
Milena: Write Generic Morphological
Algorithms Once, Run on Many Kinds of Images

Roland Levillain1,2, Thierry Géraud1,2, Laurent Najman2

1 EPITA Research and Development Laboratory (LRDE)
14-16, rue Voltaire, FR-94276 Le Kremlin-Bicêtre Cedex, France

2 Université Paris-Est, Laboratoire d’Informatique Gaspard-Monge, Équipe A3SI,
ESIEE Paris, Cité Descartes, BP 99, FR-93162 Noisy-le-Grand Cedex, France
{roland.levillain,thierry.geraud}@lrde.epita.fr, l.najman@esiee.fr

Abstract. We present a programming framework for discrete mathe-
matical morphology centered on the concept of genericity. We show that
formal definitions of morphological algorithms can be translated into ac-
tual code, usable on virtually any kind of compatible images, provided a
general definition of the concept of image is given. This work is imple-
mented in Milena, a generic, efficient, and user-friendly image processing
library3

1 Introduction

Software for mathematical morphology targets several audiences: end users, de-
signers and providers. End users of morphological tools want to apply and as-
semble algorithms to solve image processing, pattern recognition or computer
vision problems. Designers of morphological operators build new algorithms by
using constructs from their software framework (language, libraries, toolboxes,
programs, etc.). Finally, providers of data structures are interested in extending
their framework with new data types (images, values, structuring elements, etc.).

The size of the population of these categories is decreasing: there are more
end users of morphological software than designers of algorithms, and the latter
themselves outnumber providers of data structures. Morphological frameworks
usually address the needs of their clients in this order, and even sometimes ignore
the third or second categories. However, a full morphological framework should
suit all groups of users so that structures of providers and algorithms of designers
can be used by every actor. In this article, we present a software framework for
mathematical morphology designed with two major goals in mind:

1. Be as simple as calling C routines for end users.
2. Be modular enough to be extended w.r.t. algorithms and data structures;

3 This work has been conducted in the context of the SCRIBO project (http:
//www.scribo.ws/) of the Free Software Thematic Group, part of the “System@tic
Paris-Région” Cluster (France). This project is partially funded by the French Gov-
ernment, its economic development agencies, and by the Paris-Région institutions.

http://www.scribo.ws/
http://www.scribo.ws/


and four minor:

3. Be generic: if a morphological operator admits a general definition whatever
the context (topology of the image, structuring element, etc.), then this
algorithm should have a corresponding single implementation.

4. Be close to theory: reading (and writing) algorithms should eventually be-
come natural to scientists used to mathematical morphology notations.

5. Retain efficiency (with respect to run time speed and memory usage) when
it is possible. Dedicated and efficient implementations of morphological algo-
rithms for certain cases are known and should be selected whenever possible.

6. Be user-friendly: users should not have to address memory-related issues or
deal with a program silently failing because of an arithmetic overflow. The
tool should handle these situations, and help the user diagnose any problem.

The paradigm of Generic Programming (GP) [1] which is at the heart of many
modern C++ libraries [2,3] and its application to the C++ language address many
of these concerns. Developing a software library in the context of GP requires
some effort. One of the key ideas is that such a library should be based on
abstractions of the domain (mathematical morphology in this case). The above
requirements will not be fully satisfied if we fail to reify intrinsic concepts of
the domain as abstractions. Several image processing libraries relying on the GP
paradigm exist (ITK [4], VIGRA [5], Morph-M [6]) but as far as the authors
know, none of them seem to meet all of the above requirements.

From the general lattice theory on which is built mathematical morphology,
many authors have proposed derived theoretical frameworks. The first ones are
graphs [7,8], later extended to store information both on vertices and between
vertices (on edges) [9,10]. The notion of complex (see Section 3.2) has also been
used to express topological and geometrical attributes of images beyond the
scope of graphs [11,12]. Generic programming frameworks to implement algo-
rithms on complexes and grid data structures have been proposed [13,14,15].
Other possible frameworks include combinatorial maps [16] and orders [17].

Let us for instance consider the framework of graphs as the basis of morpho-
logical image processing in order to express definitions and properties as general
as possible (and meet requirement 3). We could then use a graph-related library
like the Boost Graph Library (BGL) [3]. However, such a design suffers from lim-
itations, as mathematical morphology, despite having many intersections with
graph theory, has its own definitions, idioms, notations, and issues. Therefore,
adapting morphological algorithms to a graph software framework would dis-
tort their definitions, which is contrary to requirements 4 and 6. Moreover, we
would probably lose efficiency (requirement 5) for restricted use cases in image
processing (but at the same time, the most common ones): regular 2D or 3D im-
ages on grids, classical structuring elements, etc. Finally, setting graphs as the
ultimate representation of images in mathematical morphology once and for all
might prevent future extensions. For example the notion of complex mentioned
previously, which extends the notion of graph, can be considered to form the
basis of a morphological framework.



Therefore, instead of using a fixed system, we propose to rethink mathemat-
ical morphology under the light of generic programming [18]. The first step is
to define software abstractions matching morphological entities (topology, sets,
functions, lattices, structuring elements, geometry, etc.), starting with the con-
cept of discrete image. Then, it will be possible to express algorithms in terms of
these concepts on the one hand, and provide actual data structure implementing
these abstractions on the other hand.

In this paper, we present a generic and efficient C++ programming library,
Milena, a part of the Olena image processing platform [19,20]. Milena uses and
extends the idea of GP [21]. It implements the abstractions for mathematical
morphology software mentioned previously.

This article mainly targets end users of the library and designers of algo-
rithms. It is structured as follows: in Section 2, we study how morphological
algorithms are commonly implemented and what are the issues of classical yet
restrictive designs. Section 3 proposes a generic definition of an image and shows
how this genericity is expressed through the image’s traits. As an illustration, a
small generic image processing chain is given in Section 4 and applied to various
images.

2 Software Implementation of Mathematical Morphology

Translating mathematical morphology methods and objects into readable and
usable algorithms is often biased either to satisfy constraints of actual data or
meet software and hardware requirements. An example of the first circumstance
is the prominent case of a 2-dimensional single-valued image, set on a rectan-
gular (boxed) domain with integer coordinates (a discrete grid D ⊆ Z2). Many
morphological algorithms are solely expressed with this framework in mind. The
second bias is computer-dependent: for the sake of efficiency or simplicity of im-
plementation, algorithms sometimes include language- or hardware-related con-
structs: buffers, loops, dimension decomposition, out-of-bounds behavior, etc.

Let us consider a simple example: the elementary morphological dilation of
a gray-level image ima with a (flat) structuring element. A shortened definition
in the framework of complete lattices [22] would be:

δB(I)(x) = sup
h∈B

I(x+ h)

where I (the image to process) is a function D → V associating a point from the
domain D to a value from the set V ; and B the structuring element associated to,
e.g., the usual 4-connectivity neighborhood. A simple implementation in C++

could be as the one from Algorithm 1.1. However, this solution makes extra
hypotheses that were not contained in the definition of the operation, e.g.:

1. The image is 2-dimensional, since it is accessed using a (row, col) notation.
2. Sites are points with nonnegative integers coordinates starting at 0.
3. The values of the image are compatible with the 8-bit unsigned char type.



image dilation(const image& input) {
image output (input.nrows(), input.ncols()); // Initialize an output image.
for (unsigned int r = 0; r < input.nrows(); ++r) // Iterate on rows.

for (unsigned int c = 0; c < input.ncols(); ++c) { // Iterate on columns.
unsigned char sup = input(r, c);
if (r != 0 && input(r−1, c) > sup) sup = input(r−1, c);
if (r != input.nrows() − 1 && input(r+1, c) > sup) sup = input(r+1, c);
if (c != 0 && input(r, c−1) > sup) sup = input(r, c−1);
if (c != input.ncols() − 1 && input(r, c+1) > sup) sup = input(r, c+1);
output(r, c) = sup;
}

return output;
}

Algorithm 1.1. Non generic implementation of a morphological dilation of an
8-bit gray-level image on a regular 2D grid using a 4-c flat structuring element.

4. The values of the image form a totally ordered set; hence the operator < can
be used to compute the supremum.

5. The structuring element is based on the 4-connectivity.

Each of the previous hypotheses is an actual limitation on the generality of
Algorithm 1.1. It cannot be reused as-is if for instance one or several of the
following conditions are expected:

1. The input is a 3-dimensional image.
2. Its points are located on a box subset of a floating-point grid, that does not

necessarily include the origin.
3. The values are encoded as 12-bit integers or as floating-point numbers.
4. The image is multivalued (e.g., a 3-channel color image).
5. The structuring element represents an 8-connectivity.

Even if the class of images accepted by Algorithm 1.1 covers day-to-day needs of
numerous image processing practitioners, image with features from the previous
list are also quite common in fields like biomedical imaging, astronomy, document
image analysis or arts. Algorithm 1.1 also highlights less common restrictions.
As is, it is unable to process images with the following features:

– A domain
• which is not an hyperrectangle (or “box”);
• which is not a set of points located in a geometrical space, e.g., given a

3D triangle mesh, one can build an image by mapping each triangle to
a set of values;

• which is a restriction (subset) of another image’s domain, still preserving
essential properties, like the adjacency of the sites.

– A neighborhood where neighbors of a site are not expressed with a fixed-set
structuring element, but through a function associating a set of sites to any



template <typename I, typename W>
mln concrete(I) dilation (const I& input, const W& win) {

mln concrete(I) output; initialize (output, input); // Initialize output.
mln piter(I) p(input.domain()); // Iterator on sites of the domain of ‘input ’.
mln qiter(W) q(win, p); // Iterator on the neighbors of ‘p’ w.r.t . ‘win’.
for all(p) {

accu::supremum sup = input(p); // Accumulator computing the supremum.
for all(q) if (input.has(q))

sup.take(input(q));
output(p) = sup.to result();
}
return output;
}

Algorithm 1.2. Generic implementation of a morphological dilation.

site of the image. This is the case when the domain of the image is a graph,
where values are attached to vertices [8].

– Non scalar image values, like color values.

Furthermore, the style used in Algorithm 1.1 does not allow for optimizations.
An optimized code (taking advantage, for example, of a totally ordered domain
of values, with an attainable upper bound), requires a whole new algorithm per
compatible data structure.

In the remainder of this paper, we show how the programming framework
of Milena allows programmers to easily write generic and reusable [23] image
processing chains using mathematical morphology tools. For instance a Milena
equivalent of Algorithm 1.1 could be Algorithm 1.2. In this algorithm I is a
generic image type, while W is the type of a generic structuring element (also
named window). p and q are objects traversing respectively the domain of
ima and the sites of the structuring element win centered on p. The predicate
input.has(q) ensures that q is a valid site of input (this property may not be
verified e.g. when p is on the border of the image). sup iteratively computes the
supremum of the values under win for each site p. An example of use similar to
Algorithm 1.1 would be:

image2d<unsigned char> ima dil = dilation(ima, win c4p());

where win c4p() represents the set of neighboring sites in the sense of the 4-
connectivity plus the center of the structuring element.

Algorithm 1.2 is a small yet readable routine and is no longer specific to the
aforementioned 2-dimensional 8-bit gray-level image case of Algorithm 1.1. It is
generic with respect to its inputs, and no longer restricted by the limitations
we mentioned previously. For instance it can be applied to an image defined
on a Region Adjacency Graph (RAG) where each site is a region of an image,
associated to an n-dimensional vector expressing features from each underlying
region, provided a supremum is well defined on such a value type.



3 Genericity in Mathematical Morphology

3.1 A Generic Definition of the Concept of Image

The previous considerations about the polymorphic nature of a discrete image
require a clear definition of the concept of image. To embrace the whole set of
aforementioned aspects, we propose the following general definition.

Definition. An image I is a function from a domain D to a set of values V . The
elements of D are called the sites of I, while the elements of V are its values.

For the sake of generality, we use the term site instead of point : if the domain
of I were a RAG, it would be awkward to refer to its elements (the regions)
as “points”. This definition forms the central paradigm of Milena’s construc-
tion. However, an actual implementation of an image object cannot rely only on
this definition. It is too general as is, and mathematical morphology algorithms
expect some more information from their inputs, like whether V is a complete
lattice, how the neighboring relation between sites is defined, etc. Therefore, we
define additional notions to supplement the definition of an image. These notions
are designed to address orthogonal concerns in image processing and mathemat-
ical morphology, so that actual definitions (implementations) of images can be
changed along one axis (e.g., the topology of D) while preserving another (e.g.,
the existence of a supremum for each subset X ⊆ V ).

Algorithms are then no longer defined in terms of specific image characteris-
tics (e.g., a domain defined as two ranges of integers representing the coordinates
of each of its points) but using abstractions (e.g., a site iterator object, providing
successive accesses to each site of the image, that can be deduced from the image
itself). This paradigm based on Generic Programming promotes “Write Once,
Reuse Everywhere Applicable” design of algorithms by introducing abstract en-
tities (akin to mathematical objects) in software defined by their properties.

The genericity of our approach resides in both the organization of the library
around entities dedicated to morphological image processing (images, sites, site
sets, neighborhoods, value sets, etc.) and in the possibility to extend Milena with
new structures and algorithms, while preserving and reusing existing material.

The next section presents the main entities upon which we define morpho-
logical algorithms in Milena, and how they provide genericity in mathematical
morphology.

3.2 Genericity Traits

We define actual images as models of the previous definition of an image, with
extra properties on I, D or V . These traits express the generic nature of this
definition, and are related to the notions of this section. Each of them is as
much orthogonal (or loosely coupled) to the others as possible, so that an actual
implementation of one of these concepts can be defined and used with many
algorithms regardless of the other features of the input(s). In the rest of this
section, we illustrate how the limitations of Algorithm 1.1 mentioned in Section 2
are lifted by the generic implementation of Algorithm 1.2.



Restriction of the Domain It is possible to express the restriction of an image
ima to a subset s of its domain using the dedicated operator |; the result can
then be used as input of an algorithm:

image2d<int> ima dil = morpho::dilation(ima | s, win);

The subset s can either be a comprehensive collection of sites (array, set, etc.) or
a predicate. A classical example is the use of a “mask” to restrict the domain of
an image. This mask can for instance be a watershed line previously computed
on ima; the dilation above would act as a reconstruction of the pixels of ima
belonging to this watershed line.

Structuring Elements, Neighborhoods and Windows Structuring ele-
ments of mathematical morphology can be generalized with the notion of win-
dows: functions from D to P(D). A special case of window is a neighborhood :
a non-reflexive symmetric binary relation on D. In the case of images set on
n-dimensional regular grids (as in the previous example of dilation of a 2D im-
age), D is a subset of Zn and is expressed as an n-dimensional bounding box.
Windows’ members can be expressed regardless of the considered site, using a
(fixed or variable) set of vectors, called delta-sites, as they encode a difference
between two sites. For instance a 4-connectivity window is the set of 2D vectors
{(−1, 0), (0,−1), (0, 0), (0, 1), (1, 0)}.

In more general cases, windows are implemented as domain-dependent func-
tions. For instance, the natural neighbors of a site p (called the center of the
window) of a graph-based image, where D is restricted to the set of vertices,
are its adjacent vertices, according to the underlying graph. Such a window is
implemented by an object of type adjacent vertices window p in Milena (see
below). This window does not contain delta-sites; instead, it encodes the defini-
tion of its member sites as a function of p. Using an iterator q to iterate over
this window (as in Algorithm 1.2) successively returns each of its members.

Topological Structure The structure of D defines relations between its ele-
ments. Classical images types are set on the structure of a regular graph, where
each vertex is a site of I. More general images can be defined on general graphs,
where sites can be either the vertices of the graph, its edges or even both.

An example of dilation on regular 2D image was given in Section 2. In the
case of an image associating 8-bit integer values to the elements (vertices and
edges) of graph, computing an elementary dilation with respect to the adjacent
vertices would be written as this:

graph image<int u8> ima dil =
morpho::dilation(ima | vertices , adjacent vertices window p());

ima | vertices creates an image based on the subset of vertices on-the-fly,
while adjacent vertices window p() returns a window mapping each vertex
to the set of its neighbors plus the vertex itself.



Fig. 1. A simplicial 3-complex. Fig. 2. A mesh seen as a simplicial 2-complex.

We can generalize this idea by using simplicial complexes. An informal def-
inition of a simplicial complex (or simplicial d-complex) is “a set of simplices”
(plural of simplex), where a simplex or n-simplex is the simplest manifold that
can be created using n points (with 0 ≤ n ≤ d). A 0-simplex is a point, a
1-simplex a line segment, a 2-simplex a triangle, a 3-simplex a tetrahedron. Sim-
plicial complexes extends the notion of graphs; a graph is indeed a 1-complex.
They can be used to define topological spaces, and therefore serve as supports
for images. Figure 1 shows an example of simplicial 3-complex.

Let us consider an image ima based on a simplicial 2-complex (Figure 2)
where each element is located in space according to a geometry G (the notion
of site location and geometry is addressed later) with 8-bit integer values. The
domain D of this image is composed of points, segments and triangles. We con-
sider a neighboring relation among triangles (also known as 2-faces) where two
triangles are neighbors iff they share a common edge (1-face). The code to com-
pute the dilation of the values associated to the triangles of D with respect to
this relation is as follows:

complex image<2, G, int u8> ima dil =
dilation (ima | faces (2), complex lower dim connected n face window p<2, G>());

As in the example of the graph-based image, ima | faces(2) is a restric-
tion of the domain of ima to the set of 2-faces (triangles). The expression
complex lower dim connected n face window p<2, G>() creates the neighbor-
ing relation given earlier (for a site p of dimension n, this window is the set of
n-faces sharing an (n− 1)-face, plus p itself).

Site Location and Geometry In many context, the location of the sites
of an image can be independent from the structure of D. For instance if the
domain of I is built on the vertices of a graph, these sites can be located in
Zn or Rn with n ∈ N∗. In some cases, the location of sites is polymorphic.
E.g., if D is a 3-dimensional simplicial complex located in a 3D space (as in
Figure 1), the location of site p can be a 3D point (if p is a vertex), a pair of
points (if p is an edge), a triplet of points (if it is a triangle) or a quadruplet
(if it is a tetrahedron). We encode such information as a set of locations called
a geometry. For instance, the term G from the previous code is a shortcut for
complex geometry<2, point2d>.



Value Set Almost all framework support several (fixed) value sets representing
mathematical entities such as B, N, Z, Q, R or subsets of them. Some of them
also support Cartesian products of these sets. Not so many support user-defined
value types. To be able to process any kind of values, properties should be
attached to these sets: quantification, existence of an order relation, existence of
a supremum or infimum, etc. Then it is possible to implement algorithms with
expected constraints on V . For instance, one can perform a dilation of a color
image with 8-bit R, G, B channels by defining a supremum on the rgb8 type:

rgb8 sup (const rgb8& x, const rgb8& y) {
return rgb8(max(x.r(),y.r()), max(x.g(),y.g()), max(x.b(),y.b()));
}
image2d<rgb8> ima dil = morpho::dilation(ima, win c4p());

3.3 Design and Implementation

Milena aims at genericity (broad applicability to various inputs, reusability) and
efficiency (fast execution times, minimum memory footprint). The design of the
library focuses on the following features, that we can only sketch here.

Ease of Use The interface of Milena is akin to classical C code to users, minus
the idiosyncratic difficulties of the language (pointers, manual memory allocation
and reclaim, weak typing, etc.). Users do not need to be C++ experts to use the
library. Images and other data are allocated and released automatically and
transparently with no actual performance penalty.

Efficiency Milena handles non-trivial objects (images, graphs, etc.) through
shared memory, managed automatically. The mechanism is efficient since it
avoids copying data. As for algorithms, programmers can provide several ver-
sions of a routine in addition to the generic one. The selection mechanism is
static (resolved at compile-time), and more powerful than function overloading:
instead of dispatching with respect to types, it dispatches with respect to one or
several properties attached to one or several types [21].

Usability Milena targets both prototyping and effective image processing. In
the case of very large images (1 GB), we cannot afford multiples copies of values
or sometimes even loading a whole image (of e.g. several gigabytes). Therefore,
the library provides alternative memory management policies to handle such
inputs: in this case, memory-mapped image types which, by design, have no
impact whatsoever on the way algorithms are written or called.

4 Illustrations

In this part, we consider a simple, classical image processing chain: from an image
ima, compute an area closing c using criterion value lambda; then, perform a



watershed transform by flooding on c to obtain a segmentation s. We apply this
chain on different images ima. All of the following illustrations use the exact
same Milena code corresponding to the processing chain above. Given an image
ima (of type I), a neighborhood relation nbh, and a criterion value (threshold)
lambda, this code can be written as this (nb is a placeholder receiving the number
of catchment basins present in the watershed output image) :

template <typename L, typename I, typename N>
mln ch value(I, L) chain(const I& ima, const N& nbh, int lambda, L& nb) {

return morpho::watershed::flooding(morpho::closing::area(ima, nbh, lambda),
nbh, nb);

}

Regular 2-Dimensional Image In the example of Figure 3(a), we first com-
pute a morphological gradient used as an input for the processing chain. A
4-c window is used to compute both this gradient image and the output (Fig-
ure 3(d)), where basins have been labeled with random colors.

Graph-Based Image Figure 3(b) shows an example of planar graph-based [7]
gray-level image, from which a gradient is computed using the vertex adjacency
as neighboring relation. The result shows four basins separated by a watershed
line on pixels.

Simplicial Complex-Based Image In this last example [24], a triangular
mesh is viewed as a 2-simplicial complex, composed of triangles, edges and ver-
tices (Figure 3(c)). From this image, we can compute maximum curvature values
on each triangle of the complex, and compute an average curvature on edges.
Finally, a watershed cut [25] on edges is computed, and basins are propagated
to adjacent triangles and vertices for visualization purpose (Figure 3(f)).

All examples use Meyer’s watershed algorithm [26], which has been proved
to be equivalent to watershed cuts when used on the edges of a graph [27].

5 Conclusion

We have presented the fundamental concepts at the heart of Milena, a generic
programming library for image processing and mathematical morphology, re-
leased as Free Software under the GNU General Public License. Milena allows
users to write algorithms once and use them on various image types. The pro-
gramming style of the library promotes simple, close-to-theory expressions.

As far as implementation is concerned, Milena extends the C++ language
“from within”, as a library extension dedicated to image processing. Though we
designed the library to make it look familiar to image processing practitioners,
it does not require a new programming language nor special tools: a standard
C++ environment suffices. Moreover, as Generic Programming allows many op-
timizations from the compiler, the use of abstractions does not introduce actual
run-time penalties.



We encourage practitioners of mathematical morphology interested in Milena
to download the library at http://olena.lrde.epita.fr/Download and see if
it can be useful to their research experiments.

Acknowledgments The authors thank Guillaume Lazzara for his work on
Milena as part of the SCRIBO project, and Alexandre Duret-Lutz for proof-
reading and commenting on the paper.

References

1. Garcia, R., Järvi, J., Lumsdaine, A., Siek, J., Willcock, J.: A comparative study of
language support for generic programming. In: Proc. of OOPSLA. (2003) 115–134

2. Cgal: Computational Geometry Algorithms Library (2008) www.cgal.org.
3. Siek, J.G., Lee, L.Q., Lumsdaine, A.: The Boost Graph Library: User Guide and

Reference Manual. 1st edn. Addison Wesley Professional (2001)
4. Yoo, T.S., ed.: Insight into Images: Principles and Practice for Segmentation,

Registration, and Image Analysis. AK Peters Ltd (2004)
5. Köthe, U.: STL-style generic programming with images. C++ Report Magazine

12(1) (January 2000) 24–30
6. Enficiaud, R.: Algorithmes multidimensionnels et multispectraux en Morphologie

Mathématique : approche par méta-programmation. PhD thesis, CMM, ENSMP,
Paris, France (February 2007)

7. Vincent, L.: Graphs and mathematical morphology. Signal Processing 16(4) (April
1989) 365–388

8. Heijmans, H., Vincent, L.: Graph morphology in image analysis. In Dougherty, E.,
ed.: Mathematical Morphology in Image Processing. M. Dekker (1992) 171–203

9. Meyer, F., Angulo, J.: Micro-viscous morphological operators. In: Proc. of ISMM.
(2007) 165–176

10. Cousty, J., Najman, L., Serra, J.: Some morphological operators in graph spaces.
In: Proceedings of ISMM 2009. These proceeedings.

11. Bertrand, G., Couprie, M., Cousty, J., Najman, L.: Chapter title : Ligne de partage
des eaux dans les espaces discrets. In Najman, L., Talbot, H., eds.: Morphologie
mathématique : approches déterministes. Hermes Sciences (2008) 123–149

12. Loménie, N., Stamon, G.: Morphological mesh filtering and α-objects. Pattern
Recognition Letters 29(10) (2008) 1571–1579

13. Köthe, U.: Generic programming techniques that make planar cell complexes easy
to use. In Bertrand, G., Imiya, A., Klette, R., eds.: Digital and Image Geometry.
Volume 2243 of LNCS. Springer-Verlag, Berlin, Germany (2001) 17–37

14. Kettner, L.: Designing a data structure for polyhedral surfaces. In: Proc. of SCG,
New York, NY, USA, ACM (1998) 146–154

15. Berti, G.: GrAL: the grid algorithms library. FGCS 22(1) (2006) 110–122
16. Edmonds, J.: A combinatorial representation for polyhedral surfaces. Notices of

the American Mathematical Society 7 (1960)
17. Bertrand, G., Couprie, M.: A model for digital topology. In: Proc. of DGCI,

London, UK, Springer-Verlag (1999) 229–241
18. d’Ornellas, M.C., van den Boomgaard, R.: The state of art and future development

of morphological software towards generic algorithms. International Journal of
Pattern Recognition and Artificial Intelligence 17(2) (March 2003) 231—255

http://olena.lrde.epita.fr/Download
www.cgal.org


19. LRDE: The Olena image processing library. http://olena.lrde.epita.fr (2009)
20. Darbon, J., Géraud, Th., Duret-Lutz, A.: Generic implementation of morphological

image operators. In: Proc. of ISMM, Sydney, Australia, CSIRO (2002) 175–184
21. Géraud, Th., Levillain, R.: A sequel to the static C++ object-oriented program-

ming paradigm (SCOOP 2). In: Proc. of MPOOL, Paphos, Cyprus (July 2008)
22. Goutsias, J., Heijmans, H.J.A.M.: Fundamenta morphologicae mathematicae. Fun-

damenta Informaticae 41(1-2) (2000) 1–31
23. Köthe, U.: Reusable software in computer vision. In Jähne, B., Haussecker, H.,

Geißler, P., eds.: Handbook of Computer Vision and Applications. Volume 3: Sys-
tems and Applications. Academic Press, San Diego, CA, USA (1999) 103–132

24. Alcoverro, M., Philipp-Foliguet, S., Jordan, M., Najman, L., Cousty, J.: Region-
based 3D artwork indexing and classification. In: 3DTV. (2008) 393–396

25. Cousty, J., Bertrand, G., Najman, L., Couprie, M.: Watershed cuts: minimum
spanning forests and the drop of water principle. IEEE PAMI (2009) To appear.

26. Meyer, F.: Un algorithme optimal de ligne de partage des eaux. In: Actes du 8e
Congrès AFCET, Lyon-Villeurbanne, France, AFCET (1991) 847–857

27. Cousty, J., Bertrand, G., Najman, L., Couprie, M.: On watershed cuts and thin-
nings. In: Proc. of DGCI, Lyon, France (2008) 434–445

(a) Regular 2D Image. (b) Graph-Based Image. (c) Complex-Based Image.

(d) Result on a gradient of
(a).

(e) Result on a gradient of
(b).

(f) Result on the curvature
of (c)

Fig. 3. Results of the image processing chain of Section 4 on various inputs.

http://olena.lrde.epita.fr

	Milena: Write Generic Morphological Algorithms Once, Run on Many Kinds of Images
	Roland Levillain, Thierry Géraud, Laurent Najman

