to obtain results comparable to those we submitted at the time
of the 2006 evaluation, both on the core condition and on the
extended data condition.

A general trend which is apparent in the results presented in
this paper is that we obtained substantially better performance
on English language trials than on all trials. We attribute this
to the fact that our factor analysis training set contains very lit-
tle non-English speech (more than 80% of the data comes from
the Switchboard corpora). Another clear pattern is that perfor-
mance on female speakers is much poorer than on males. We
had hoped that increasing the number of cepstral features from
12 to 19 would narrow the gender gap.

Our experience with the core condition of the previous
NIST SRE data sets has been that the eigenvoice component
vy in the speaker variability model (3) is much more useful
than the classical MAP componentdz for speaker modeling.
The results presented in Section 5 provide more confirmation
of this.

On the other hand the NIST extended data task is interest-
ing from the point of view of factor analysis modeling because
it facilitates experimentation with this question in situations
where very large amounts (15–20 minutes) of enrollment data

are available for a target speaker. We therefore experimented
with a range of speaker factor configurations and found that the
best performance could be achieved with a limited number of
speaker factors (100 rather than 300 or more as in the core con-
dition) and that both termsvy and dz contribute to speaker
modeling in this situation.

The reason for the fact that the termdz in (3) is of limited
use is that almost all of the inter-speaker variability in a fac-
tor analysis training set can be accounted for with a sufficiently
large number of speaker factors. This led us to revisit the ques-
tion of how best to estimated in [16]. In that paper, we propose
a new estimation procedure ford which yields 10–15% reduc-
tions in error rates on the core condition of the NIST 2006 SRE
as well as on the extended data condition.
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