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Abstract— This paper investigates the problem of secret key
transmissions for an arbitrary Alice-Bob pair in Quantum Key
Distribution (QKD)-based networks. We develop a realistic QKD-
based network framework and we show that the key transmission
problem on such a framework can be considered as a variant of
the classical percolation problem. We also present an adaptive
stochastic routing algorithm to protect users from inevitable
eavesdroppers. Simulations were carried out not only to validate
our approach, but also to compute critical parameters to ensure
security. These results show that large quantum networks with
eavesdroppers do provide security.

Most applications transport secret keys over the Internet
using Public Key Infrastructure (PKI). PKI relies on assump-
tions about the calculation power of eavesdroppers and the
non-existence of effective algorithms for certain mathematical
“hard” problems. This is not enough for some applications.
Quantum Key Distribution (QKD) technology provides proved
unconditional security in the key transmissions [1], [2]. It has
however several limitations, most prominently throughput and
range [3], [4]. This makes more complex the construction
of large QKD-based networks enabling perfectly secret key
exchange between members. Besides, large networks are vul-
nerable, and some intermediate nodes may be controlled by
eavesdroppers.

This paper studies a model of partially compromised QKD
network in which two members want to establish a common
key with the near certainty that this key will not be eaves-
dropped. The contributions are (i) a model of partially com-
promised QKD networks, (ii) a proposal based on stochastic
routing to augment the secrecy, (iii) the use of percolation
theory techniques to demonstrates how near-certainty can be
achieved.

The remainder is organized as follows. In Section I, we
introduce the context and define our problem statement. In
Section II, we present a first algorithm and analyze it using
percolation theory. In Section III, we present a new secret key
agreement scheme that could be considered as an extension of
our first proposal. Relation with other works is presented in
Section IV and we conclude in Section V.

I. A PROPOSED QUANTUM NETWORK FRAMEWORK

We first state the context of our work (cryptography, QKD
links and networks, stochastic routing), then formulate our
proposal, and introduce percolation theory as the tool we use
to evaluate some critical parameters.

Fig. 1. A single QKD Link

A. Cryptography basics

Suppose Alice wants to transmit a secret message M to
Bob over some public network, say the Internet. According to
Claude Shannon’s information theory [5], a cipher is perfectly
secret if the cipher-text C reveals no information about the
message M , i.e., if I(C,M) = 0. The one-time pad cipher can
help Alice and Bob to share perfect secrecy provided that they
have a common secret key K that is as long as the message:
• Alice sends K to Bob, K has the same size as M .
• Alice uses K as an one-time pad key to cipher the private

message: C = M ⊕K and sends it.
• Bob deciphers C: M = C ⊕K.
The question is: how can Alice send K to Bob with absolute

secrecy?

B. QKD links

Quantum mechanics prove that a QKD link is absolutely
secure. It is already implemented in some realistic applications
[1], [2], [3], [4]. Such a link consists of two elementary links
(see Figure 1):

1) A classical link (Internet, phone, etc.) to exchange
control information for treating quantum data according
to a chosen QKD algorithm.

2) A direct quantum link to transport quantum particles,
e.g., photons. Quantum data is extracted from these
particles and processed to gain inviolable information
to build the secret key.

QKD links are a perfect means for Alice to send the key K
to Bob. Unfortunately, QKD links provide limited transmission
rate and short distance. The fastest rate of single QKD links
is 1 Mbps over a 750 m free-space link. As for distance, the



Fig. 2. A long QKD link using relays

current record is 150 km in fiber and 23 km in free space,
with a typical rate of 1 Kbps or so.

To overcome the distance limitations, one can use a chain
of QKD data relays (see Figure 2). A QKD data relay is not a
quantum repeater, it is a terminal that establishes a QKD link
with the previous element of the chain and another with the
following elements:
• Relay k establishes an encrypted communication, a QKD

link, with relay k − 1;
• Relay k receives encrypted data from relay k − 1;
• Data is decrypted and stored in the memory of relay k;
• Relay k establishes an encrypted communication, a QKD

link, with relay k + 1;
• Data in memory is encoded and sent to relay k + 1.
To improve the transmission rate, one needs several QKD

routes. In short, building a quantum network on top of QKD
links solves throughput and range limitations, but in turn
compromises the security by making it more likely that some
nodes are eavesdropped.

How can we counter the likeliness that some nodes of
the network are compromised? How can we be resilient to
message interception?

C. Stochastic routing

Traditional routing algorithms, such as those used on the
Internet, are mostly deterministic. Because they are tailored to
be efficient, one can guess the route that will be taken with
a high probability even though there are an almost infinite
number of routes connecting two points of the Internet. This
compromises security.

Stochastic routing addresses this problem [6], [7]. Its basics
are simple: every packet is routed independently, and each time
a node has to send (or forward) a packet, it randomly chooses
one of its neighbors, not necessarily the most “efficient” one.
Of course the selection is slightly biased so that eventually the
message is delivered to its destination.

Counter-interception measures are then simple to design:
Alice splits key K into n parts Ki so that the whole set is
needed to compute K again. One well known method consists
in computing Ki such that K =

⊕n
i=1 Ki (bit-wise or). Even

if Eve intercepts all the messages but one, the key K is safe.
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Nodes are represented by squares (not crossings). White nodes are
safe, and gray nodes are attacked and controlled by Eve. Alice
and Bob are two random safe nodes.

Fig. 3. Two-dimensional lattice network

Obviously stochastic routing will not work properly if the
physical network features pivotal nodes.

D. Quantum network topology

The Internet topology features some backbone nodes where
Eve can predict with high probability that packets will pass,
provided she knows the source and destination. Such a topol-
ogy does not suit quantum networks: to ensure that there are
many routes, each node should have several (more than two)
neighbors.

The poor distance covered by today’s QKD-links also
influences the design of topology. Although the maximum
length of quantum links is about 150 km, because of rates
and costs, 30 km-long quantum links are more likely to be
used.

As a first step in studying QKD networks and appropriate
routing algorithms, we will approximate their topology as
a simple square grid, a 4-connected lattice (Figure 3). The
grid will be large enough so that we can neglect nodes on
the boundaries (Alice and Bob will be far from them). This
roughly models a large region meshed with QKD links.

We can now state our problem.

E. Problem statement

Alice wants to send a message to Bob securely. We propose
to deploy stochastic algorithms to route split messages on
quantum networks in order to augment the resilience to
eavesdropping.

The network is modeled as a 2-dimensional 4-connected
grid. Eve can control of any node (except Alice and Bob)
with probability pa ∈ [0, 1]. These nodes are called attacked
or unsafe nodes; the others are safe. Alice and Bob do not
know whether a node is safe, but they know the probability
ps = 1− pa that a node is safe. Alice splits the message into



n parts sent to Bob using stochastic routing: each message is
transported via a random path. Eve needs every single part to
decipher the message. The key question is:

How many messages must Alice send so that at least one
message is not intercepted? Percolation theory helps address-
ing that question.

F. Percolation theory

Percolation theory, introduced in 1957 by John M. Ham-
mersley and Simon R. Broadbent, originally aims at modeling
the propagation of a fluid through a medium with random
permeability. It is one of the simplest models exhibiting a
phase transition: there is a critical point at which the global
system properties brutally change. Percolation theory provides
a nice theoretical framework to study complex systems which
present critical thresholds in their state evolution [8], [9].

We focus on 2-dimensional percolation theory on a regular
graph G = Z2, with vertex set V and edge set E. Let the
vertices be independently open with probability p ∈ [0, 1] or
closed with probability 1 − p. Consider a path π in G as a
sequence π = v1, v2, . . . of vertices such that for all i ≥ 1, vi

and vi+1 are adjacent. A path open iff all the vertices vi are
open. Since we consider open vertices (as opposed to edges),
this model is called site percolation.

The set of open vertices forms a random subgraph of G.
The original question of interest is whether the connected
cluster of the origin in that subgraph is finite or infinite. This is
equivalent to the existence of an unbounded open path starting
from the origin.

We denote by u ↔ v the existence of an open path between
two vertices u, v ∈ V . The open cluster C(v) of the vertex v
is the set of all vertices which are connected to v by an open
path:

C(v) = {u ∈ V : u ↔ v}

The central quantity of the percolation theory is the perco-
lation probability, the probability that the cardinality of C(v)
is infinite. It depends on p, the probability that a vertex is
open:

θ(p) = {Pr(|C(v)| = ∞)}

The most interesting property of percolation models is that
θ(p) exhibits a threshold value pc ∈ [0, 1] and a brutal phase
transition: the existence of an infinite connected cluster on the
system appears (see Figure 4). By definition, when p < pc all
the open clusters are finite. But for p > pc there is a positive
probability that an infinite cluster exists. Formally, the critical
probability is defined by:

pc = max{p : θ(p) = 0}

Even if the percolation theory is based on statistical models
which were initially used to describe critical phenomena in
physics, its polyvalence and efficiency in characterizing non-
linear phenomena led the scientific community to use this
theory to model complex systems such as biological systems,
social networks and economic systems.
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Fig. 4. Correlation between open probability p and percolation probability
θ(p).

II. A SIMPLE ROUTING ALGORITHM

A. Percolation-based modeling

There are several similarities between site percolation (Sec-
tion I-F) and our problem. Both take place on a graph and deal
with problems arising from the uncertainty about the quality
of nodes. Open nodes and paths in site percolation correspond
to safe nodes and paths in our context. But, there is a subtle
difference: closed nodes do not allow the fluid to pass, and
they are identified as such, whereas an unsafe node still allows
messages to pass through. There is no way to identify whether
this node is safe.

The focus is also different. Percolation theory was built to
study the existence of a giant connected cluster in the graph
after faulty vertices (or edges) have been randomly chosen
and removed. If both Alice and Bob belong to it, then there
exists at least one open path between them. At first glance,
one may think using the site percolation results in answering
the following question:

How big can the probability ps be before the
existence of a safe path from two arbitrary safe
nodes in the network is lost?

(1)

Though question (1) is similar to the original question of
site percolation, it is not the same. In the percolation problem,
the value of critical probability permits the existence of a
few isolated open nodes that do not belong to the giant open
connected cluster. In our context, if Alice or Bob is not
connected communication is impossible. Therefore we cannot
immediately reuse the traditional results of site percolation.
Nevertheless, its methods are relevant to our problem because
they are able to deal with the randomness of faulty nodes, and
they can help to find our own critical values.

In fact, Question (1) is irrelevant. The question that can help
us go to our final goal is:

How big can the probability ps be before the
existence of a safe path from two arbitrary safe
nodes in the network is no longer almost certain?

(2)
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Question (2)Question (1)
In the site percolation on Z2, the critical value of the open proba-
bility pc is about 0.6. We are interested in the critical probability
pc

s such as any two sites are almost certainly connected. pc
s is

about 0.91 on Z2 (Figure 6 and Figure 7).

Fig. 5. The critical probability of Question (1) and Question (2).

If we denote by θ(ps) the probability that a safe path exists
between two safe nodes in the network, then the difference
between (1) and (2) is shown in Figure 5.

The answer to Question (2) is the critical probability pc
s that

can be defined as follows:

θ(ps) =
{

1, if ps ≥ pc
s

τ : 0 ≤ τ < 1, if ps < pc
s

or:
pc

s = min{ps : θ(ps) = 1}

Obviously, Question (2) is a variant of the percolation
problem. We can use the same statistical models to compute
pc

s: about 0.91 on Z2 (Figure 4). However, the existence of
safe paths does not guarantee they can be found efficiently.
Alice and Bob have no way to be certain whether a path is
safe, i.e., there is no routing algorithm that finds a safe path.
In fact, it is obvious that if ps > pc

s, then a brute-force routing
algorithm can ensure that among its returned paths, there is
at least one safe path. However, between two nodes in our
network, there are infinitely many routes: brute-force routing
is impossible. We need an algorithm that computes a finite
number of paths so that at least one of them is safe. And it is
desirable to be resilient to variations of network state due to
the randomness of attacked nodes chosen by Eve.

We use the following notations:
• ps: (safe probability) probability that a node is safe.
• pa: (unsafe or attacked probability) probability that an

arbitrary node is controlled by Eve. pa + ps = 1.
• πk the route (path) taken by message k.
• θ(ps): given ps, the probability that at least one message

is safe.
• pc

s: (critical value of ps) pc
s = min{ps : θ(ps) = 1}.

• α(π1, . . . , πk): probability that at least one of these paths
is safe.

• β(π1, . . . , πk): probability that all these paths are safe.

• | π |: number of intermediate nodes in π.
• | π1, . . . , πk |: number of common nodes between

π1, . . . , πk.
Thus, with a given path π containing | π | intermediate

nodes, we can compute the probability that this path is safe:

α(π) = β(π) = (1− pa)|π| = p|π|s

We consider the value of θ(ps) = α(π1, π2, . . . πn):

=
∑

1≤i≤n

α(πi)−
∑

1≤i,j≤n
i 6=j

β(πi, πj) +
∑

1≤i,j,k≤n
i 6=j,j 6=k,k 6=i

β(πi, πj , πk)− · · ·

=
∑

1≤i≤n

(1− pa)|πi| −
∑

1≤i,j≤n
i 6=j

(1− pa)|πi|+|πj |−|πi,πj | + · · ·

=
∑

1≤i≤n

(ps)|πi| −
∑

1≤i,j≤n
i 6=j

(ps)|πi|+|πj |−|πi,πj | + · · ·

This is too difficult to evaluate explicitly. So, we use empir-
ical and statistical methods from percolation theory to evaluate
θ(ps) for the different values of ps and n. To this end, we need
to compute the paths πi, i.e., we need a genuine stochastic
routing algorithm that can return n paths for n messages. We
will only consider the cases that have ps > pc

s = 0.91.
By definition, we have:

lim
n→∞

α(π1, . . . , πn) =
{

1, if ps > pc
s

τ : 0 ≤ τ < 1, if ps < pc
s

As already mentioned, a brute-force routing algorithm pro-
vides infinitely many paths, one of which is almost surely safe.
However, this algorithm cannot be implemented. In fact, we
look for a routing algorithm and a value N0 < ∞ as small as
possible such that:

∀n ≥ N0 : α(π1, . . . , πn) = 1

or more precisely:

α(π1, . . . , πn) =
{

1, if n ≥ N0

τ : 0 ≤ τ < 1, if n < N0

B. An adaptive stochastic routing algorithm

We propose an adaptive stochastic routing algorithm and
then seek its value N0 using empirical methods.

The network is a two dimensional mesh n×n, in which each
node could be independently eavesdropped with probability
pa = 1−ps. We limit our attention to the cases of ps > 0.91 so
that the connectivity of all the safe nodes is guaranteed. Each
node is identified by its coordinates (i, j) : i = 0, . . . , n −
1 ; j = 0, . . . , n − 1. The distance between two nodes is
defined by:

d[(i1, j1); (i2, j2)] = |i2 − i1|+ |j2 − j1|

Resilience is important for an algorithm facing many situa-
tion variations caused by the random choices of eavesdroppers.
Here, we informally describe an adaptive stochastic routing.
When Alice wants to send a message to Bob, she computes
the next-hop probability for each neighbor to be the next



step. These next-hop probabilities are determined according
to the correlation of coordinates between each neighbor and
Bob. To ensure that the message can finally reach Bob,
we give a higher probability to nodes closer to Bob. Then
Alice randomly chooses one of her neighbors to forward the
message, according to these probabilities. Thus, some nodes
are more likely to be selected, but nothing is sure. Anyone that
subsequently receives the message would do the same thing
and the chain of communication would continue to Bob.

Candidate selection and probability assignment can vary.
We propose a simple way:
• All the neighbors of the current node are candidates.
• Assume that there are m candidates on the list.

1) Sort the candidates by decreasing distance to Bob.
After sorted, let di, be the distance from candidate
i to Bob. We have:

∀i = 1, . . . ,m− 1 : di ≥ di+1

2) Compute w1, . . . , wm:

wi =

 1, if i = 1
wi−1, if i > 1 ∧ di = di−1

wi−1 + 1, if i > 1 ∧ di > di−1

3) Compute the next-hop probabilities Pr(i):

Pr(i) =
wi∑m
i=1 wi

C. Simulation and results

We aim at computing how many messages must be sent to
ensure that at least one message escapes from Eve. To this end,
we implemented a simulator. We focus on the method, not the
values that we compute. Besides, these values depend on the
precise implementation of the routing algorithm, including the
weights, that we don’t include, nor discuss, here.

1) Simulation: We ran simulations varying the safety prob-
ability ps and the distance dAB between Alice and Bob. For
each ps, we generate a network with randomly spread eave-
droppers. For each distance dAB , we generate 400 (Alice, Bob)
pairs. For each such pair, we run 400 experiments. In each one
we generate stochastic routes from Alice to Bob until we find
a safe one (i.e., a route with no Eve). For each of the 400
experiments we gather the largest number of messages that
were needed. Finally, we compute N0(ps, dAB) (abbreviated
N0), the largest of these figures, i.e., the maximum number of
messages that each 400× 400 experiment required.

The critical value N0 is such that:

α(π1, . . . , πN0) = 1 for all of 1.6× 105 trials

Percolation theory tends to indicate that:

α(π1, . . . , πn) =
{

1, if n ≥ N0

τ : 0 ≤ τ < 1, if n < N0

The routing algorithm may not be able to find any safe path
in a reasonable amount of times, in particular when ps is low,
and dAB is high. We set the maximum effort to 10, 000 times:
Alice sends at most 10, 000 messages, if all are intercepted by

ps

d 0.99 0.98 0.97 0.96 0.95 0.94 0.93 0.92 0.91
1 8 12 12 22 14 12 14 15 16
2 44 105 122 68 82 425 106 3058 ×
3 87 51 273 99 122 233 439 1325 3472
4 95 171 160 408 244 1125 476 × ×
5 66 61 186 917 286 967 2149 1126 2803
6 34 397 356 377 644 583 921 3625 4806
7 43 194 155 395 625 420 2102 7038 3405
8 72 1645 224 414 936 773 1663 6011 7414
9 53 185 477 386 585 717 2794 × 4875
10 149 169 340 1267 3731 1267 2854 × ×
20 127 338 829 9300 × × × × ×
30 315 1987 2908 × × × × × ×
40 386 4111 × × × × × × ×
50 437 × × × × × × × ×
60 656 × × × × × × × ×
70 1911 × × × × × × × ×
80 3117 × × × × × × × ×
90 7039 × × × × × × × ×

100 4117 × × × × × × × ×
110 × × × × × × × × ×
120 × × × × × × × × ×

The symbol × stands for more than 10,000.

Fig. 6. Summary of experiment results for the worst cases

Eve, then we declare that our routing algorithm is not capable
of finding any safe path. Anyway, real world constraints (time
and money) are likely to require a much smaller threshold.
Section III explores solutions in such a case.

2) Results and analysis: Worst case study reveals
Nmax(ps, dAB) (abbreviated Nmax) such that (at least for
1.6× 105 trials):

α(π1, . . . , πn) =
{

1, if n ≥ Nmax

τ : 0 ≤ τ < 1, if n < Nmax

Figure 6 gives the worst cases. Figure 7 plots this table and
reveals a very chaotic behavior: this is because it presents the
maximum number of messages needed, which is unbounded
— percolation theory shows that the probability to require a
large number drastically decreases, but not that it is bounded.
The Figure 8 presents an averaged version of these values,
and presents the expected regularity. Both pictures exhibit a
critical value: dc(ps) such that:

α(π1, . . . , πNmax) =
{

1, if dAB ≤ dc(ps)
τ : 0 < τ < 1, if dAB > dc(ps)

with:
• dc(ps): critical value of distance with a given ps.
• dAB : distance between Alice and Bob.
• Nmax(ps, dAB): the necessary amount of messages to be

sent for the case of dAB and ps.
To look for this critical value dc(ps), we look for the maxi-

mum distance between sender and receiver before the delivery
is compromised (Figure 9). Figure 10 presents the percentage
of safe messages arriving to destination, and Figure 11 focuses
on the critical point from which the guarantee is lost.

In reality, the value of dc(ps) depends on the budget
reserved for the network construction. If one can afford 500
quantum messages, then almost-certain security is achieved up
to ps < 0.97, while 5000 messages tolerate ps up to 0.95 (see
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Fig. 7. The critical distance and the phase transition
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Fig. 8. Average longest paths
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Fig. 9. Critical distances
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Fig. 10. Percentage of safe deliveries with 10,000 attempts
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drawing exhibits the typical shape for percolation phenomena,
see Figure 5.

Fig. 11. Safety for 10,000 attempts
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Fig. 12. Percentage of safe deliveries with 500 attempts



Figure 6). On the other hand, since all the messages are sent
by QKD technology, the rate is low (about R0 = 1Mbps). If
one sends N0 = 500 messages to obtain a secret key having
the same length, then the transmission rate will be degraded,
roughly by a factor of 5001:

Rr =
R0

N0
=

1Mbps

500
= 2Kbps

Similarly, with 5,000 the throughput is even further de-
graded. Thus, choosing an appropriate value for N0 is not
easy. It must be seriously analyzed when taking into account
the balance between the budget and the performance of the
targeted network. In this paper, we leave this objective as an
open problem for future studies.

III. A GENERALIZED ROUTING ALGORITHM

A. The first remarks

The results obtained in Section II, about N0 and dc for
each ps, highlight that an improved routing algorithm is
needed to cover large distances. For any pair, the first routing
algorithm can successfully transmit a secret key provided that
the distance does not exceed dc. For distances greater than
dc, the necessary amount of messages sent by Alice sharply
increases and becomes unrealistic. How can we alleviate this
problem? Using a classical solution: relays. Intuitively, if the
distance between two successive relays does not exceed dc,
then safe communication between them is ensured. Rather,
security problems will arise from relays R1, R2, . . . on the
path.

If we only consider relays on the path, then a path can be
viewed as below:

Alice → R1 → · · · → Ru → Bob

with:

1) d(Alice,Bob) = dAB > dc

2) d(Alice,R1) = dc

3) d(Ri, Ri+1) = dc for i = 1, . . . , u− 1
4) d(Ru, Bob) ≤ dc

Note that from the results of the previous sections, it is
possible that:

• R1 shares a common secret key KA,1 with Alice, and a
common secret key K1,2 with R2.

• Ri, i = 2, . . . , u− 1, shares a common secret key Ki−1,i

with Ri−1, and a common secret key Ki,i+1 with Ri+1.
• Ru shares a common secret key Ku−1,u with Ru−1, and

a common secret key Ku,B with Bob.

1The precise figure depends on the contention nodes. Alice and Bob will
limit the throughput, and since they have four neighbors, the penalty is
somewhere between 125 and 500.
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On the left-hand side, the neighborhood used in the first proposal
(Section II), on the right-hand side, the one used in the relay
searching problem.

Fig. 13. Neighborhood relations

Then, we can perform a classical transmission of the key
K as the following:

Alice K ⊕KA,1−−−−−−→
R1

K ⊕K1,2−−−−−−→
R2

· · ·
K ⊕Ku,B−−−−−−−→

Bob

(3)

Bob can easily decipher the received message (K⊕Ku,B) to
the key K because he has the key Ku,B . If Eve controls only
one relay of the chain, then she will also deduce the key K.
But, if all the relays are safe, then Alice and Bob can totally
trust the secrecy of the key K. Thus, the new problem arising
is that we must have at least a chain of relays that contains
only safe relays. This is similar to our first routing problem,
except that the neighborhood relationship has been changed
(see Figure 13). We can reuse the methodology developed
in Section II: stochastic routing algorithm, simulator, and
statistics to seek the number of searches that will return at least
one chain of safe relays. However, the results can be reused
directly. Although the neighborhood relationship is different,
the probability that a node successfully chooses one safe node
among its neighbors is not changed, it is still equal to ps.
The results of our first routing problem can be applied for the
relays searching problem.

B. A generalized routing algorithm

We now consider our routing problem as a multi-layer
routing problem. At Layer 0, the path is considered as a chain
of nodes and the distance between two nodes is defined as
the minimum intermediate nodes between these two nodes.
Similarly, at Layer i > 0, the path is considered as a chain of
relays and the distance is defined as the minimum necessary
intermediate relays at this layer. The distance between two
successive relays at Layer i+1 is always lower or equal to dc

if we view from Layer i, and lower or equal to (dc)(i+1) nodes
if we view from Layer 0. Clearly, the number of necessary
layers will depend on the distance between Alice and Bob at
Layer 0. More precisely, for a given ps, we have:



• dc: the critical value of distance for the cases of ps

(Figure 9);
• d(0), . . . , d(TL): the distance between Alice and Bob at

the layer 0, . . . , TL, defined as follows:
1) d(0): number of intermediate nodes;
2) ∀i > 0, we consider the number of relays at this

layer as the unit of measurement, thus:

d(i) = d d(0)

dc × dc × · · · × dc︸ ︷︷ ︸
i times

e = d d(0)

(dc)i
e

3) TL is such that:

TL = max{i : d(i) > 1}

Note that ∀i : d(i) ≤ d(i−1) × (dc).
• N (0), N (1), . . . , N (TL): the critical amount of finding a

path between two successive relays at Layer 0, 1, . . . , u,
respectively. Note that a path at Layer i > 0 is considered
as a chain of relays of this layer. As the distance between
two successive relays is always less than dc, we have:
N (0) = N (1) = · · · = N (TL).

At the top layer we obtain a chain containing all the
safe relays, or a safe path. With two successive relays, we
consider the next layer TL − 1 and we can also obtain a
safe path between them by using the same routing algorithm.
Recursively we obtain a chain containing only safe nodes at
layer 0. We can establish a perfect key between Alice and
Bob. To simplify the presentation, we analyze an example of
d(0) = (dc)2 or TL = 1. We have two parameters:
• N0: critical number of messages to send so that at least

one message escapes from Eve if the distance between
source and destination does not exceed dc;

• N1: the critical attempt of relay searches such that there
is at least one chain that contains only safe relays.

The protocol of establishing the key between Alice and Bob
is described below:

1) Alice sends N1 messages to randomly establish N1

chain of relays.
2) With each chain of relays {R(i)

j : i = 1, . . . , N1; j =
1, . . . , ui}:
• Establish, simultaneously, keys K

(i)
1 , . . . ,K

(i)
ui+1

between the ui + 1 two-nodes pairs
(Alice;R1), (R1;R2), · · · , (Ru−1;Ru), (Ru;Bob),
respectively. This task is done by the transmissions
of N0 random messages from R

(i)
j to R

(i)
j+1 as

described in the previous sections;
• Alice and Bob establish a common key K(i) as

described in Equation 3.
3) Alice and Bob compute the final secret key K:

K =
N1⊕
i=1

K(i)

Thus, each chain of relays must send N0 random messages
to establish a key with the first relay of this chain, and each

relay on this chain must also send N0(ps, dc(ps)) random
messages. The total amount of messages sent by Alice is:

Ntotal = N1 ×N0︸ ︷︷ ︸
to establish keys

+ N1︸︷︷︸
to establish relay chains

= (N0)× (N0 + 1)
(4)

The above formula shows that the necessary amount of
messages sent by Alice is a polynomial function of the
distance (measured by nodes) between Alice and Bob. The
exponential explosion at the critical distance dc in our first
routing algorithm (Figure 7) is avoided.

IV. OTHER WORK

A. Percolation theory

As mentioned in Section II-A, the context of percolation
theory has many similarities with our problem context. The
significant method used to solve percolation problems is
simulations and statistics that report the percolation probability
and an approximate formula that describes the system state at
the phase transition. In this paper, our ambition is not to find
approximate formulas that describe the evolution of a certain
process. Some of the thresholds obtained by our simulator
and statistics are enough to build our generalized secret key
agreement scheme.

B. Stochastic routing

The main challenge in stochastic routings is how to compute
the next-hop probabilities that optimize the routing cost. In
some contexts, stochastic routing can be re-formalized as an
abstract game between two players [6], [7]: the designer of the
routing algorithm and the attacker that attempts to intercept
packets. It is assumed that the attacker has a finite resource,
i.e. she only intercepts packets at some nodes on the network.
This is a zero-sum game in which a designer seeks a strategy to
minimize the cost that he has to pay for a packet being safely
transmitted and the attacker wants to maximize this cost. There
are two types of games:

Off-line games
The attacker starts by selecting where she will
eavesdrop. This choice is made before the routing
starts, but remains unknown to the designer. The
designer must determine the next-hop probabilities
that minimize the overall probability that the packet
will be intercepted.

On-line games
At every stage of game, two players are allowed to
make their decisions simultaneously with full knowl-
edge of current network state but without knowledge
of what the other player will do.

Both have been solved in [7]. Though off-line routing
games share common assumptions with our problem, the
final goal is different: In off-line routing games, the main
task is to determine the next-hop probabilities that minimize
the overall probability of packet interception, while in our



problem, the goal is to succeed in getting at least one packet
safely transmitted. Previous works on stochastic routing focus
on performance metrics (latency, throughput, acceptance rate,
etc.), which are not of major importance to quantum networks.
What matters is sensitivity to eavesdropping and security.

C. Quantum network

The first quantum network, DARPA Quantum Network,
was built to test the strength of such systems in the real-
world applications. It consists of three sites (Cambridge,
Harvard, and Boston University) and became fully operational
in October 2003 [10]. It relies on trusted relays: one must
trust the security of all the participants, and be sure that
eavesdroppers cannot sniff any information on any of the
nodes. In realistic contexts, nobody can be sure that he does
not reveal any information for eavesdroppers. Moreover, in
a larger quantum network, the assumption that one can trust
all the nodes becomes unacceptable. In this paper, we studied
large quantum networks in a more realistic context: nodes are
not totally trustworthy, there is a probability that nodes are
controlled by eavesdroppers.

V. CONCLUSION

We investigated the constraints of quantum networks and
the ineluctable probability that some nodes are attacked. We
proposed a secure key exchange scheme that scales well
with distance. It is based on stochastic routing, and was
analyzed using percolation-theory based methods. Not only
did it validate our solution, it also gave figures allowing
us to engineer various parameters. For instance, given the
probability that nodes are attacked and the distance between
source and destination, it gives the the number of pieces the
message must be broken into.

Much remains to be done. Studying more general topologies
is of primary importance: grids are only the first stab. The node
safety-probability might also vary between regions. Finding
formulas (explicit or implicit via equations) is also of interest,
as they usually provide more revealing results than simulations
do. Finally, we will also work to improve our stochastic routing
proposal.
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