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Abstract. Connected attribute filters are morphological operators widely
used for their ability of simplifying the image without moving its con-
tours. In this paper, we present a fast, versatile and easy-to-implement
algorithm for grayscale connected attribute thinnings and thickennings,
a subclass of connected filters for the wide range of non-increasing at-
tributes. We show that our algorithm consumes less memory and is com-
putationally more efficient than other available methods on natural im-
ages, for strictly identical results.

1 Introduction

Connected attribute filters are morphological operators enjoying the property
of simplifying an image while preserving the contour information, as they work
on the connected components of the image level-sets [9, 15, 20]. Such filters
are widely used in practice for image classification [1], filtering [18], segmenta-
tion [5, 21], feature analysis [23] and shape filtering [26].

Connected attribute filters are first classified according to their theoretical
properties. Filters considering image upper level-sets, such as attribute open-
ings and thinnings, are anti-extensive [18]. Intuitively, they are well suited for
applications where objects are brighter than their background, as higher level
components are seen as included in lower level ones. The dual vision takes
lower level-sets into account and leads to extensive filters such as attribute clos-
ings and thickenings. A second distinction among connected filters is made on



the type of attribute used. Attribute openings and closings correspond to the
case where the attribute associated with a level set is a non-decreasing func-
tion w.r.t. set inclusion. A popular example can be found in area opening and
closing [24, 20]. A larger class consists of filters using non-increasing criteria,
namely attribute thinnings and thickenings. Numerous practically interesting
criteria fall in that category, such as elongation criterion from [26], complex-
ity/simplicity, motion estimation and entropy factors from [18].

Efficient algorithms have been described in [6, 14, 18, 24] for connected at-
tribute openings and closings. To our knowledge, few algorithms have been
proposed for attribute thinnings and thickenings [3, 18]. In this paper, we present
a new algorithm for such filters. It requires less memory and exhibits better run-
time performance compared to other available methods, while yielding strictly
identical results.

Defining connected attribute filters for grayscale images with non-increasing
criteria is not a straightforward task. Indeed, the threshold decomposition prop-
erty [8, 12] only holds for increasing criteria, i.e. for attribute openings and clos-
ings, allowing for a direction definition using lower- or upper-sets of the image.
For thinnings and thickenings, various definitions become suitable. Salembier’s
Min/Max-Trees offer convenient representations to express them [18].

A Max-Tree is an inclusion tree that considers connected components of
upper-level sets of an image. A node of the Max-Tree corresponds to a con-
nected component C0 of an upper-level set. Its parent is defined as the con-
nected component C1 of the higher upper-level set such that C0 6= C1 and
C0 ⊂ C1. The leaves of a Max-Tree correspond to the regional maxima of the
image. An illustration is given in Figure 1-a). The dual representation by a Min-
Tree considers lower-level sets instead of upper-level sets. As reported in [18],
connected attribute filters for grayscale images can be defined as a pruning of its
Min- or Max-Tree, in such a way that the threshold decomposition property [8,
12] holds. This enables the straightforward reconstruction of the filtered image
from the pruned tree. Given a non-increasing criterion, many different pruning
rules can be considered, each leading to a different connected-set filter [18, 26].

Following strictly this definition, a possible approach to implement a con-
nected attribute filter consists in first building the Min/Max-Tree and then ap-
plying a pruning process. The original Min/Max-Tree construction is presented
by Salembier et al. in [18]. It relies on a recursive flooding procedure using a hi-
erarchical queue data structure. An alternative scheme for Min/Max-Tree con-
struction based on Tarjan’s union-find algorithm has been originally proposed
by Hesselink in [11] and by Najman et al. in [16].

Direct implementations which by-pass tree construction are also possible.
The latter require to choose the pruning rule before performing the filtering
process. A popular choice for the pruning, known as the Max rule [18], consists
in removing a node if its associated criteria do not satisfy a prescribed thresh-
old and if all its descendants were removed. In [3], Breen et al. propose a queue-
based algorithm to perform direct filtering using the Max rule. In [25], Wilkin-
son et al. present an union-find based algorithm for performing connected at-



tribute openings and closings. It should be noted that the same algorithm also
performs a Max rule-pruning for non-increasing criteria.

In this paper, we follow the approach of Darbon and Akgül [6] for connected
attribute closings and openings and extend it to non-increasing criteria. The
main contributions of this paper are the following. We propose a fast and mem-
ory wise algorithm to perform the filtering for the main pruning rules proposed
in the literature. We compare our algorithm with other available methods and
show that our algorithm is more efficient in terms of both memory requirements
and computational load. In Section 2, we present our algorithm along with its
variations to cope with different pruning rules. Section 3 is devoted to the pre-
sentation of numerical experiments and comparisons. Finally in Section 4, we
draw some conclusions and sketch future prospects.

2 Algorithm

The proposed algorithm relies on a tree pruning scheme, as in Salembier et
al.’s original work for the Max-Tree construction [18]. A flooding process builds
the inclusion tree of connected components and a successive resolution stage
applies a pruning strategy to recover filtered pixel values. Our work also bene-
fits from optimizations introduced in [6], by avoiding the external hierarchical
queue and the sorting procedure used in [18]. We emphasize our algorithm is
straightforward to implement given the pseudo-code of this Section and is ver-
satile enough to be suitable for numerous filtering tasks without modification.

In the following, we limit ourselves to attributes that can be computed re-
cursively during the flooding pass, by adding new points or by merging com-
ponents. For the sake of simplicity, our algorithm is given for anti-extensive,
attribute thinning filters. The dual representation for attribute thickenings only
requires few tests to be inverted in the flooding procedure. We denote by N the
size of the image, L the number of gray levels and A the number of auxiliary
values needed to compute the attribute. We first describe the flooding process
which builds the tree and then the resolution pass which finalizes the filtering.

2.1 Flooding

Our flooding step is directly inspired by Salembier’s Max-Tree one and is generic
for any resolution strategy. Following ideas introduced in [6], we use an array
status to store pointers to points encoded as positive integers (lexicographic
rank). In our algorithm, status serves two purposes. It first stores the hierar-
chical queue and eventually turns into the Max-Tree itself, encoding child-to-
parent links. It is initialized to a special value NONE which signifies that no link
was set and that therefore points have not been processed.

We use three arrays of length L, namely last, representative and
attribute. The value last[h] stores the last point introduced in the h-level
queue. The value representative[h] stores the first encountered point for
the current h-level component Ck

h , which serves as an unique representative



of Ck
h . The value attribute[h] holds the A values needed to compute Ck

h

attribute.
Since we seek after a generic thinning procedure, we build the tree explicitly

and keep its structure intact until resolution. We cannot afford altering it as
done in [6]. To keep time and memory requirements as low as possible, we
instead use a boolean array tag which points out components not satisfying
the thinning criterion λ.

Our flooding process is detailed in Algorithm 1. At level h, the procedure
flood(h) iterates the queue at the same level, using last[h] (line 2), to re-
trieve current component Ck

h . Point p is dequeued (lines 3-4) and is set to point
to its representative r (line 6). Non-representative points are tagged so they al-
ways take their representative’s value, without loss of generality w.r.t. the res-
olution rule. Then non-processed neighbors q of p are visited (line 7). They are
pushed in the queue (lines 10-11) and registered as representative if we reached
a new level component (line 14). If q’s gray-level i is higher than h, the flood-
ing procedure is relaunched recursively to extract the subtree (lines 17-19). Back
from the neighbors, the attribute of the current h-level component is updated
(line 21).

Once the propagation at level h is over, Ck
h is completely retrieved and its

final attribute value can be tested (line 21). If it does not fulfill λ, Ck
h representa-

tive is tagged. Parent relationships are then set in a similar way to [18] and [6]
(lines 23-29). Auxiliary arrays at level h are finally reset (lines 31-32).

The flooding is initially launched at the lowest level in the image. Even-
tually, the entire tree structure is encoded in status. By construction, non-
representative points are directly linked to their representative and represen-
tatives point to a lower level representative until root is reached. Additionally,
we can directly identify a component that does not fulfill the attribute criterion
by checking its tag.

2.2 Resolution

Once the tree is built and tagged, a resolution phase eventually retrieves filtered
values and stores them in the output image out. Depending on the type of non-
increasing attribute [18] and the application, several resolution schemes have
been proposed in the literature. We implemented classical rules such as Direct,
Min and Max rules [10, 19, 20] as well as the Subtractive rule from [22]. Due to
space restrictions, we only present Min and Max rules. Others can be easily
deduced from the mechanisms presented here.

In contrast to Salembier’s original Max-Tree approach [18], we do not dis-
pose of a sorted structure allowing tree traversals from parents to children. Our
algorithm remains as efficient as possible by altering the tree to avoid redun-
dant operations.

Min Rule A node is removed if it does not satisfy λ or if an ancestor was re-
moved. A loop on all image points launches the recursive procedure of Algo-
rithm 2. The tree is progressively encoded with the final filtered values as neg-



ative integers (-val-1) similarly to [6]. A point is set to its parent’s value if it is
tagged or if its parent’s value changed. An illustration of this strategy is given
in Figure 1-b).

Max Rule A node is removed if it does not satisfy λ and if all of its children
are removed. This rule requires two passes since the tree is encoded with only
parent relationships. The first loop launches Algorithm 3 procedure on all im-
age points. It uses a boolean child kept to propagate the information that a
child node has kept its value. If it can be resolved during the first pass, the final
filtered value is encoded in status[p] as a negative integer. If not, the point
does not fulfill λ and has all of its children removed. Thus, a second pass (Algo-
rithm 4) simply tracks down non-negative status values to set them to their
parent’s value. An illustration of this strategy is given in Figure 1-c).

Algorithm 1 flood(level h)
1: r← representative[h]
2: while last[h] 6= NONE do // propagation at level h
3: p← last[h] // pop p from the queue
4: last[h]← status[p]
5: if p 6= r then // set to the representative
6: status[p]← r; tag[p] = true
7: for all neighbors q of p with status[q] = NONE do
8: i← ima[q]
9: status[q] = last[i]; last[i] = q // push q in the queue

10: if representative[i] = NONE then
11: representative[i]← q
12: m← i
13: if i > h then // flood higher level components
14: repeat
15: m← flood(m)
16: until m > h
17: attribute[h].update(p) // update the attribute with p
18: if attribute[h].val < λ then // tag as not satisfying λ
19: tag[r] = true
20: // set parentship
21: m← h-1
22: while m > 0 and representative[h] = NONE do
23: m←m-1
24: if m > 0 then
25: attribute[m].merge(attribute[h]) // merge attributes
26: status[r]← representative[m] // link representatives
27: // reset level h auxiliary values
28: attribute[h].reinit(); last[h]← NONE;
29: representative[h]← NONE
30: return m
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Fig. 1. Max-Tree and attribute values of a 1D signal (a), Min-rule (b) and Max-rule thin-
ning (c) for λ = 10.

Algorithm 2 resolve min rec(point p)
if status[p] ≥ 0 then // not processed

parent val← resolve min rec(status[p])
if tag[p] = true or parent val 6= ima[status[p]] then

status[p]← -parent val-1; out[p]← parent val
else // p keeps its value

status[p]← -ima[p]-1; out[p]← ima[p]
return out[p]

Algorithm 3 resolve max rec1(point p, boolean child kept)
if status[p] ≥ 0 then // not processed

if tag[p] = false or child kept then // p keeps its value
status[p]← -ima[p]-1; out[p]← ima[p]
resolve max rec1(status[p], true) // propagate info

return

Algorithm 4 resolve max rec2(point p)
if status[p] ≥ 0 then // not processed, assign parent’s value

out[p]← resolve max rec2(status[p])
status[p]← -out[p]-1

return out[p]

3 Analysis and Experiments

In this Section, we compare our approach to Salembier et al.’s Max-Tree algo-
rithm [18] and Wilkinson et al.’s method based on Tarjan’s union-find method
for attribute openings [25]. The latter is not a thinning algorithm, but is strictly
equivalent to a thinning with a Max rule for non-increasing attributes. We vol-
untarily omit priority queue-based algorithms [24, 3] which exhibit a high de-
pendance w.r.t the threshold value λ [14]. Experiments show that our algorithm
is faster for natural images and requires less memory than other other available
algorithms. We first compare memory requirements and then present time re-
sults along with theoretical time complexity.



3.1 Memory requirements

Since N � L in general, we neglect memory used by arrays of size L for all
three algorithms. Salembier et al.’s Max-Tree algorithm is the most demanding
one in terms of memory. It uses a queue of N integers and a tree of size N . Each
tree node contains at least a pointer to the parent, the final attribute value and
the filtered gray level. Min and Substractive rules also require the original gray
level to be stored, totalizing 5N values plus a mandatory output image.

Wilkinson et al.’s union-find algorithm uses two arrays, PixelSort and
Parent, of N integers each. The array Parent eventually stores the output
image. Unlike both other algorithms, attributes cannot be computed in an ar-
ray of size L. It requires an array auxdata of N pointers and a dynamic alloca-
tion/deallocation scheme to limit the memory consumption to N + (A ∗ N)/2
values in the worst case. This totals to at least 3N , at worst 3N +(A ∗N)/2 [14].

Naı̈ve implementation of our approach requires an integer array status,
a boolean array tag and an output image of size N . Similarly to Meijster et
al.’s method [14], a straightforward modification allows for encoding filtered
values in status. The array tag can also be avoided by using a bit of each
status[p] value with bit-masking operations, for an unsignificant computa-
tional cost. Memory requirements can thus easily be lowered to only N integers.

Memory load can become critical for applications such as medical imaging.
Dealing with volumes of nearly N = 5123 voxels, each integer array represents
512MB in memory. Our algorithm allows for processing such volumes with
reasonable requirements using computers of the present era.

3.2 Computational Load

From a theoretical point of view, the computational cost of both Salembier et
al.’s Max-Tree and our algorithm is dominated by the linear flooding. The search
of parent nodes is linear w.r.t to L and the resolution is also linear w.r.t N , lead-
ing to a complexity of Θ(N · L). The complexity of Wilkinson et al.’s union-
find method is Θ(N · log(N)) as shown in [14]. Salembier et al.’s Max-Tree and
our approach are unattractive in theory because their complexity is pseudo-
polynomial [2]. For their complexity to be polynomial, it should be polyno-
mial w.r.t log2(L) since it requires only dlog2(L)e bits to encode the integer L.
They can be made polynomial by using a binary heap, but it seems to be prac-
tically uninteresting [14]. Even if pseudo-polynomial algorithms are theoreti-
cally worse than polynomial ones, they may be more attractive in practice. A
well known example is Dial’s pseudo-polynomial algorithm [7] for solving the
shortest path problem. For many practical problems it outperforms other poly-
nomial algorithms such as Dijkstra’s one, as reported in [2, 7].

Algorithms were tested on a variety of natural images, using various cri-
teria. Due to space restriction, we only present performance results obtained
on four images, the well-known Lena, a highly textured image of a carpet, a
large satellite image with few gray levels and a cardiac Computed Tomography
(CT) medical volume. Original images are given in Figure 2. Their properties



are summed up in Table 1 where Complexity stands for the ratio between the
number of iso-level connected components and image size. Note that the medi-
cal volume was cropped (the original counts 400 slices) in order to allow Salem-
bier et al.’s Max-Tree and Wilkinson et al.’s union-find algorithms to run prop-
erly under our memory constraints (1GB RAM).

Tests presented in Figure 3 were performed using the non-increasing, 2D
and 3D elongation criteria proposed in [26]. Resolutions for Salembier et al.’s
Max-Tree and our algorithm used Max rule to be strictly equivalent to Wilkin-
son et al.’s union-find method. This way, results obtained by either of these
schemes are identical, as they match the exact same theoretical definition and
only differ by the mechanisms involved. Note that applying such a criterion
and such a resolution rule may not be meaningful for all the images presented
here. These tests are presented for the sake of fair performance comparison only.
However, we emphasize they are representative of the behaviors observed for
different criteria and different resolution rules. A result sample is depicted in
Figure 4, where the elongation criterion is applied on the carpet image. An-
other result is given in Figure 5, with the same criterion and on the satellite im-
age. Such a filtering could be used to help further extraction of road networks.
Please refer to the works cited in introduction for additional illustrations of the
numerous applicative possibilities offered by connected attribute filters.

All three algorithms have been implemented in C++ and compiled with full
optimization. Timings were obtained by averaging 100 runs on a Pentium 4
2.4GHz (1MB cache and 1GB RAM). As depicted in Figure 3, our method out-
performs other algorithms for natural images. Execution time of Salembier et
al.’s Max-Tree and our algorithm is independent of λ. A slight dependence to λ
is observed for the Wilkinson et al.’s union-find approach, confirming conclu-
sions of [14].

Since it is based on a similar core flooding scheme, our algorithm exhibits
a limited performance gain (5 to 30%) compared to Salembier et al.’s Max-Tree
algorithm, mainly due to a faster tree construction (no pixel sorting, no exter-
nal queue and less memory used). Our resolution step is slower than Salem-
bier et al.’s Max-Tree’s one because of our non-ordered tree traversal. It seems
that the bigger the image, the less our advantage on the original algorithm be-
comes significant, as can be seen for the medical volume. However, memory
consumption for Salembier et al.’s Max-Tree algorithm can meanwhile become
prohibitive for such applications. We emphasize the effect of memory load and
‘cache-friendliness’ on performance. The less memory an algorithm needs and
the more spatially coherent memory accesses are, the less often cache faults will
occur. In this regard, our algorithm combines all these advantages.

Wilkinson et al.’s union-find approach, on the other hand, seems to suffer
from a construction process more prone to important memory jumps. It may
also be penalized by its dynamic allocation/deallocation scheme. The medical
volume example suggests that the performance gap narrows when the number
of gray levels increases, supposedly because of the dependance on L affect-
ing both other algorithms [14, 17]. To draw a definitive conclusion, one should



adapt Wilkinson et al.’s union-find attribute opening to thinning operations. To
our knowledge, this would unfortunately require additional equipment, fol-
lowing for instance ideas from [16]. Finally, the union-find approach holds a
clear advantage in terms of parallelization possibilities [14]. This may turn it
into a candidate of choice for highly-parallelized environments.

Fig. 2. Test images. From left to right, top to bottom: Lena, carpet, satellite and cardiac
CT (2D slice detail).

Image Size Levels Complexity
lena 512× 512 216 0.38
carpet 1024× 715 255 0.84
satellite 1380× 1780 30 0.24
cardiac CT 512× 512× 100 5000 0.11

Table 1. Test images.
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Fig. 3. Timing results for our algorithm (solid), Max-Tree (dashed) and Union-Find at-
tribute opening (dotted) in function of λ. Elongation attribute thinning [26] on (a) lena,
(b) carpet, (c) satellite and (d) cardiac CT.

4 Conclusion

In this paper, we have presented a new algorithm for attribute thinnings and
thickenings. It is easy to implement and enjoys the versatility and generality of
Salembier’s original algorithm. Experiments on natural images show that our
algorithm exhibits better performance than others while consuming consider-
ably less memory. In a forthcoming paper, we will present new algorithms for
efficient interactive filtering and visualization, as originally proposed in [13]
with the Max-Tree algorithm. Extension of this approach to granulometries [14,
22] and grain filters [4] will also be described.
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Fig. 4. Elongation attribute thinning [26] (λ = 1) on the carpet image. Left: original im-
age. Right: filtered result.

Fig. 5. Elongation attribute thinning [26] (λ = 1) on the satellite image (detail). Left:
original image. Right: filtered result.
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