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A B S T R A C T

In the context of software engineering for image processing (IP),
we consider the notion of reusability of algorithms. In many
software tools, an algorithm’s implementation often depends
on the type of processed data. In a broad definition, discrete
digital images may have various forms—classical 2D images, 3D
volumes, non-regular graphs, cell complexes, and so on—thus
leading to a combinatorial explosion of the theoretical number of
implementations.

Generic programming (GP) is a framework suited to the devel-
opment of reusable software tools. We present a programming
paradigm based on GP designed for the creation of scientific
software such as IP tools. This approach combines the benefits of
reusability, expressive power, extensibility, and efficiency.

We then propose a software architecture for IP using this pro-
gramming paradigm based on a generic IP library. The founda-
tions of this framework define essential IP concepts, enabling the
development of algorithms compatible with many image types.

We finally present a strategy to build high-level tools on top of
this library, such as bridges to dynamic languages or graphical
user interfaces. This mechanism has been designed to preserve
the genericity and efficiency of the underlying software tools,
while making them simpler to use and more flexible.
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R É S U M É

Dans le cadre du génie logiciel en traitement d’images (TDI), nous
nous intéressons à la notion de réutilisabilité des algorithmes.
Dans de nombreux outils logiciels, l’implémentation d’un algo-
rithme est souvent dépendante du type des données traitées.
Au sens le plus général, les formes que peuvent prendre les im-
ages numériques discrètes sont nombreuses (image 2D classiques,
volumes 3D, graphes non réguliers, complexes cellulaires, etc.)
conduisant à une explosion combinatoire du nombre théorique
d’implémentations.

La programmation générique (PG) est un cadre adapté au
développement d’outils logiciels réutilisables. Nous présentons
un paradigme de programmation basé sur la PG conçu pour
la création de logiciels scientifiques tels ceux dédiés au TDI.
Cette approche concilie réutilisabilité, puissance d’expression,
extensibilité et performance.

Nous proposons ensuite une architecture logicielle pour le TDI
basée sur ce paradigme de programmation, s’appuyant sur une
bibliothèque générique de TDI. Les fondations de ce cadre définis-
sent des concepts fondamentaux du TDI, qui permettent l’écriture
d’algorithmes réutilisables sur de nombreux types d’images.

Nous présentons enfin une stratégie pour construire des outils
haut niveau au dessus de cette bibliothèque tels que des ponts
vers des langages dynamiques ou des interfaces graphiques. Ce
mécanisme est conçu pour préserver la généricité et la perfor-
mance des outils logiciels sous-jacents, tout en permettant un
usage plus simple et plus flexible de ceux-ci.
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F O R E W O R D

This work is in line with the Olena project, a Free Software
platform for generic and efficient Image Processing (IP). Olena
has been started by Thierry Géraud at the end of the 1990s. It
is the result of more than ten years of work with contributions
from more than 50 participants

The Olena project is structured around a generic and efficient
IP library written in the C++ programming language called Milena.
Milena proposes many data structures (images, sets of points,
values types, etc.) and algorithms. The library is said to be
generic since these data structures and algorithms have a unique
definition, and each algorithm can be used with any data struc-
ture, with no intrinsic limitation, as long as the combination is
consistent. The project promotes a “Write Once, Reuse Many”
strategy, were algorithms are not written for a specific data type,
but have a general definition compatible with many (possibly not
yet written) inputs.

The contributions presented in this thesis are located in several
places in Olena, and I share credit with Thierry Géraud for
many of them. In particular, the work on the Static C++ Object-
Oriented Programming (SCOOP) paradigm (see Chapter 3) and
the design of the Milena library (see Chapter 4) has started before
I joined the Olena project, and my involvement in terms of ideas,
experimentation, design and implementation in Olena are visible
from versions 0.11 and 1.0 of the project (respectively released in
2007 and 2009).

The development and experimentation in Olena of data struc-
tures such as graphs, simplicial complexes and cubical complexes,
as well as the introduction of some discrete geometry elements
and the extension of mathematical morphology features was
prompted by Laurent Najman. These ideas showed us that the
design of the project was general enough to integrate new algo-
rithms and data structures easily, and helped us to identify minor
design issues that were easily fixed.

The idea and first implementation of a dynamic-static bridge
to harness generic C++ code out of the traditional C++ compilation
model in the project was first proposed by Alexandre Duret-Lutz
and Thierry Géraud, and later reimplemented by Nicolas Pouil-
lard and Damien Thivolle. Likewise, some bindings for scripting
languages were already provided by previous releases of the
project: Python (Olena 0.7), Ruby (Olena 0.10). The dynamic use
of Olena proposed in this thesis (see Chapter 6) is an extension
of this prior work.
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1
I N T R O D U C T I O N

1.1 context

Image Processing (IP) is a science dedicated to the acquisition,
analysis, transformation and production of digital images. A
digital image can be defined as a numerical description of a real-
world multidimensional (most often 2-dimensional) signal. Even
if bi-dimensional signals have been studied since the beginning
of the 20th century, IP really started with the introduction of
computers to the field in the 1960s, becoming powerful enough
to process digital images. In this thesis we use the term “image”
to mean “digital image”.

Most of the time, an image is acquired by sampling a signal
(visible light reflected by a scene, radio waves, X-rays passing
through an object, etc.) using a sensor (camera, radar, CT-scan,
etc.). The image produced is a discrete object that is composed of
elements containing information on the signal, which is almost al-
ways arranged as a regular structure, such as a hyper-rectangular
subspace (or box) of a discrete orthogonal space (such as Z2). For
instance, most 2D images are made of a rectangular set of identi-
cal square elements arranged in rows and columns, called pixels
(picture elements). Likewise, many 3D images are composed of
cubical elements following the regular organization of an orthog-
onal 3D grid, called voxels (volume elements). However, we may
consider other data as “images” in a more general definition. For
instance, a discrete surface, represented by a triangular mesh ac-
quired with a laser, is an example of a non-regular data structure
that can be considered an image. We also mention that instead of
producing discrete images, other reconstruction techniques may
be used to generate continuous or vectorial representations of the
original signal, but we do not consider them in this thesis.

Processing an image is the action of analyzing its contents to
produce a result. The output of this process can be a modified
version of the initial image to improve it is some ways (removing
noise, suppressing blur, correcting its orientation, etc.), a new
image computed from the original input (a segmentation into
regions, a Fast Fourier Transform (FFT), etc.) or some kind of
information from this input (characteristics, parameters, statistics,
classes, etc.) that may be required to perform another task later.
Some IP techniques involve several images, e.g. a registration
process, where the expected output is a geometric transformation
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applied to a first image so that it can be aligned to match a second
image.

The IP literature lists many algorithms to perform these tasks.
An algorithm can be defined as set of more or less complex in-
structions to be performed by a computer to realize an action,
taking some input and modifying it or producing an output as
result. Algorithms are usually defined in an abstract manner and
must be translated into a program expressed in a programming
language to be actually manipulated by a computer. This transla-
tion is called an implementation of an algorithm. By assembling
algorithms, one can create processing chains performing tasks
of a level higher than a sole algorithm, often dedicated to an ap-
plication, like detecting a particular object or restoring damaged
data.

1.1.1 Diversity of Image Types

Digital Image Processing is used in many domains nowadays:
biomedical imaging, remote sensing, photography, document
image analysis, material analysis, security and video surveillance,
etc. The types of images produced and processed also reflects
this variety: there is not a unique type manipulated across all
domains, or even within a given domain. For example if we
consider applications of IP in biomedical imaging, sensors may
produces 2D or 3D images or sequences of such images; these
images may contain color values, gray-level (intensity) values, or
even matrices (diffusion tensors).

More generally, we can characterize an image type by two
aspects: its structure and its values. The structure of an image
represents the spatial organization of its data, along with its
combinatorial, topological and geometric properties. There are
many possible image structures, such as the following ones.

• The 2D image on a regular discrete square grids is one of
the most common cases, and is the one that often comes to
mind first when the term “digital image” is mentioned.

• There are other 2D regular cases using triangular or hexag-
onal grids, where pixels are respectively hexagons and
triangles. Though these structures are less common than
square-grid images, they have interesting properties that
make them useful to IP.

• We have also already mentioned the case of 3D images
(on a cubic grid), that are used to represent volumes, in
particular in biomedical imaging. Note that the tiling used
in the tessellation of the space may not be a cube, but a box
(also called rectangular cuboid), the sides of which have
different lengths.
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• 1-dimensional discrete data can also be considered as im-
ages, although they are usually considered as discrete sig-
nals. Many IP techniques initially come from the science of
signal processing.

• The notion of graphs is also present in IP. A graph may rep-
resent a regularly arranged structure (such as a 2D image
on a square grid), but generally they are used to represent
data with no regular structure. For instance, from a seg-
mentation of a 2D image, one can deduce a (planar) Region
Adjacency Graph (RAG). Each vertex of this graph rep-
resents a region, and each of its edges represents the link
(boundary) between two regions. Such a graph may also be
considered as an image, and be processed by IP techniques.
Graphs are not limited to 2D representations: they may be
used in 3D spaces, or even in spaces of higher dimensions.
RAGs are not the only graph-based image type; we can
also mention Binary Space Partitioning (BSP) trees as an
example of graph structures used in IP.

• A mesh is a structure composed of geometric primitives
such a points, lines segments, polygons and polyhedrons
representing digital 3D data. They may be used to represent
models in Computer-Aided Design (CAD), objects recon-
structed by a 3D scanner (statues, sculptures, etc.), and so
on. Even if meshes are usually associated with computer
graphics or computational geometry, they may be processed
with IP techniques.

• Finally, we may also consider sequences of several images
of the same type as an image structure. A video or an
animation can be considered as a special case of 3D image,
with two spatial dimensions (the width and the height of
the frames) and a spatial dimension (frame axis), referenced
to as a “2D+t” (time) image. 3D+t images are likewise made
of a sequence of 3D images.

The values of an image are the data stored within each of its
elements (pixel, voxels, etc.). As for structures, there are various
types of values.

• Binary or Boolean values, for instance to represent black
and white images; or images where a value represents the
foreground (usually, the value “true”) and the other value
(“false”), the background.

• Gray-levels images, where each value is a gray (scalar)
level between a lower and an upper bounds representing
respectively the darkest value (black) and the lightest value
(white). Gray-level values are usually taken on a linear scale
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(i.e. regularly distributed between the bounds) but other
scales (e.g. logarithmic) may be used as well. A gray level
often represents an intensity level, such as the brightness
of a color. Though gray-level values are often expressed as
integer in a range delimited by an upper (black) and lower
(white) value (e.g. 0 and 255), we shall distinguish gray-
level values from integer values. Gray-level should indeed
be interpreted as a ratio between 0 (white) and 1 (black).
Let us consider an 8-bit gray-level value v1 (represented
by an integer in the range [0, 255]), and a 16-bit gray-level
value v2 (represented by an integer in the range [0, 65535])1.
If v1 = 127 and v2 = 32639, both value represent the same
(medium) gray-level, since 127

255 = 32639
65535 . On the other hand,

integer values represent actual integer numbers. Integer
values 127 and 32639 are different values whatever their
widths.

• In many IP issues, such as segmentation or classification,
we need labels to identify the different parts (e.g. region
or classes) of an image. Labels are enumerated value type
found in IP. Such labels can be symbols, names, or numbers.
In the latter case, they should not be mixed up with gray-
level or integer values. For example it would make no sense
to add two labels 42 and 51.

• Integer values are the way the N and Z sets are approxi-
mated in computers. Likewise, Floating-point values (“floats”
for short) are an approximation of R, implemented as a
number (significand or mantissa) scaled to an exponent.

• Likewise, complex values can be implemented as a pair of
two floating point values (standing for the real and imagi-
nary part of the number).

• Colors values can be represented in many ways. Classic color
spaces include RGB (red, green blue), HSV (hue, satura-
tion, value), HSL (hue, saturation, lightness), CMYK (cyan,
magenta, yellow, key), YUV, CIE XYZ, and CIELAB.

• The pixels of a 2D image on a grid square are spatially
located thanks to 2D points, composed of a row and a
column numbers. Some algorithms depend on images
where each pixel contains such a location. Thus points can
be used a values.

• Algebraic objects such as vectors, matrices, tensors may also
be used as value types.

1 An 8-bit integer encodes up to 28 = 256 different values; a 16-bit integer may
represent up to 216 = 65536 values.
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These two aspects are orthogonal: they constitute two indepen-
dent axes of the theoretical space of image types. Put differently,
the set of image types based on the previous structures and value
types can be seen as the Cartesian product of these two dimen-
sions. Therefore the potential number of images types is very
large.

Moreover some recent developments in IP are based on an inter-
pixel approach, where data are not only stored on the elements
(pixels, voxels) on an image, but also between these elements. Ex-
amples include Mathematical Morphology (MM) on graphs [18]
and complexes [24] and digital geometry on pseudomanifolds
[16]. These new approaches call for additional image types as
well.

As a side note, let us make a distinction between an image type
and an image (file) format. The former describes the structural
properties of a digital image, while the latter is a specification
to represent a digital image in a form suitable for Input/Output
(I/O) operations (file, stream, etc.).

1.1.2 Diversity of Users

Usually scientific software can be roughly decomposed as a set
of data structures—images, finite state machines, graphs, arrays,
matrices, geometric structures, etc.— and a set of algorithms op-
erating on them. Let us consider an extensible scientific software
package, offering many tools to solve problems of the corre-
sponding field, but were new features can also be implemented
to augment its possibilities. Such a tool may be a programming
library with a well-defined Application Program Interface (API)
for a compiled language, such as a C++ object-oriented library); a
package for a dynamic language that may be used interactively
such a Python; or an integrated specialized environment for sci-
entific work sur as MATLAB. The majority of people interacting
with this tool are its end users: they solely use the feature pro-
vided by this tool. The other, smaller involved population can
be qualified as developers, either as direct authors of the tool or
because their enrich it by adding new algorithms, and sometimes,
new data structures.

We can apply this vision to IP software and broadly decompose
users in three categories [34, 48]:

end users This category (maybe 80% of the audience) experi-
ments and evaluates IP tools, and realizes prototypes and
small applications. These users apply and assemble existing
algorithms from their tool to create processing chains and
solve IP problems.
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designers of algorithms These developers (maybe 15% of
the audience) invent new algorithms. These algorithms may
be implementations of new techniques, extensions of exist-
ing features to address more use cases or handle more data
structure, or optimized versions performing better with
respect to execution times, memory usage, input/output
operations, etc.

providers of data structures The last category of users
is interested in adding new data structures, in particular
new image types. As this operation is both rarely needed
and often difficult, very few people do it (probably less
than 5% of the audience). However, as we have seen earlier
more and more IP works need non-classic image types.
The possibility to extend the tool with respect to other
aspects such as value types (e.g. a new color type) or
adjacency relationships (e.g. in graph-based images) is also
interesting.

IP software tools do not always targets all these categories.
They almost always address the needs of end users, as most
tools provide at least a minimal set of features that can be used
immediately, with no need to develop algorithms. However,
not all tools allow their users to extend the set of algorithms
easily or even at all, for instance tools based on a Graphical User
Interface (GUI) or made of small programs, each corresponding
to an operation (Command Line Interface (CLI)). Lastly, very
few tools address the needs of the third category of users, as
algorithms are often bound to a particular data structure.

1.1.3 Diversity of Use Cases

In addition to targeting various categories of users, an IP tool
supports various use cases, often related with the type of user,
but not always. In particular, more experienced users may want
to make use of their tool in various manner, depending on the
task. The following list shows examples of various uses case of
IP software.

• End users are generally more at ease with a GUI program
to assemble and experiment image processing chains. Such
User Interfaces (UIs) are simpler, do not require program-
ming skills and are a faster way to develop simple programs:
there is no compiling phase; the chain can be developed and
run incrementally instead of being recompiled each time;
inputs, intermediate results and outputs (including images,
plots, histograms, simple values, etc.) can be displayed
immediately; etc. Graphical interfaces may for instance
propose features such as:



1.1 context 19

– Visual programming, where each input/output and
each routine of the image processing chain is repre-
sented by a graphical element (icon), connected with
other collaborating elements.

– Graphical display of images or other data (histogram,
plots, values, graphs, etc.), either on demand or auto-
matically, when the object is updated.

– An interactive scripting window, allowing more expe-
rienced end users to invoke routines as well as objects’
methods, and possibly build and run a processing
chain using a (simple) programming interface.

• Some users may want to run their algorithms as small
programs (e.g., one program per algorithm) from a CLI
(e.g., an command line interpreter or “shell”), in the Unix
philosophy, as small tools manipulating data (like grep,
sed, awk, etc.) and using files, pipes or shell variables to
communicate. The possibility to launch a processing task
in a single line may be indeed very convenient. Non trivial
chains may be also saved as shell script for a later (re)use.

• More experienced users may want to program their pro-
cessing chains in a scripting language (for example Python,
Ruby or Tcl), as is it probably faster than manipulating a
GUI for people knowing this language. Moreover,

– Scripting improves the reusability of some of the work,
as a script routine may be stored in its own file, and
shared among users and/or uses cases.

– Processing chains written as scripts may also use ele-
ments from the packages or libraries of the host lan-
guage or platform, and even of external packages. For
instance, many C or C++ libraries are wrapped into
a thin layer to be made available within a dynamic
language.

• Users with some knowledge of a compiled language such
as C, C++, FORTRAN, or Ada may want to use the a native
programming library for this language, to benefit from a
higher expressive power (as library and client code share
the same programming idioms) and also because it leads
to faster, compiled programs. This lower-level “UI” may
be compulsory if the aim is to create a standalone pro-
gram (with or without a GUI on top) or a component for
an embedded platform, where resources (Central Process-
ing Unit (CPU) time, memory, storage) may be scarce and
programming facilities (available languages and libraries)
limited.
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Another aspect is the ability to reemploy previous work done
using a given UI, with another one. For instance, a user may want
to run an algorithm that they have written as a C++ routine within
a visual programming environment. Or reciprocally, they may
want to record a visual programming workflow as a C++ code,
to be modified and compiled later—for improved performances
and/or standalone use. Other scenarios include the extension of
the C++ core framework in a dynamic language such as Python
or Ruby, by providing new algorithms, but also data structures
(images types).

The notion of use case also covers situations specific to the
application domain, namely IP. We can mention the following
cases as examples of useful features.

• It is sometimes interesting to process a subset of an image,
expressed as a Region of Interest (ROI) box drawn in GUI,
as a user-defined mask, a region computed by a previous
algorithm, or a set defined by a predicate on the pixel values
(such as a threshold).

• Likewise, on may want to process a single slice of a 3D
volume instead of the whole set.

• Users may want to define their own neighborhood relation-
ship for any image type, so as to change the behavior of
their algorithm.

• For some value types, in particular color types, there is no
natural order relation, although many algorithms (e.g. in
mathematical morphology) require one. Several proposi-
tions to define such a relation however exist. We may want
to integrate one of them into our algorithms.

These feature are orthogonal to algorithms. A naive implementa-
tion would either require changes in every routines—a practice
that does not scale well from a software engineering point of
view—or creating new inputs, which implies data duplication
having an impact on performances and memory usage. Very few
IP tools address many of these use cases elegantly and efficiently.

1.1.4 Diversity of Tools

Consequently there are plenty of software tools for IP, targeting
a specific domain, a category of users, determined uses cases,
and/or providing support for given data types. We have enumer-
ated more than 80 “tools” in a broad sense during our study of
existing IP software. Only some of them are mentioned hereafter.

We can roughly classify IP software tools in the following
categories. This categorization is admittedly limited, as some
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projects may belong to several categories. Likewise some tools
have not been specifically designed to process images—though
they can be used to solve IP issues.

command line utilities These packages are made of sev-
eral programs (or “binaries”) using a Command Line Interface
(CLI) each performing one operation or more. These pro-
grams can either be invoked from a text terminal or run
as a shell script. Data are passed to programs as argu-
ments. Programs may accept options passed as arguments
as well, for instance to select an operation among the avail-
able ones, set the value of a parameter, choose the name
of an output file, etc. Command lines utilities are notably
proposed by projects such as ImageMagick, GraphicMagick
and MegaWave.

graphic editors This category contains programs focusing
on a GUI offering image visualization and manipulation
services. IP operations can be applied by selecting an item
in a pull-down menu or by typing simple commands in
a small interpreter window. These tools usually support
a limited set of image types (such as 2D and 3D regular
images) though they often support many file formats. They
provide services to perform image analysis and in-place
processing tasks. This set of operations can sometimes be
extended thanks to macro-commands (or simply “macros”),
with a dynamic language such as Python, or more generally
with compiled “plug-ins” written in C or Java. Tools in this
category include applications such ImLab, Imview, ImageJ
and Micromorph.

visual programming environments A visual programming
environment is a platform where a user can graphically as-
semble IP operations as a graph connecting filters and data
flows. The obtained workflow can be easily modified or
extended, run interactively, and told to display intermedi-
ate images. The resulting flexibility and ease of use of this
approach make visual programming environment conve-
nient tools for rapid experimentation and prototyping. This
category includes tools such as VisiQuest (formerly Khoros)
and XIP.

integrated environments This category features platforms
for scientific computing and numerical analysis, providing
both a programming language and a graphical environ-
ment to execute commands, run scripts, and visualize data
(arrays, matrices, signals, images, etc.). MATLAB, Mathe-
matica, Octave and Scilab are well-known examples of this
kind of tools.
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packages for dynamic languages There is a growing trend
towards using dynamic language such as Python or Tcl for
scientific computing. Several packages have been developed
to add scientific computing facilities to these languages, in-
cluding image-related features. Regarding Python, we can
mention projects such as PIL, Mamba or Sage.

programming libraries This category is probably the largest
of our classification. For a long time, IP services have been
implemented as programming libraries for compiled lan-
guages such as FORTRAN, C, or C++, because these lan-
guages have been traditionally well-known, widely avail-
able and efficient. Libraries for compiled languages con-
tinue to be developed and maintained, as they offer very
good performances. Examples of such libraries include
CImg, DGtal, Gandalf, GENIAL, GIL, ImLib3D, ITK, Lep-
tonica, Morph-M, OpenCV, Qgar, VIGRA, VSIPL++ and
Yayi.

domain specific languages In some cases, developers have
considered the library-based approach insufficient to prop-
erly implement IP software, because the host language was
too distant from IP considerations, or not powerful enough
to express efficient solutions. Thus they have chosen the
solution of creating a new language dedicated to IP, known
as a Domain Specific Language (DSL). Such a language
features image idioms and may be optimized to process
data efficiently. This approach offers much more possibili-
ties, often at the price of an important development effort:
in addition to a compiler or interpreter for the new DSL,
components such as debuggers, profiling tools, libraries for
general-purpose tasks or bindings to third-party languages
way be necessary. DSL for IP include the Apply and Neon
languages.

1.2 topic of the thesis

In the previous section, we have emphasized the polymorphic
nature of the IP software domain: the multiplicity of data types,
users and use cases is such that we cannot initially envision
a single tool to address them all. What is more, new IP tech-
niques or image types are rarely implemented using an existing
framework; instead, new tools are constantly being developed.
For instance, many research teams in IP, pattern recognition or
computer vision have developed their own library to implement
their algorithms. IP software is thus characterized by a lack of
reusability.
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This thesis tries to address the question of reusable IP software.
Can we design a tool not dedicated to an image type, an applica-
tion domain or an IP technique, able to absorb new data types,
algorithms and UIs?

To answer this question we must first choose an implementa-
tion context (programming language(s), programming paradigm(s),
run-time environment, etc.) to host our potential solution, with
the goal of reusable software in mind. This choice may involve
an existing framework, the extension of such a framework, or
even the creation of a new one. This work could possibly include
the extension of an existing language, the creation of a new DSL,
the definition of a new programming paradigm, etc.

Another issue is related to the diversity of image types. Han-
dling all of these types in a naive way normally requires dedicated
implementations for each type. Alternative implementations
might introduce degradation of data or performances due to a
simplified framework (for instance if the design includes a single
value type such as the double floating-point type) and/or run-
time overheads introduced by the implementation framework.
The quality of the proposal shall not be evaluated by the number
of available image types, but by the ability to add new types to
the framework with minimal work.

The reusability of the framework also depends on the gen-
erality of algorithms. Firstly, for each algorithm there should
be a single implementation compatible with all compatible data
structures. Secondly, the addition of a new image type shall not
invalidate existing algorithms nor require a new implementation.
This issue raises the question of algorithms genericity: instead of
featuring specific implementations for each image type, our ideal
solution should provide a single, generic algorithm implementa-
tion. In addition, a reusable solution should be flexible enough
to support classic IP idioms mentioned previously (restricting an
input to a ROI, changing the neighborhood relation in an algo-
rithm, defining an order on a value type, etc.), with not impact
whatsoever on algorithms.

Performance issues should also be addressed. As in most
scientific computing domains, IP software tools are expected to
deliver efficient solutions. The need for fast IP tools may be
driven by large data sets (either numerous or voluminous) or
real-time processing constraints. Note that even IP prototyping
tasks may require a solution with good run-time performances.
Consider for example the case of very large images such as the
one manipulated in astronomy (of several gigabytes). To be
practically usable, a prototyping environment should process
these images as fast as possible. Processing a sub-sample of
these inputs to reduce processing times cannot be considered as
a correct alternative, as input data have been changed and the
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obtained results may not be representative of an application to
the whole images.

Finally, in addition to its reusability, we shall consider the
usability of our proposal. This is especially relevant in this context
since all IP practitioners are not Computer Science (CS) experts.
They would likely favor a limited and non-reusable but user-
friendly solution over a powerful and efficient tool requiring a
deep knowledge of an obscure programming language or failing
to provide accurate error messages.

This thesis examines these issues and proposes a solution
trying to address all of the above aspects. The goal is to ultimately
propose a reusable software architecture for IP.

1.3 contributions

This section briefly presents the key elements of our proposal
of a reusable software tool, along with our contributions. We
start with the implementation context. Following the example of
many modern scientific computing frameworks, we have chosen
a solution based on a generic C++ library, forming the core of our
architecture proposal.

Our work starts with an analysis of the Generic Program-
ming (GP) paradigm. We outline the benefits of this approach in
the context of scientific applications in general and IP in particu-
lar. We compare GP to another popular programming paradigm,
Object-Oriented Programming (OOP), which is widely used in
problems with a emphasis on data structures such as ours. We
then propose a new programming paradigm, SCOOP (Static
C++ Object-Oriented Programming), mixing the benefits of GP
and OOP, that is well suited to the implementation of scientific
software. SCOOP encourages framework developers to define or-
thogonal abstractions representing fundamental concepts of their
application domain, as well as properties characterizing concrete
realizations of these abstractions.

We then explain the choice of C++ as implementation language
for IP software, and the decision to base our architecture on a
generic library. Using the SCOOP paradigm, we propose an
organization of IP concepts in order to define the abstractions
mentioned previously. In IP, such abstractions represent essen-
tial notions such as images, points, domains, neighborhoods,
structuring elements, values or functions. We also highlight the
connections between these elements and their role in the creation
of actual IP routines.

To demonstrate the suitability of this approach, we present
several generic implementations of image data types, ranging
from classical regular structures to less common mathematical
objects. We then address the question of IP algorithms for the
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generic and efficiency points of view. In particular, we present
the concept of generic optimizations to preserve performances in
generic software.

Finally, we present some examples of generic image algorithms
and processing chains in the fields of mathematical morphology.

The ideas presented in this thesis have been implemented in a
generic C++ library, Milena. This library is part of the latest release
of a platform for generic and efficient IP, Olena [28]. This project
is Free Software distributed under the terms of the GNU General
Public License (GNU GPL).

Thought this work is placed in the context of IP, this thesis
emphasizes its software engineering contributions. The approach
proposed here is indeed not tied to IP. Other scientific domains
may adopt our strategy to create reusable software, including

• a generic design;

• the use of the SCOOP paradigm;

• the formalization of orthogonal concepts of the target do-
main with their properties;

• the construction of data types based on these abstractions;

• the development of generic algorithms;

• and the introduction of generic optimizations to address
performance issues.

1.4 contents of the thesis

This thesis is structured as follows:

• Chapter 2 covers the Generic Programming (GP) paradigm.
The principles and origins GP are presented. We also
present the Standard Template Library (STL), a generic
library that pioneered essential ideas, such as the notion of
concepts. This chapter also contains a comparison of GP and
OOP. It closes with an explanation of static metaprogram-
ming, a technique to implement compile-time programs
used in the SCOOP paradigm and in the implementation
of the Milena library in general.

• The Static C++ Object-Oriented Programming (SCOOP) par-
adigm is presented in Chapter 3. The chapter starts with an
explanation of a programming idiom at the root of SCOOP,
and then present key elements of the paradigm: concepts,
implementation classes, generic algorithms, compile-time
verifications, properties and morphers. This last item pro-
poses to implement “object transformations” to modify the
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behavior of algorithms (e.g. restricting an image to a ROI,
applying a rotation to an image, thresholding an image
etc.—before passing the image to an algorithm).

• Chapter 4 shows how GP can be used in the design and
implementation of IP software. We first present the mo-
tivation for creating generic IP software. We also show
why C++ and SCOOP are relevant choices in this context.
We then present the organization of our proposal, based
on a generic core library. The elements of this library are
then detailed: concepts, data structures, algorithms and
morphers. While the topic previous chapter is essentially
software engineering, this chapter is more IP oriented.

• Chapter 5 presents applications of generic IP algorithms
used with various data types.

• The last chapter (6) concludes this thesis by summarizing
and analyzing the solutions proposed in this work. We
also present future perspectives regarding the evolution of
the whole architecture. In particular, we present a solution
to use a compile-time library such as Milena in dynamic
environments.



2
G E N E R I C P R O G R A M M I N G

This chapter presents the GP paradigm, its goals and uses. We compare
it with OOP and study their pros and cons. We advocate the use of GP
as a basis to implement an efficient and reusable software IP framework.
We present GP in the C++ context, featured by the template keyword.
In addition to using GP, we present another technique called static
metaprogramming, based on C++ templates, which is a complement
to GP that enables us to perform computations at compile time (e.g,
functions on C++ types, static computations on integral values, etc.).
Finally, we present a new programming paradigm mixing the advan-
tages of GP and OOP, well suited to designing reusable and efficient
software for scientific domains like IP.

Many (if not most) tools presented in the Introduction fail to
handle the many different kinds of data in Image Processing be-
cause they have not been designed with the goal of being reusable
software in mind. Reusing software is a long-standing software
engineering issue, which can be addressed by the use of program-
ming libraries. In a broad sense, a library is collection of reusable
software units, ranging from small entities like functions, data
types, or classes; to larger elements like modules, parameterized
modules, templates or functors. The actual definition, size and
scope of a library varies with the language; whether the library
addresses low- (e.g. system or hardware-related) or high-level
(e.g. application-related) issues; if it is specific or general, etc.
Depending on the context, the contents of a library is made of
code (compiled sources, sources to be compiled, sources to be
interpreted) and may contain documentation and even meta-
data providing information on the library’s components (e.g., for
documentation or introspection purpose).

Examples of successful libraries are the standard C library,
the Unix Application Program Interfaces (APIs) or the GTK+
GUI toolkit. All provide reusable software elements which are
the result of factoring effort with respect to design, implementa-
tion, optimization, testing and distribution. Creating and using
reusable components is not only a gain of time as far as de-
velopment is concerned; it brings a shared knowledge among
their users by establishing common practices, terminologies, and
idioms. In this respect, many libraries are more than implemen-
tation facilities, as they provide a language for developers, much
as design patterns [31] are a language for designers.

However, many libraries, despite their usefulness, are limited
by their interface—the set of provided services—as they support

27
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only a pre-determined set of types [23]. Data having a type that
was not taken into account at the time of design and implemen-
tation of such a library cannot be reliably used: the library may
work as expected but it is more likely that it will be unable to
handle such data or produce degraded or erroneous results. For
instance, the family of power functions from the C99 standard
[39] (resp. powf, pow, powl, cpowf, cpow and cpowl) works with
built-in types (resp. float, double, long double, float complex,
double complex and long double complex), but cannot handle
a user-defined type (e.g. a fixed-precision number).

This example illustrates a need for reuse without modification:
many libraries are not flexible enough to cope with new context of
use. From a very general point of view, programs can be decom-
posed into algorithms and data types. However, the former are
often tied to the later, thus preventing any other combinations of
existing algorithms with new data types. Separating algorithms
from data structures and keeping them as orthogonal as possible
is one of the incentives behind programming paradigms such
as Generic Programming (GP) and Object-Oriented Program-
ming (OOP).

In this chapter, we present the GP paradigm and see how
it can be useful in the design and implementation of reusable
software libraries, especially in scientific applications like Image
Processing. We compare it with OOP and show why we consider
it a better strategy for efficient and reusable software design.
Most examples of this chapter makes use of the C++ programming
language; however, we also consider other languages supporting
GP. We later examine the limitations of GP and how it can be
combined with OOP to form a new programming paradigm with
a better expressive power, SCOOP. We conclude with theoretical
considerations on the link between GP and algebra and how they
fit IP software design issues.

2.1 elements of generic programming

The limitations of traditional libraries mentioned above are due
to a rigid interface that cannot be adapted to new input data
types. In compiled programming languages, were libraries are
composed of a compiled implementation (e.g. ‘lib.a’, ‘lib.so’,
‘lib.dll’, etc.) and an interface for the compiled language (e.g.,
lib.h in C), the emitted code (bound to the target hardware archi-
tecture) is specific to the data types involved in the interface (e.g.,
the types of a routine’s arguments). This code is not designed for
other data types.

A solution to overcome this restriction is to create program-
ming entities not strictly bound to their data types, by turning
them into adjustable parameters. This strategy is made possible by
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the fact that the code of many algorithms, data structures and
other language elements is not fundamentally bound to the data
types they manipulate. For example, consider the following C
implementation of the function sqrf computing the square of a
floating point value.

float sqrf(float x) { return x * x; }

If we were to implement this function for other types such as
int or double, we would reuse the same code, except for types.
This could be achieved by turning the type float in use in this
function into parameter τ, and making this definition valid for
any type τ:

∀τ, τ sqrf(τ x) { return x * x; }

This new implementation is no longer bound to a specific type:
sqr can be considered a generic function.

This idea of parameterization of elements such as functions or
data structures is a central notion of Generic Programming. GP
is a programming language paradigm enabling the definition of
generic entities through the use of parameters. Several kind of
programming language notions can be parameterized: routines
(functions, procedures, methods), data types, modules, etc. From
a functional point of view, a parameterized entity can be seen
a mapping from a set of parameters (e.g., types) to a concrete
entity (e.g. a function or a type).

2.1.1 Generic Algorithms

The definition of sqr above is not actually valid C++ syntax. In
C++, generic entities are expressed as templates. A parameterized
function is introduced with the template keyword together with
a list of parameters between angle brackets (‘<’ and ‘>’). The
typename (or class) keyword before a parameter means this pa-
rameter stands for a type. With these notations, the sqr functions
reads in actual C++ syntax as

template <typename T>
T sqr(T x) { return x * x; }

Using a function template is similar to using a classic function:

sqr (3.14f); // Calls srq <float >.
sqr (42); // Calls srq <int >.

The template parameter T is deduced (inferred) from the type
of the argument passed to sqr. In the first line, 3.14f, which is
a literal value of type float, propagates its type to sqr. Since
sqr is not a true function, but a function template, the compiler
needs to create the code of the function sqr where the formal
parameters (T) are replaced by their actual values (int, in the case
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of the first call). This generation mechanism is called template
instantiation1. In this respect, templates works a bit like macros
of the C++ preprocessor, although there are many differences
between the two features.The function template is said to be
(fully) specialized when (all) its parameters are given an actual
value. The name of a specialized function template is composed
of the name of the template followed by the list of the actual
parameters in angle brackets. The names of the specializations
of sqr in the previous example are respectively srq<float> and
sqr<int>.

In this thesis, we always reserve the name parameter for tem-
plate parameters, while argument refers the arguments of a func-
tion (either defined or called). We will qualify an argument (resp.
a parameter) as actual if it is part of a template definition (resp.
function definition) and as effective if it part of a template creation

In the previous definition of sqr, T is a formal parameter while
x is a formal argument, since they belong to the definition of
the function template. In the first instantiation of sqr, int is an
effective parameter, while 3.14f is an effective argument.

An algorithm written as a function template is said to be
generic if it can be applied to any “meaningful” input, i.e. which
complies with the requirement of an abstract definition of this
algorithms. For instance, a sorting algorithms may require its
input to define comparison operations (e.g. <) on the sorted ele-
ments. Generic algorithms, in particular generic Image Processing
algorithms, are studied throughout this thesis. The notion of re-
quirements of templates is addressed particularly in Section 2.4
(p. 49) and Chapter 3.

2.1.2 Generic Data Types

In addition to functions templates, C++ support the notion of
generic data types trough class templates. The syntax is similar to
function templates: the template keywords followed by the list
of parameters is placed in front of a class (or struct) definition,
and parameters may be used within this definition.

Classes templates are especially useful to implement generic
containers. For instance, the following lines implement a very
simple singly linked list:

template <typename T>
struct list
{

T data;
list* next;

1 Template instantiation should not be mixed up with class instantiation, which is
the creation of objects (instance) from classes. See also Section 2.5 (p. 59)
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};

Unlike function templates, class templates cannot instantiated by
inferring the parameters from the context of use: the full name
of the template must be supplied together with its parameters.
To create a list of three elements, we can create three values of
type list<int>. The instantiation of the list<int> is triggered
the first time the compiler sees it.

list <int > l1 = {1, 0};
list <int > l2 = {2, &l1};
list <int > l3 = {3, &l2};

Note that list alone does not name a type, but a (class) template,
whereas list<int> (as well as list<float>, list<double>, etc.)
is a type: list and list<int> belong to different kinds.

Like generic functions, generic containers are reusable units of
code: a single definition may be used many times with different
parameters. Moreover, the type of the data stored in such a con-
tainer is known a compile time, enabling the compiler to detect
errors early and possibly to perform optimizations. Containers
based on dynamic types and typeless containers are more error
prone and less efficient.

2.1.3 Instantiation of C++ Templates

Templates can be seen as generators. For instance, the following
function template f having a type parameter T

template <typename T>
T f(T x) { . . . }

can be interpreted as function:

fT :
{

T → T
x 7→ . . .

The resolution of C++ templates is static: all template-related
features are addressed at compile time. Therefore, an instruction
such as

f(51);

is two-fold:

• at compile time, it first triggers the instantiation of the code
of the specialized function f<int>;

• at run time, it executes the statement f<int>(51).

The two-level mechanism adds expressive power to the language,
but also restricts the scope of templates: one cannot instantiate
templates past the compilation. This may be a problem when the
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context of use of a template is only known at run time. Some
solutions to this issue are proposed in Section 6.3.1 (p. 158).

As for compile- and run-time performances, each unique spe-
cialization of templates leads to code generation and compilation,
possibly increasing the generated code and compilation times.
However, since the compiler generates dedicated code for each
instantiation, it may be able to optimize it.

2.1.4 Generic Libraries

In the same way as libraries are collections of reusable code, it is
possible to create generic libraries made of reusable generic code.
In C++ such libraries are composed of function and class templates.
But unlike traditional libraries, which contains compiled code (e.g.,
in files ending in ‘.a’, ‘.so’, ‘.lib’, ‘.dll’, etc.), generic libraries
are merely collection or source code containing templates. Indeed
generic algorithms and data types cannot be turned into compiled
code unless they are specialized. Thus to preserve their most
general (abstract) form, they must be distributed and installed as
source files.

The most famous generic library is probably the STL. The STL
is a collection of generic containers (character strings, vectors,
lists, dictionaries, queues, etc.) and generic algorithms for these
data structures (for sorting, searching, copying, transforming,
etc.).

STL data structures and algorithms are orthogonal: any STL
algorithm can be applied to any STL container, as long as the
combination is valid (for instance, a random shuffling algorithm
cannot be applied to a container that does not support random
accesses). Therefore, data structures and algorithms from the STL
are loosely coupled: the former can be extended irrespective of
the later, and vice versa. This powerful property is due to the use
of iterators, acting as abstract handles on values of a container.
The concept of iterator belongs to the set of design patterns of
Gamma et al. [31]. STL algorithms do not take containers as
input, but iterators: therefore, they are not tied to a particular
data structure, or even to an abstract interface (e.g., the interface
of a sequential or random-access container). The only interface
between containers and algorithms are iterators: they are pro-
vided by the former and use by the latter.The STL algorithms
have been designed to be also compatible with ordinary C ar-
rays, as C pointers can be used as iterators as well. Most of the
Standard Template Library has been integrated into the ISO C++

standard library [38].
The possibilities of the STL are illustrated by the following

example: a dynamic array (std::vector<int>) of three integers
is created (push_back() calls), sorted (std::sort), and copied
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(std::copy) into a linked list of floating point values (std::list<float>),
with on-the-fly conversion of int values into floats.

std::vector <int > ints;
ints.push_back (2);
ints.push_back (3);
ints.push_back (1);
std::sort(ints.begin(), ints.end ());

std::list <float > floats;
std::copy(ints.begin(), ints.end(),

std:: back_inserter(floats ));

Method calls c.begin() and c.end() return iterators pointing
to the beginning and (past) the end of the container c. std::
back_inserter creates a special iterator inserting data at the end
of its container.

In addition to containers, algorithms and iterators, the STL
defines a set of concepts defining syntactic and semantic require-
ments over types. Concepts are covered in Section 2.4 (p. 49).
Section 2.2.3 (p. 36) provides additional information on the STL.
Besides the STL, there are many successful generic libraries in
C++. We present some of them in Section 2.3 (p. 48).

Our proposal for a generic image processing platform is cen-
tered on a generic image processing libraries. We reuse and
extend ideas that have been made popular by the STL and other
libraries, including data structure/algorithm uncoupling, iterator-
based traversals, etc.

2.2 history of generic programming

2.2.1 CLU

The first ideas of generic programming before it was named like
this date back to the invention of the CLU language in 1974 by
Barbara Liskov and her students [51]. Among many program-
ming concepts including data abstraction (encapsulation) and
iterators, the language features parameterized modules. In CLU,
modules are implemented as clusters which are programming
unit grouping a data type and its operations. CLU’s procedures,
iterators and clusters can be parameterized. This feature intro-
duced the notion of parametric polymorphism, that is the ability to
define a generic function or data type having always the same
behavior, whatever the types of the handled values, while pre-
serving full static type-safety.

Initially, parameters were checked at run time. Then, where-
clauses were introduced to specify requirements over parameters.
Only the operations of the type parameter listed in the where-
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clause may be used, enabling complete compile-time check of
parameterized modules, as well a generation of a single code.
For instance, the following declaration announces a set cluster
parameterized by a type t which is expected to provide an equal
operation. Inside set, the only valid operation on t values is
equal.

set = cluster [t: type] is
create , member , size , insert , delete ,
elements

where
t has equal: proctype (t, t) returns (bool)

set[t] represents a set of values such as ∀x ∈ set[t], x is of type t.
The syntax module[parameter] binds a module and its param-

eter, and is called instantiation [6]. Instantiations in CLU are
dynamic: a new object module is created once for each dis-
tinct set of parameter values. Each type used as a parameter
is represented by a type descriptor. Instantiated modules are
created from an non-instantiated module object, where the type
descriptor representing the type parameter is replaced by a type
descriptor of an actual type. In this respect, CLU differs from
C++, where all instantiations are done at compile-time.

Atkinson et al. discussed the pros and cons of compile-time
versus load- and run-time binding strategies [6]. Compile-time
binding has the drawback of creating an instantiated module
code per set of parameters, which may lead to a combinatorial
explosion if many different instantiations are done, or worse
if a comprehensive set of instantiations is required (the topic
of combinatorial explosion of instantiation is discussed in Sec-
tion 4.1, p. 109). The compile-time binding scheme is akin to
macro expansion: the code is generated by substituting actual
values in a template. Therefore, the compiler benefits from a
concrete context for each specific instantiation, and may be able
to generate optimized code, at the expense of longer compila-
tion times (as in C++).On the other hand the load- or run-time
strategy requires a single compiled code for each parameterized
module, independent of the parameters’ values and shared by all
instantiations. Parameters are passed at run-time as objects (type
descriptors).

2.2.2 Ada

Ada is a programming language which was started in 1977 and
appeared in 1980. It was standardized in 1983 (then 1995 and
2005) .Ada features generic packages and generic subprograms (rou-
tines) through the generic keyword.
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The following examples shows a generic implementation of a
routine swapping its arguments.

generic
type T is private;

procedure swap (x, y : in out T) is
t : T

begin
t := x; x := y; y := t;

end swap;

Parameterized packages and routines must be instantiated explic-
itly: they cannot be generated implicitly from the context of use,
as in C++. For instance, the following two lines instantiate swap
for integers and character strings.

procedure int_swap is new swap (INTEGER );
procedure str_swap is new swap (STRING );

Unlike in C++, compilation of generics can be independent of use
in Ada, leading to “shared generics”.

Ada supports syntactic constraints on parameters like CLU. For
instance, a generic minimum function requires an order relation.
In the following generic function definition, this requirement is
enforced by the with clause requiring a binary function ‘<=’ on
the parameter’s (T’s) values:

generic
type T is private;
with function " <= " (a, b : T) return BOOLEAN

is <>;
function minimum (x, y : T) return T is

begin
if x <= y then
return x;

else
return y;

end if;
end minimum;

Instantiation of constrained generics either can be fully qualified:

-- Here ‘T1’ is a type and ‘T1_le ’ is an order
-- relation on ‘T1 ’.
function T1_minimum is new minimum (T1, T1_le);

or take advantage of implicit names (here, the comparison func-
tion is already known as “<=”):

function int_minimum is new minimum (INTEGER );

The idea of Generic Programming was introduced by Musser
and Stepanov in Ada [59]. They pioneered the use of abstrac-
tions to defined generic algorithms independent of the processed
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data. The Ada standard library was augmented in the 2005 ISO
standard with a library of generic containers inspired by the STL.

2.2.3 C++, Templates and the Standard Template Library

Bjarne Stroustrup, the initial designer and implementer of C++

considered parameterized types in the first design of C++. How-
ever, their introduction was postponed because of time con-
straints and complexity reasons.

Before Templates

The initial incentive to implement templates in C++ was param-
eterized containers, as in CLU [73]; before, macros were used.
For instance, a generic vector class may be implemented with the
following GEN_VECTOR macro:

#define VECTOR(T) vector_ ## T

#define GEN_VECTOR(T) \
class VECTOR(T) { \
public: \

typedef T value_type; \
\

/* Constructors. */ \
VECTOR(T)() { /* ... */ } \
VECTOR(T)( size_t n) { /* ... */ } \

\
value_type& \
operator []( size_t n) { /* ... */ } \

\
/* ... */ \

}

When GEN_VECTOR is invoked with a type T (e.g. int) it expands
into a definition of class vector_T (vector_int). The VECTOR(T)
macro is a shortcut for vector_T2.

Such a macro must be invoked ahead of any use for a given
set of parameters: this macro calls is similar to Ada’s explicit
instantiation of generics.

GEN_VECTOR(int); // Instantiate VECTOR(int).
GEN_VECTOR(long); // Instantiate VECTOR(long).

Once instantiated these macro-based generic data types can be
used similarly to templates:

VECTOR(int) vi; // Create a VECTOR(int).
VECTOR(long) vl; // Create a VECTOR(long).

2 “##” is the concatenation operator of the C++ preprocessor, used to join two text
words.
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However, macro-based generic containers have many limita-
tions. Most of them come from the fact that macros are handled
by the C++ preprocessor before the actual compilation of C++ code.
The preprocessor merely acts as a code generator and is indeed
not aware of the semantics of the C++ language. Among the draw-
backs of macros, we may mention the fact that they are not aware
of types; they do not obey any scoping mechanism; they do not
support recursion; and they are not well handled by tools (e.g.,
debuggers), as most of them work with preprocessed source code,
after macros have been expanded. Because of these limitations, a
solution for actual and sound generic containers was sought.

Addition of Templates to C++

Two paths to address the issue of generic containers were consid-
ered:

• The Smalltalk approach, based on dynamic typing and
inheritance (dynamic polymorphism);

• The CLU approach, based on static typing and type param-
eters (static polymorphism).

The latter is more complex and less flexible than the former but is
more efficient and safer with respect to types, and was eventually
chosen.

Stroustrup presented in 1988 a first design for templates [72],
a feature enabling the creation of generic containers (see also
Section 2.1.2, p. 30). The first implementation of templates in
Cfront, the first C++ compiler from AT&T Bell Laboratories, sup-
ported only class templates, but was later expanded to function
templates. A first minimal template mechanism was described
in The Annotated C++ Reference Manual (ARM) [27]. Templates
were accepted by the ANSI C++ committee for inclusion in the
upcoming standard; templates or “fake templates” were already
used in many projects, which facilitated their adoption by the
committee [73].

Features of C++ templates

This paragraph enumerates a few features of C++ templates; for
more details about templates, see the book by Vandevoorde and
Josuttis [79]3.

instantiation time Instantiation of C++ templates is based
on code generation at compile- or link-time (the latter is sup-
ported by very few compilers, despite being a part of the current
standard [40]);

3 We follow the conventions of Vandevoorde and Josuttis and use the terms class
template and function template instead of template class and template function.
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implicit instantiation By default, if the implementation
(body) of a template is available, it is implicitly (automatically)
instantiated, for each set of parameters used. This is the dominant
instantiation model, which requires generic libraries to provide
the full implementation of their templates together with their
declarations in headers4.

explicit instantiation In addition to the implicit instan-
tiation model, C++ features an explicit (manual) template instan-
tiation mechanism. This scheme is more complex than implicit
instantiation, but enables a finer control of templates, and may
be required if design constraints impose a limited, specific set of
template instantiations (for instance in the context of embedded
systems).

explicit specialization C++ features an original mecha-
nism allowing users to provide their own specialization of a
given template, in addition to its the generic definition. This
mechanism is useful to implement dedicated implementations
for some parameters, which may perform better than the generic
definition. Specializations are also preceded by the typename key-
word, but fixed (“bound”) parameters are removed from the list
of parameter, and the name of the specialized class or function is
followed by the list of parameters (possibly containing bound and
unbound parameters). For instance, in the case of a container
of values of type T, there may be a better implementation when
T = bool. Such an implementation can be realized as an explicit
specialization:

template <typename T>
class container
{

// Generic implementation.
// ...

};

template <>
class container <bool >
{

// Dedicated implementation for T = bool.
// ...

};

When there are more than one parameter, it is possible to provide
partial specializations:

template <typename T, typename V>

4 Headers of non generic libraries are usually made of declarations only and do
not include definitions (statements).
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class dictionary
{

// Generic implementation.
// ...

};

template <typename T>
class dictionary <T, bool >
{

// Dedicated implementation for V = bool.
// ...

};

The compiler always picks the most suitable definition of a tem-
plate5. In the previous example, the second definition would be
chosen over the first one to generate the code of dictionary<char,
bool> as it is a more appropriate choice.

Explicit template specialization is especially useful in static
metaprogramming, a powerful feature of C++ (see Section 2.6.1,
p. 66).

non-type template parameters In addition to type pa-
rameters, preceded by the typename (or class keyword), C++

allows non-type parameters, such as int. Such parameters act
as constants in the definition of the template. For instance, the
following function templates implements the function fa : x ∈
R→ sin(ax), a ∈ Z:

template <int a>
float f(float x) { return sin(a * x); }

This feature was also present in CLU [51].

Lack of Explicit Constraint Mechanism

A non-feature of C++ templates is the lack of a syntax to express
constraints on parameters, as CLU and Ada do. The lack of
constrained genericity is not a strong deficiency, as each template
instantiation triggers code generation (after parameter substitu-
tion); if an actual parameter does not fit the (implicit) require-
ments imposed by the template, an error will be produced inside
the template, which will halt the compilation. This mechanism
may however be cumbersome, since the user is warned indirectly
(the compiler will report the error(s) triggered by the attempt to
generate the code of the template with the given parameter(s),
instead of precisely identifying an invalid parameter). Moreover,
error messages may be long an complex, since template instantia-
tions may result from the instantiation of other templates. This

5 Unless there are ambiguities due to concurrent specializations.
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is especially true in the context of generic libraries, were most
data types and routines are parameterized.Instantiation error
messages from the compiler then show the “stack” of succes-
sive template instantiations up to the point where the error was
detected.

Mechanisms enforcing named (or nominal) conformance (e.g.
through derivation) and structural conformance (e.g., through
constraint clauses, as in CLU or Ada) of template parameters
have been considered during the design of C++, but none has
been integrated to the standard yet. However, despite not enforce
by tools, constraints on template parameters have been formal-
ized in the context of generic libraries by the introduction of
concepts (discussed in Section 2.4, p. 49) in the STL, reused by
many other projects. Concepts are convention expressed as docu-
mentation that are intended for the programmers, not the tools,
although they may be expressed and checked to some extent (see
Section 2.4.2, p. 55).

The Standard Template Library

The Standard Template Library (STL) previously mentioned in
Section 2.1.4 (p. 32) is the first library of generic algorithms and
data structures created for C++. It was initially designed and
implemented by Alexander Stepanov, with the help of Meng Lee
and later David Musser. The ideas behind the STL originates
from the work on GP in Ada.

components The STL is a collection of template components
for C++. This paragraphs presents the different elements of the
library.

Containers The STL contains generic data structures such as dou-
bly linked lists (std::list<T>), dynamic arrays (std::vector<T>),
sets (std::set<T>), storing elements of a given type (T). Also pro-
vided are associative containers mapping key objects (of type (K)
to data objects (of type (T), such as dictionaries (std::map<T, K>).
In addition to these core containers, the STL comes with con-
tainer adaptors, that is containers built on top of other containers.
For instance, LIFO (Last In, First Out) stacks (std::stack<T, S>)
and FIFO (First In, First Out) queues (std::queue<T, S>) are
containers based on a Sequence container (of type S). Sequence
represent a set of constraints on the type used to built a stack or
a queue, called a concept (see below).

Algorithms The library also provides generic algorithms, working
with the containers. Instead of being tied to specific input (and
output) data types, these algorithms are implemented as template
functions. Moreover, they do not take container objects as input,
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but iterators (see below). Algorithms may express requirements
over the processed data; e.g., the std::sort algorithm only works
with random-accessible containers). To express such constraints,
these algorithms impose their input iterators to satisfy some
concepts (e.g. RandomAccessIterator), as container adaptors do
with respect to their underlying container (see above).

Iterators An iterator is an object acting as a location, handle or
pointer to some data (most often in a container). In the STL,
access to the data pointed by an iterator mimics the C++ pointer
dereferencing operation (using operator ‘*’). If i points to some
element of an STL vector of ints (std::vector<int>), *i returns
this element. In addition to accessing values, iterators provide
traversal (or iteration) services. These services vary with the
capabilities of the iterator, depending on the container’s capa-
bilities (if applicable). For instance, an iterator on a container
that supports one-way (also called forward) traversal provides
an operator ‘++’ which advances the iterator, making it point at
the next element. In the previous example, i++ would make i
point at the next element. If the container support two-way (or
bidirectional) iteration, then it proposes the converse operation,
namely operator ‘--’. Finally, an iterator on a random-accessible
containers can advance (resp. move back) several steps at once.
Such an iterator supplies an operator ‘+=’ (resp. ‘-=’) taking an
integer as argument. The iterator of the previous example can
be moved forward (resp. backward) by five cells using i += 5
(resp. i -= 5). This syntax mimics C++ pointer arithmetic, on
purpose. Iterators extends the notion of pointer on a classic
(built-in) array to new containers while reusing the same syntax.
Moreover, pointers themselves can be used as iterators within
STL containers, making C++ arrays containers compatible with
STL algorithms. Iterators can be obtained from containers, most
often using its methods begin() and end(); the former returns
an iterator pointing to the beginning of the container, while the
latter returns an iterator pointing just after the last element of
the container (called past-the-end iterator). Therefore, traversing a
container c of type C boils down to a simple loop:

for (C:: iterator i = c.begin ();
i != c.end(); ++i)

// ...

where C::iterator is a typedef (type alias) of the iterator’s type.
STL algorithms make use of similar algorithm constructs, and
therefore often take two iterators (or more) as input. For instance,
the sorting algorithm has the following signature (or declaration):

template <class RandomAccessIterator >
void sort(RandomAccessIterator first ,
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RandomAccessIterator last);

The name chosen for the template parameter has been chosen
to remind the user that the iterator is expected to fulfill the
requirements of a RandomAccessIterator. In addition to containers’
iterators, the library proposes some iterators work as adaptors,
i.e. adapting the interface of another object, such as a stream,
to the interface of an iterator, or have a different behavior. This
is the case of the std::back_insert_iterator (returned by the
std::back_inserter routine) of Section 2.1.4 (p. 32): each time
this iterator is used to write data, it actually appends an elements
at the end of its associated container (not to be confused with the
iterator returned by the container’s end() method, which returns
a location that is not write- (nor read-) accessible.

Functors The STL also promotes some elements of Functional
Programming (FP) style. FP is about making functions first-order
objects, that can manipulated like any other value. In C++, such
functions are represented by function objects or functors. Functors
are implemented as objects having an operator ‘()’ (similar to
function call). The following class defines a functor adding a
pre-defined quantity to and integer.

struct adder
{

// Initialize ‘a_ ’.
adder(int a) : a_(a) {}

// Add ‘a_’ to ‘x’.
int operator ()(int x) { return x + a_; };

int a_;
};

Functors are instantiated like other objects:

// Create a ‘‘+5’’ functor.
adder add_five (5);

and can be “invoked” like functions.

// Add 5 to 3.
int i = add_five (3);

Several STL algorithms make use of functors, as they imitate the
functional flavor of FP routines. For example the std::for_each
takes two iterators first and last on a container as well as a
function f, and applies f to all elements of the container in the
range [first, last):

template <class InputIterator ,
class UnaryFunction >
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UnaryFunction
for_each(InputIterator first ,

InputIterator last ,
UnaryFunction f);

The argument f can be a standard function or a functor. The
benefits of functor is that they can record a state and make
side effects, whereas traditional functions are expected to be
pure (i.e. they should compute while modifying nothing). Us-
ing a functor is especially useful to inject information into the
computation (like the previous add_five example), or to extract
information from within the computation. For instance, one can
write a container summing all the elements passed as argument
to its operator ‘()’; using this functor with std::for_each and
iterators on an std::vector<int> will compute the sum of this
vector’s elements. Functors are an extra step towards component
orthogonalization: they help to separate the tasks of algorithms
into reusable and orthogonal units. In the previous example,
std::for_each’s work is to traverse a container and apply some
function, while the function applied is variable element (e.g., an
accumulator computing a sum).

Concepts The use of templates within a library makes generic
components very open, to the point that some parameters would
not fit, either syntactically (e.g., because they lack a method)
or semantically (because one of their method does not behave
as expected by the component) or both. A classical example of
syntactic incompatibility is the lack of an order on the elements
of a container to be sorted. To order values, std::sort expects a
comparison function (or functor) passed as argument, or relies
on the existence of an operator ‘<’. If none is available, then
the sorting operation on this container is not defined, and the
compiler must exit with an error. The signature of the algorithm,
however, does not enforce these constraints. Such a features
is missing in C++ and as a consequence many type-constraints-
related error messages are long and complex (see above).

Even though the language cannot materialize constraints syn-
tactically, the designers of the STL have designed abstract entities
gathering syntactic, semantic and complexity constraints called
concepts. A concept describes a type by listing the minimal inter-
face it has to provide (e.g. the methods that must be provided by
an iterator) and characterizing its behavior in defined contexts
(e.g. how the iterator responds to method calls). The analysis
of data types and algorithms have led the STL’s authors to de-
sign concepts for containers, iterators and functors, and define
algorithms with respect to these concepts. As said earlier, these
entities does not exist as language constructs; however, they are
omnipresent in the design of the STL and they are an essential
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part of its documentation (for instance in SGI’s version [66]).
Users of the library are expected to carefully read and follow the
indications of the involved concepts. To remind them of concepts,
the STL documentation (and code) uses concepts to name tem-
plate parameters. Concepts are one of the biggest contributions
of the STL though they have no concrete materialization within
the library’s code yet. They are covered in depth in Section 2.4
(p. 49).

origins The first experiments on GP that will later give birth
to the STL date back from the 1970s, when Alexander Stepanov
was working with Deepak Kapur and David Musser on a pro-
gramming language implementing the idea of abstract algorithms
preserving efficiency [2]. Stepanov observed algorithms and data
structures can be made orthogonal, because the latter do not
depend on the implementation of the later, but only on “a few
fundamental semantic properties of the structure”. This work
put and emphasis on efficiency and efficiency requirements in
abstract definitions of algorithms, to the point that an abstract
definition of an algorithm was as efficient as a dedicated one.
It led to the design of the Tecton programming language also
making use of functional programming style (i.e. free of side
effects).

This style of programming later known as generic program-
ming would later be applied to graph algorithms, in the form of
a toolbox implemented in the Scheme programming language.
Later Stepanov developed a generic library in Ada with David
Musser benefiting of the notion of strong typing (compared to
Scheme) to catch errors and design issues. First experiments of
GP with C++ came after, but the language was not practicable
at this time (because of the lack of templates). However, C++

was more flexible compared to Ada, especially regarding point-
ers, which are a key feature to achieve performance, despite the
generality of the context.

GP really started in C++ when templates were introduced by
Bjarne Stroustrup (mentioned earlier in this section). Stepanov
together with Men Lee created the roots of the STL of STL at
Hewlett-Packard (HP). They defined algorithms that were as
generic as possible while still being very efficient (with no ab-
straction penalty according to Stepanov). The design of the first
STL was also the occasion to build the first theoretical founda-
tions of GP. Stepanov stated that despite C++ was a very lax
language with respect to the semantics of user-defined opera-
tion, library design should observe some sound rules, such as
operator ‘==’ always being an equality operator being reflexive
(∀x, x == x), symmetric (∀x∀y, x == y⇔ y == x) and transitive
(∀x∀y∀z, x == y ∧ y == z ⇒ x == z). In other words, design
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rules should observe standard mathematical axioms since these
properties are essential to build other operations (algorithms)
[2].

The work of Stepanov and Lee was promoted by Andrew
Koenig and Bjarne Stroustrup of Bell Labs to the ANSI/ISO
committee for C++ standardization in 1993. They sent a draft pro-
posal to the C++ committee in 1994. Eventually, a later proposal
was accepted to the C++ draft standard, and STL was partially
included in the C++ standard library. The STL implementation
from HP (written by Stepanov, Lee and Musser) was made freely
available on the WWW in 1994 and used as the basis of many
other STL implementations (including SGI’s version [66]). The
STL is also described in an HP technical report by Stepanov and
Lee [71], and later books on the library have been published [63].

legacy The STL is a cornerstone work and had many impli-
cations on the future of C++, GP and even other programming
languages, including the one that inspired it at first (Ada). The
library has a great legacy among modern programming lan-
guages. The STL style (concepts, iterator-based algorithms, etc.)
has inspired many generic libraries and generic programming in
general.

First and foremost, the library provided useful generic data
structures that used to be written and rewritten in the old days,
because the language lacked reusable, safe and efficient a contain-
ers. It is hard to imagine C++ programming these days without
std::vector, std::map, etc. Likewise, STL algorithms, iterators,
functors and auxiliary tools have become a fundamental part of
the language.

The design of STL is also of prime importance. While many
libraries focuses on generic data structures (only), the STL put
this emphasis on generic algorithms, as advocated by Stepanov
[65]. Other generic libraries later followed this strategy (see
Section 2.3, p. 48). The form of the algorithms themselves is
typical of the STL: most of them are written as generic routines
taking iterators on their inputs (and outputs) to minimize the
coupling between data structures and algorithms. Iterators play
a major role in this orthogonal design.

STL was also successful because it tried to follow C idioms,
just as C++ did with syntax of C. The library extends the seman-
tics of C constructs, by providing iterators that mimics pointers,
loop-based iterations using the same operation on pointers and
iterators (‘*’ to access pointed data, ‘++’ and ‘--’ to resp. advance
to the next element and move back to the previous element, etc.).
Indeed the STL follows the design rules of templates and C++

in general by providing language constructs compatible with
C constructs: STL containers can store not only class instances



46 generic programming

but also Plain Old Data (POD) values (such as int values); al-
gorithms expecting iterators derived from containers also work
with pointers on C arrays. In this respect, GP and the STL are
fully compatible with the C foundations of C++, whereas other
approaches (namely OOP) imposes a new structural framework
(classes, methods) in which existing C types do not fit, and
must be adapted (for instance, int or float objects do not sup-
port method calls nor inheritance). A language such as Java
illustrates the consequences of a design choice favoring a pro-
gramming paradigm (OOP) at the expense of the compatibility
with base language constructs, tough this design was later im-
proved. For instance built-in (atomic) types (such as int) have an
object counterparts (java.lang.Integer) so as to fit in the OOP
framework; automatic conversions (boxing/unboxing) were later
introduced in the language to simplify this duality. Likewise,
there was a discrepancy between statically type-checked built-
in arrays (e.g. java.lang.String[]) and Object-Oriented (OO)
containers (e.g. java.util.ArrayList), “losing” the type of their
elements. The subsequent addition of generics to the language
fixed this issue by preserving the type of contained elements (e.g.
java.util.ArrayList<String>) and more generally enabling a
Generic Programming style.

Perhaps more importantly, the STL implemented an essential
idea in language design: designing abstract entities (together
with their properties) which may not map directly to language
constructs, as iterator concepts. Stepanov said that “[an iterator]
is something which doesn’t have a linguistic incarnation in C++”
[2]. Concepts (see Section 2.4, p. 49) were helpful in designing
the library, in particular because they provide intellectual objects
supporting the logic of the library. This is even more relevant in
the context of a template library, which cannot be truly compiled
(apart from its uses), and for which tools (such as compilers) offer
very limited as design checking tools. Tools have improved since,
and the language will probably evolve to better support GP and
STL idioms, but this is the definition of concepts and axioms that
have led down the foundations of the library. .

development of generic programming in c++ Follow-
ing the design, implementation and popularization of the STL,
GP emerged as a field of scientific research and industrial ad-
vances in computer science. GP developed a lot in C++, where it
was experimented and defined. Musser and Stepanov proposed
to design generic libraries centered on algorithms following the
STL model [60]. Dehnert and Stepanov presented fundamental
properties required to built a sound generic programming frame-
work [23].Many work on GP was conducted during in the 1990s
in parallel with the C++ standardization process, and continued
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Generic programming is a sub-discipline of computer science that
deals with finding abstract representations of efficient algorithms,
data structures, and other software concepts, and with their sys-
tematic organization. The goal of generic programming is to
express algorithms and data structures in a broadly adaptable,
interoperable form that allows their direct use in software con-
struction. Key ideas include:

• Expressing algorithms with minimal assumptions about
data abstractions, and vice versa, thus making them as
interoperable as possible.

• Lifting of a concrete algorithm to as general a level as
possible without losing efficiency; i.e., the most abstract
form such that when specialized back to the concrete case
the result is just as efficient as the original algorithm.

• When the result of lifting is not general enough to cover all
uses of an algorithm, additionally providing a more general
form, but ensuring that the most efficient specialized form
is automatically chosen when applicable.

• Providing more than one generic algorithm for the same
purpose and at the same level of abstraction, when none
dominates the others in efficiency for all inputs. This intro-
duces the necessity to provide sufficiently precise charac-
terizations of the domain for which each algorithm is the
most efficient.

Figure 1: Definition of Generic Programming from Jazayeri et
al. [44].

in the early 2000s. Jazayeri et al. introduced in 1998 a concise
definition of GP [44] (see Figure 1). It introduces the idea of type
subsets, and specializations (or variants) that we pursue in this work
(see Section 4.6.3, p. 134).

The development of GP in C++ influenced other programming
languages among which Java and C#, which were added generic
data classes, interfaces and methods named generics.

GP is still an active field of research and development in C++,
in particular within the second standardization process of the
language, named C++0x [43], which will probably be published in
2011. Among the new GP-related features are variadic templates,
enabling an arbitrary number of parameters in a template, and
template aliases (“template typedefs”) simplifying the use of long
template names.C++0x was initially planned to host a new major
feature, concepts as actual syntactic constructs. This addition
would have allowed user to define and use concepts as concrete
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entities, so as to simplify the use of templates and even enable
some optimizations (see Section 2.4, p. 49). They were dropped
from the standard proposal in 2009 for complexity reasons, but
may be part to the next standard.

2.3 applications of generic programming

Like other programming paradigms, GP increases the expressive
power of languages that implement it. GP let users to define
programming constructs (data structures and algorithms) sharing
a common structure in a factored and concise way. The generic
approach to designing software is also open: generic components
are not restricted per se: parameters are not necessarily tied to a
named interface (at least in C++). Therefore, one can write generic
code with future reuse without modification in mind.

In addition, GP is a static programming paradigm: its scope
is limited to compile time, and thus it requires no ad hoc run-
time support, hence it does not introduce run-time overhead.
In fact, a generic code, one specialized (i.e. used in a context,
where all parameters are given values) is as fast as the equivalent
hand-written dedicated code. Figure 1 defines the lifting of an
algorithm as the act of making it as general as possible without
loosing efficiency.

These aspects (abstraction-based programming, reusability,
open design and efficiency preservation) makes GP a good strat-
egy to implement fundamental data structures and algorithms (as
the STL does) as well as scientific software. Indeed applications
in mathematics, logic, physics, graph theory, image processing
and other scientific fields often require intensive computations
(because they may process large and/or numerous data); and
they may manipulate data of many kinds (e.g. matrices, vectors,
images based on various value types). They need efficient and
polymorphic (generic) algorithms, for which GP is actually well
suited. In particular, the benefits of using GP are covered by
Chapter 4.

Historically the language used for scientific computation was
Fortran. Fortran compilers were known for generating fast pro-
grams, in particular because the language enabled some opti-
mizations leading to efficient code. C and C++ compilers also
generated efficient programs but were not able to catch up with
Fortran, as they did not permit the same optimizations. However
the addition of templates to C++ and the development of the GP
style in the language has helped C++ gain ground over Fortran
in the domain of scientific programming [89], to the point that
many scientific software is known developed in C++.

Successful projects using GP include the Standard Template
Library of course, which has become a part of the C++ standard
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[40]. Many libraries from the Boost project [77] extend the C++

standard library with many general-purpose and dedicated qual-
ity libraries. Other projects include the Blitz++ library of numeric
arrays [85], using advanced C++ programming techniques such
as expression templates [84, 81] and template metaprogramming
(presented in Section 2.6, p. 66) to generate specialized algo-
rithms [83, 80] competing with Fortran’s efficiency; POOMA (Par-
allel Object-Oriented Methods and Applications) [5], providing a
framework for writing parallel Partial Differential Equation (PDE)
solvers using finite-difference and particle methods; the Matrix
Template Library (MTL) [70, 69] and the Generative Matrix Com-
putation Library (GMCL) [19, 20]; CGAL (Computational Ge-
ometry Algorithms Library) [29], dedicated to computational
geometry.

It is interesting to note that it is possible to make an algorithm
even more generic, beyond the recipe imposed by the lifting pro-
cess of Figure 1. This policy may increase the level of abstraction
at the expense of run time efficiency. This is often the case when
higher and/or more abstractions are introduced in algorithms.
This situation exhibits a phenomenon known as abstraction penalty,
which may appear in programming paradigms providing abstrac-
tion mechanisms. Abstraction penalty is hard to avoid in some
paradigm such as Object-Oriented Programming (OOP), but it
can be controlled in GP (see Section 2.5, p. 59): we have already
mentioned that GP is based on compile-time mechanisms that
do not impact the run-time behavior of programs intrinsically.
Very abstract generic code is not immune to abstraction penalty
though (see Section 4.6.3, p. 134). It is however possible to design
additional, slightly less generic alternative algorithms to regain
the performance of dedicated code. Moreover, in a careful de-
signed software organization based on orthogonal components,
generic algorithm have the interesting property of being usable
with general-purpose data structures as well as dedicated data
structures, as they do not alter their definition. Compilers, how-
ever, may take advantage of the features (static or compile-time
information) to generate optimized code, more efficient than
code produced when using a general-purpose data structure (see
Section 4.6.3, p. 134).

2.4 concepts

Generic Programming was shaped in part by the design and
the development of the Standard Template Library. The generic
algorithms of the library, expressed as function templates, have
requirements on their parameters (see Section 2.2.3, p. 36). The au-
thors of the STL discovered that these requirements were shared
among the algorithms. More precisely, the set of requirements
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on the parameters of a given algorithm could be the same as
the set of requirements of another algorithm, or even be a sub-
set of the requirements of yet another algorithm. For instance,
the STL algorithm performing a sequential search in a container
(std::find) and the STL algorithm applying a function to all
elements of a container (std::for_each) both use an iterator to
traverse this container6; both algorithms place the same require-
ments on this iterator: it must be able to access the pointed
element (dereferencing operation) and to advance to the next
element (incrementation operation). The translation of these con-
straints into C++ is the need for a dereferencing operator* and
for a incrementation operator++. For each STL algorithms, such
requirements have been identified and regrouped as sets called
concepts.

A concept can thus be defined as “the set of axioms satisfied
by a data type and a set of operations on it”[23]. When a type
satisfies the axioms of a concept, it is said to model the concept
or to be a model of this concept. In the previous example, the
iterators passed to std::find and std::for_each are expected to
be models of the concept InputIterator, which is defined by the two
operations identified earlier: dereferencing and incrementation.
The STL and other libraries define concepts in a formal way, by
listing precisely its syntactic, semantic and complexity properties
(see Section 2.4.1, p. 51). The code and the documentation often
name a parameter of a generic algorithm after the concept it shall
model to remind users of this constraint. In the documentation
of the STL, std::find has therefore the following signature:

template <class InputIterator ,
class EqualityComparable >

InputIterator
find(InputIterator first ,

InputIterator last ,
const EqualityComparable& value);

This example also shows that concepts are not limited to iter-
ators, or even to objects. They can describe requirements that
may be fulfilled by any type. For example, the third argument
of std::find (the searched value) must be a model of Equality-
Comparable. This concept requires value to support comparison
through operators ‘==’ and ‘!=’. Therefore, many types qualify as
EqualityComparable among which all C++ atomic (built-in) types
such as int, float, etc. as the language has built-in definition of
operators ‘==’ and ‘!=’ for these types.

If we consider another STL algorithm such the algorithm re-
versing a range of elements in a container (std::reverse), we

6 More precisely, std::find and std::for_each use a range of iterators [first,
last)], since STL algorithms are designed to work on ranges of elements
within a container.
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can observe that the STL place more requirements over its inputs:
the iterators defining the range must be able to move forward and
backward7. Incrementation (forward move) of an iterator is still
performed with operator ‘++’, while decrementation (backward
move) is done with operator ‘--’. Requiring the (std::reverse)’s
iterators to be InputIterator s is not enough, as InputIterator does
not guarantee the existence of an operator ‘--’. std::reverse
thus requires its iterators to model another, richer concept, Bidi-
rectionalIterator, providing the required operations (dereferencing,
incrementation, decrementation). BidirectionalIterator includes all
the requirements of InputIterator, hence a a model of Bidirection-
alIterator is also a model of InputIterator. BidirectionalIterator is
said to be a refinement of, or to refine InputIterator.

2.4.1 Concept Definition

The documentation of the STL uses a uniform style to present
concepts. A concepts definition is composed of its fundamental
notions and properties, including the relations with other con-
cepts, the relations between a concept’s model and other types,
and syntactic and semantic requirements. This section presents
these elements. Figures 2 and 3 show an example of concept
definition from the STL, BidirectionalIterator.

Description

The first part of a concept definition describes its category (e.g. it-
erator, container, functor in the case of an STL) and its main traits
(features, behavior, additional services provided with respect to
parent concepts, etc.).

Refined Concepts

A concept may be a refinement of one or more concept(s). This
part lists concepts refined by the concept being defined. For in-
stance, BidirectionalIterator is a refinement of ForwardIterator, being
itself a refinement of InputIterator. The refinement relationship
creates hierarchies of concepts, the same way the inheritance
relationship creates hierarchies of classes (see also Section 2.5,
p. 59 for a parallel between the role of concepts in GP and the
role of classes an interfaces in OOP).

Unless the defined concept alters them, the elements of its defi-
nition that are “inherited” from a parent concept are not repeated.
For instance, BidirectionalIterator documents the decremement op-

7 By placing such as constraint on its iterators, std::reverse can be implemented
by performing a number of comparison equal to the half of the number of
elements in the range).
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BidirectionalIterator (1/2)
Category: iterators Component type: concept

description A Bidirectional Iterator is an iterator that can be
both incremented and decremented. The requirement that
a Bidirectional Iterator can be decremented is the only thing
that distinguishes Bidirectional Iterators from Forward Iter-
ators.

refinement of ForwardIterator

associated types The same as for ForwardIterator.

notation

X A type that is a model of BidirectionalIterator
T The value type of X
i, j Object of type X
t Object of type T

definitions (none)

valid expressions In addition to the expressions defined in
ForwardIterator, the following expressions must be valid.

Name Expression Type Return
requirements type

Predecrement --i X&
Postdecrement i-- X

expression semantics Semantics of an expression is defined
only where it is not defined in Forward Iterator.

Name Predecrement Postdecrement
Expression --i i--
Precondition i is dereferenceable or past-the-end.

There exists a dereferenceable itera-
tor j such that i == ++j.

Semantics i is modified to
point to the previ-
ous element.

Equivalent to
{ X tmp = i;
--i;
return tmp; }

Postcondition i is dereference-
able. &i = &--i.
If i == j, then
--i == --j. If j
is dereferenceable
and i == ++j,
then --i == j.

Figure 2: BidirectionalIterator concept definition [66] (part 1/2).
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BidirectionalIterator (2/2)
Category: iterators Component type: concept

complexity guarantees The complexity of operations on
bidirectional iterators is guaranteed to be amortized con-
stant time.

invariants

Symmetry of increment and decrement: If i is derefer-
enceable, then ++i; --i; is a null operation. Similarly,
--i; ++i; is a null operation.

models

• T*

• list<T>::iterator

Figure 3: BidirectionalIterator concept definition [66] (part 2/2).

eration (‘--’), but not the increment operation (‘++’), defined by
ForwardIterator.

Associated Types

A concept may define associated types. Models of such a concept
may indeed require cooperation from other types to have a mean-
ingful definition. For instance, a Container is linked to the type
of the values it contains. Hence the definition of the Container
concept defines a associated “value type”. This type must be
defined by all models as an embedded typedef (type alias) called
value_type. Therefore, for each type C modeling the Container
concept, the expression C::value_type returns the type of the
container objects. Likewise Container defines (among others) an
associated type named iterator corresponding to the iterator
type returned by its methods begin() and end().

All models of a concept must provide the associated types
listed in the concept’s definition.

Notation

Later sections of the concept definition make use of expressions
that must be satisfied by models of the concept. To shorten these
expressions, repeated symbols (such as a type X modeling the
concepts, or an object a of type X) are defined here.
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Definitions

Concepts may introduce associated notions. For instance, a Con-
tainer defines what a size is. This section presents these defini-
tions.

Valid Expressions

This section list the syntactical (and semantic) requirements of
a concept, i.e. expressions involving one or several model(s) of
the concept and/or objects of this (these) models, which must be
valid from a compilation point of view. The interface of a concept
(the minimal set of its methods) is in particular a part of these
requirements.

Models failing to satisfy the requirements of the valid expres-
sion section may trigger compilation errors.

Expression Semantics

In addition to the previous list of valid expressions, a concept
assigns meaning to some expressions and defines requirements
on their semantics. For instance, let us consider an object a of a
model of Container. The Containers commands that the expression
a.empty() (checking whether a is empty or not) be semantically
equivalent to the expression a.size() == 0 (checking that a has
a size of 0), and possibly be faster.

Most expression semantics cannot be checked at compile-time,
as they characterize run-time behaviors, hence compiler are un-
able to enforce them. Models failing to satisfy the requirements
of the expression semantics section may cause errors or behave
unexpectedly at run time.

Complexity Guarantees

As efficiency is also a concern of GP, a concept may impose
constraints on the complexity of the services provided by its
models. For instance, Container requires the method size() to be
linear in the container’s size.

Complexity constraints give users some guarantees about the
global run-time efficiency of an algorithm using a model of a
given iterator or container concept.

Invariants

The invariants section completes the expression semantics with
additional requirements on the models and their instances with
respect to semantics. But instead of being tied to a particular ex-
pression, these requirements express general rules of the concept.
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Axioms on fundamental properties of data structures are in
particular defined as invariants. For example the EqualityCompa-
rable concept defines that for a modelXo f EqualityComparable, and
for three objects a, b, c of type X, the following invariant must
hold:

Reflexivity x == x
Symmetry x == y implies y == x
Transitivity x == y and y == z implies x == z

Thus an EqualityComparable type is guaranteed to implement
an equality relation. EqualityComparable also list the following
invariant:

Identity &x == &y implies x == y

meaning that two objects of the same EqualityComparable model
sharing the same memory address8 must be equal.

Models

A concept may cite some of its models, so as to give examples to
readers.

2.4.2 Concept Checking

A primary use of concepts is to express constraints on the pa-
rameters of a class or function template, as part of its interface.
Then, the implementation of the template can rely on the concept
being satisfied to use its specification. Concepts act as “pivot”
in GP between the interface and the implementation of generic
types and functions. If a template is instantiated with parameters
satisfying the constraints of its concepts, then it can guarantee
that no concept-related errors will happen in the compilation of
its implementation. For instance, if the interface of a function
expects its argument to be a BidirectionalIterator (see Figures 2

and 3, p. 52 and 53), then its implementation can safely use the
pre- or postdecrement operator ‘--’ of this argument: as long as
this function is invoked with models of BidirectionalIterator, this
statement will trigger no error.

Concept checking is the action of checking whether a type sat-
isfies the requirements of one (or more) concept(s). As concepts
are used to constrain template parameters, such checks should
be enforced when the template is specialized for a given (set of)
type(s) used as effective parameter(s), and before any elements
that is part of the requirements is used. However, the current C++

standard does not provide any means to perform such ahead-
of-use concept checks as concepts have no actual existence in

8 In C++, the prefix unary operator ‘&’ returns the address of a variable.
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the language. An immediate drawback of this lack of explicit
constraint mechanism mentioned in Section 2.2.3 (p. 36) is that
concept-related errors are reported late in the compilation pro-
cess. Errors at triggered at the first erroneous use of the template,
most often within the implementation of the template, instead of
showing which part of the concept the type failed to implement.

The following program illustrates the issue.

1 #include <set >
2

3 struct S {};
4

5 int main()
6 {
7 std::set <S> s;
8 s.insert(S());
9 }

This example makes use of the sorted unique associative STL
container std::set<Key, Compare>9. This container stores data
of type Key according to a strict weak ordering of type Compare
and holds at most one copy of each element (using the order-
ing to implement identity between two elements). When it is
not provided, the parameter Compare is set to a default value,
std::less<Key>, a functor implementing a strict weak ordering
based on operator ‘<’ by default. In the case of std::set<S> how-
ever, the type S does not provide any comparison operator, thus
failing to make std::less<S> a model of the StrictWeakOrdering
concept. This concept-check failure is not detected by the com-
piler line 7, where std::set is specialized with parameter Key
set to S and parameter Compare implicitly set to std::less<S>.
Instead, the issue is detected as a side effect of the instantiation
of the insert() method in line 8, giving the following compiler
error message10:

1 /usr/include/c++/4.2.1/ bits/stl_function.h:
2 In member function
3 ’bool std::less <_Tp >:: operator ()( const _Tp&,
4 const _Tp&) const
5 [with _Tp = S]’:
6 /usr/include/c++/4.2.1/ bits/stl_tree.h:982:
7 instantiated from
8 ’std::pair <typename std::_Rb_tree <_Key , _Val
9 _KeyOfValue ,

10 _Compare ,
11 _Alloc >
12 ::iterator ,

9 The std::set class template actually have a third parameter, Alloc, which
governs the allocation policy of the container. We do go into further details
about STL allocators as this topic is not related to concept checking issues.

10 The message has been produced with the GNU g++ compiler version 4.2.1. The
layout of this has been modified to make the message more legible.
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13 bool >
14 std::_Rb_tree <_Key , _Val ,_KeyOfValue , _Compare ,
15 _Alloc >:: _M_insert_unique(const _Val&)
16 [with _Key = S, _Val = S,
17 _KeyOfValue = std::_Identity <S>,
18 _Compare = std::less <S>,
19 _Alloc = std::allocator <S>]’
20 /usr/include/c++/4.2.1/ bits/stl_set.h:307:
21 instantiated from
22 ’std::pair <typename std::_Rb_tree <_Key , _Key ,
23 std::_Identity <_Key >,
24 _Compare ,
25 typename
26 _Alloc ::rebind <_Key >
27 ::other >
28 :: const_iterator ,
29 bool >
30 std::set <_Key , _Compare , _Alloc >:: insert(const _Key&)
31 [with _Key = S, _Compare = std::less <S>,
32 _Alloc = std::allocator <S>]’
33 invalid -set.cc:8: instantiated from here
34 /usr/include/c++/4.2.1/ bits/stl_function.h:227:
35 error: no match for ’operator <’ in ’__x < __y ’

The actual error that produced this long message is shown at the
bottom of the trace (lines 34–35): the compiler was unable to find
an operator ‘<’ to compare two elements of the set as reported in
the beginning of the messages (lines 1–5). The next lines shows
where this error originates from: it is located in the depth of the
STL implementation, in a method called _M_insert_unique of a
class template std::_Rb_tree (lines 6–19). This template, which
triggered the error, was instantiated by another template. The
compilers shows this list of successive template instantiations in
reverse order until it reaches the initial instantiation at the top
of this “instantiation stack” (line 33) This origin is located in the
program shown earlier, the call to the insert method.

Had the language and its compiler supported concepts as a
language construct, the message would have reported an earlier
issue (the instantiation of std::set<S>) with a more precise er-
ror location (the instantiation of std::less<S>, triggered by the
instantiation of std::set<S>) and a shorter message, similar to
the following one11:

1 /usr/include/c++/4.3.0/ bits/concepts.h:
2 In function ’int main()’:
3 /usr/include/c++/4.3.0/ bits/concepts.h:495:
4 error: template arguments for
5 ’struct std::set <S, std::less <S> >’ do not meet the
6 requirements of the primary template
7 /usr/include/c++/4.3.0/ bits/concepts.h:495:
8 note: no concept map for requirement

11 This message is similar to the kind of messages produced by the Concept-
GCC compiler [37], which providing some support for concepts as language
constructs.
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9 ’std:: StrictWeakOrdering <std::less <S>, S>’
10 /usr/include/c++/4.3.0/ bits/concepts.h:495:
11 error: aggregate ’std::set <S, std::less <S> > s’ has
12 incomplete type and cannot be defined

The error is much more explicit than in the previous compiler
message: it states (lines 4–6) that one of the template parame-
ters12 of std::set< S, std::less<S> > (namely std::less<S>)
does not meet the requirements of the
std::StrictWeakOrdering< std::less<S>, S >13 concept defi-
nition (lines 8–9).

Extensions to Support Concept Checking.

There have been several proposals to add support for concept
checks to C++ as language extensions. Gregor et al. [36] mention
the where clause mechanism found in CLU [52], Theta [22] and
Ada [41] (see also Sections 2.2.1 and 2.2.2, p. 33 and 34). Pro-
gramming languages of the ML family use a similar strategy
to constrain parameterized modules. . This approach enforces
a structural conformance of the parameters, as the constraint is
expressed by its contents and does not bear a name.

Another technique is to use the inheritance relation to constrain
parameters of generic entities. In this approach a parameter T con-
strained by a class (or an interface, depending on the language) C
must inherit from (resp. realize) C. The methods expressed in C
form the set of requirements. This approach expresses a named
conformance: constrained parameters not only must match the
signature of the constraint (C), but must also derive from it: if T
were to derive from another class D structurally equivalent to D,
instead of inheriting from C, it would not satisfy the constraint
imposed by C. The constraint-through-derivation strategy is being
used in Eiffel, Java and C#.

A third strategy is to introduce a new kind of entity to capture
the a set of constraints on a parameter, often called signatures
(but not to be confused with ML’s signatures). Such a set of
constraints is given a name and may involve more than one type,
as it is not tied to no particular data type in (unlike derivation-
based constraints that can only be fulfilled by a subtype of the
constraint class, i.e. a single type). This idea of a new constraint
entity is at the heart of the abandoned “concepts” proposal for
the C++ standard.

12 Called “template arguments” in this message.
13 This example also shows an example of concept definition related to more than

one type: std::StrictWeakOrdering<F, T> express the notion that F is a strict
weak order relation over values of type T. So in the example of the text, it is the
pair (std::less<S>, S) that does not model the StrictWeakOrdering concept.
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Checking Concepts without Language Constructs

Despite C++’s lack of support for concepts, workarounds have
been developed to enforce concept checking. These techniques
rely on template metaprogramming and can be used to check
structural and/or named conformance of template parameters.
For example, Siek and Lumsdaine propose a concept-checking
framework [68] where a concept’s constraints are expressed as a
class template exercising all valid expressions appearing in the
concept [68]. This approach checks the structural conformance
of template parameters. The authors also propose the use of
archetype classes to ensure that the concept(s) used in an algorithm
interface covers all the requirements of the algorithm implemen-
tation with respect to its parameters. These ideas have been
implemented in the Boost Boost Concept Check Library [67].

McNamara and Smaragdakis proposes another framework
called static interfaces [54], where requirements of a concept (e.g.
LessThanComparable) are encapsulated in a class template (e.g.
LessThanComparable<T>) defining a method pointer (as a mem-
ber) for each method required by the concept (e.g. operator<).
Models of the concept shall inherit from this class template,
and pass their own name as effective parameter to the concept
class (e.g. struct Foo : LessThanComparable<Foo>). This tech-
nique relies an application of the Curiously Recurring Template
Pattern (CRTP) described in Section 3.1 (p. 72). Static interfaces
are primarily used to enforce named conformance, as they require
a model to inherit from the concept class to satisfy the concept.
The authors however propose a mechanism to support structural
conformance, in particular to support non-class types (e.g. int)
that does not support inheritance, and existing data types that
cannot be changed to support static interfaces.

The SCOOP paradigm used by the Milena library and pre-
sented later in Chapter 3, uses a technique similar to static in-
terfaces, based on an extended CRTP (see Section 3.2, p. 74).
This choice enables named conformance to concepts and concept-
based overloading.

2.5 object-oriented programming vs generic program-
ming

Object-Oriented Programming (OOP) and Generic Programming
(GP) offer propose two different approaches to design, implement,
extend and maintain software, the former with an emphasis on
dynamic behavior and the latter with a focus on static resolution.
However, they share some similarities in their organization.

OOP is a programming paradigm that is provided in differ-
ent flavors, depending on the language. Some object-oriented
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features may or may not be present in a given Object-Oriented
Language (OOL). In particular, some OOLs are class-less (or
prototype-based). In this section, we only consider the OOP
paradigm as implemented in C++, which is also present in most
compiled and statically checked programming language, such as
Java, C#, D, and Eiffel. Before comparing OOP and GP, we recall
some important definitions about OOP.

2.5.1 Elements of Object-Oriented Programming

In (class-based) OOP, data types are implemented as classes,
entities regrouping data and services acting on them, named
respectively attributes and methods. In C++, attributes are called
members, while methods are called member functions. Like many
programming entities (functions, modules, etc.), a class can be
decomposed in two parts: first, its interface or signature (called
declaration in C++), which is made of its name, the names and
types of its attributes, and the names of methods together with
the name of their arguments and types thereof; then, its imple-
mentation (called definition in C++), which contains the code of its
methods.

A value having the type of a given class is called an instance
or an object of that class. The action of creating such an object
is called (class) instantiation. Class instantiation should not be
confused with template instantiation, which is the process of
creating an actual type or function from a template presented in
Section 2.1.1 (p. 29).

A class B may be derived from another class A, therefore acquir-
ing A’s attributes and methods, in addition to its own attributes.
B is said to inherit from A. A is called a base class of B, while B is a
subclass of A. This kind of relation between two classes is called
implementation inheritance. B may provide its own implementation
for a methods already present in A. This action is called (method)
overriding. The overridden method is said to be polymorphic, as
the code executed at run-time depends on the exact type of the
object “owning” the method. Polymorphic methods are called
virtual (member) functions in C++.

A class may also represent an abstraction (e.g. an animal) ,
i.e. an entity that is not representable as a concrete data struc-
ture with a given set of attributes and methods (e.g., a cat or
a dolphin). Such as class is named an abstract class or an in-
terface (not to be confused with the previous acceptation of the
word). The differences between the terms “abstract class” and
“interface” depend on the language that provide them. To sim-
plify the explanations of this section and to avoid the confusion
with the previous meaning of “interface” (a class declaration,
as opposed its implementation or class definition), we consider
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that these terms are equivalent, and only use the term “abstract
class” thereafter and reserve “interface” for “class declaration”.
A concrete class (e.g. cat) may be derived from an abstract class
(e.g. animal). This relation represent the is a relation (a cat is

an animal). Later, instances of the concrete type may be used
wherever values of the abstract types are expected (for example
a list of animals may be composed of cats, dolphins and other
instances of concrete subclasses of animal).

An abstract class may declare methods, that is, announce them
without providing an actual implementation14. Concrete classes
may be derived from this abstract class, and are expected to
provide a definition (implementation) for such methods, using
the overriding mechanism mentioned previously. Such methods
are also polymorphic, as different implementations may be pro-
vided by different classes. A polymorphic method declared in
an abstract class is also described as abstract. In C++, abstract
polymorphic methods are called pure virtual (member) functions.

An abstract class cannot be instantiated as a consequence of
the nature of this type (one cannot picture an animal per se). This
is even more relevant when the class has abstract methods: its
instances would lack the code of these methods. However, a
concrete class (having no abstract methods by definition) derived
from this abstract class may be instantiated (an animal cannot be
instantiated, but a cat can).

An abstract class Y (e.g., a vertebrate) may be derived from
another abstract class X (e.g., an animal), therefore representing
a sub-abstraction of X. The interface of Y includes the interface of
X (methods and attributes). Likewise, concrete classes derived
from X (resp. Y) include the interface of X (resp. Y).

A set of classes linked (directly or indirectly) by an inheritance
relation is called a class hierarchy. The property for a language
to allow at most one base class for each class is called single
inheritance. If on the contrary a class may have more than one base
class, this is a case of multiple inheritance. In single inheritance
languages, a class hierarchy form a oriented tree, whereas it
forms a Directed Acyclic Graph (DAG) in multiple inheritance
languages. Some programming languages define a greatest and
a least element as respectively (direct or indirect) ancestor and
descendant of all classes. In Eiffel, these classes are called ANY
and NONE [42]. In such languages, all classes are therefore part of
the same hierarchy, and form a bounded lattice.

14 Depending on the language, abstract classes may also define methods, as well
as attributes
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2.5.2 Comparison of OOP and GP

Object-Oriented Programming (OOP) and Generic Programming
(GP) are two strategies to organize software design and develop-
ment by proposing their own conception: interfaces, abstract and
concrete classes, inheritance and polymorphic methods on the
one hand; concepts, parameterized containers and parameterized
routines on the other hand. Both programming paradigms, how-
ever, share qualities from the software engineering point of view
and exhibit similar ideas in their organizations.

In OOP, data abstractions of a given domain are implemented
as abstract classes, while data implementations are provided by
concrete classes that inherit (or are derived) from these abstract
classes. In GP, data abstractions are represented as concepts (see
Section 2.4, p. 49) while data implementations are models of these
concepts.

This parallel between OOP and GP is not limited to separation
of interfaces and implementations. There is an actual duality
between the two paradigms [55, 13]. The remainder of this
section shows a comparison of different notions present in both
OOP and GP, though implemented in a different manner. Table 1

summarizes this comparison. It is important to note that in the
case of GP, some of these notions may not be actually present
in the language (e.g., concepts and modeling relationships are
not expressed in standard C++); they are nonetheless of prime
importance in the organization of the paradigm.

Abstraction mechanism

As said above, abstract classes serve as abstractions in OOP.
Abstract methods define the interface of an abstraction, that must
be fulfilled by its concrete representatives (concrete subclasses).
For instance, an animal may have an abstract eat() method, the
actual code of which depends on the concrete type of animal.

In GP, concepts are used to convey abstractions. The interface
of a concept is shaped by the various elements of its definition, as
presented in Section 2.4.1 (p. 51). Among these, associated types
and valid expressions (which include signatures of methods)
express syntactic constraints on the models of a concept. As
such, they are the first and the stronger requirements, as they
can be checked at compile time. Concept definitions however
encompass other requirements, mostly of semantic nature, such
as expression semantics, complexity guarantees and invariants.
Some of them may be checked at compile time if the constraint
does not depend on run-time behavior and if the language is able
to express it; otherwise, run-time checking may be used.
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Notion OOP GP

Abstraction Abstract Concepts
mechanism classes
Sub-abstractions (Abstract) Refined

subclasses concepts
Implementations (Concrete) Parameterized
mechanism subclasses classes (models)
Relation between Inheritance Modeling
implementation
and abstraction
General definition Polymorphic Parameterized
of an algorithm methods routines
Type of Inclusion Parametric
polymorphism polymorphism polymorphism
Binding time Run time Compile time
of a routine
Number of times Once Once per different
a routine instantiation
is compiled

Table 1: Comparison of OOP and GP notions.

Sub-abstractions

A sub-abstraction is a refined abstractions, inheriting and extend-
ing the interface of one (or several, depending on the language)
abstraction(s). A type conforming to a sub-abstraction also con-
forms to an its upper abstraction ((e.g., a of vertebrate is also
an animal).

In OOP, a sub-abstraction B of the abstract class A is imple-
mented as an (abstract) subclass of A. The inheritance relation
between the two classes is explicit. In GP, a sub-abstraction is
implemented as refined concept. According to the language and
context, the link between the two concepts may be implicit or
explicit. Standard C++ is an example of implicit relation between
a concept and its refinement, as a direct consequence of the lack
of language constructs to express concepts. The “concepts” pro-
posal for C++ offers the choice between implicit (structural) or
explicit (named) relation.

Implementation mechanism

Classes serve as implementation facility in both OOP and GP. In
OOP, a (concrete) class must satisfy the interface expected by its
(abstract) base classes. In GP, implementation classes (models)
are parameterized (i.e., class templates in C++) and both classes
and their parameters may be constrained by concepts.
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Relation between implementation and abstraction

Similarly to sub-abstractions, the nature of the between an im-
plementation (e.g, a cat) and its abstraction(s) (e.g., an animal)
depends on the paradigm. In OOP, the link is inheritance and
is always explicit. In GP the link may be implicit, as in standard
C++ where concepts have no existence in the code and models do
not mention them, or as in the “concepts” proposal for C++, using
structural conformance (auto concepts). This proposal contains
also a means to force explicit model-concept relationships using
named conformance (non-auto concepts and concept_maps).

General definition of an algorithm

Both paradigm are able to express general or abstract definitions
of algorithms not tied to a particular input or output type. In
OOP, such general algorithms are written using polymorphic
methods and inclusion polymorphism. In GP, parameterized
routines (e.g. C++ function templates) are used.

Type of polymorphism

OOP is an example of inclusion polymorphism: if a class B derives
from a class A (whether one or the other or both is abstract), then
B is included in A: each instance of B may be used wherever an A
is expected. If an instance of B is passed to an algorithm taking an
A as argument, and if this algorithm invokes a method of A that
happens to be overridden in B, then B’s version of that method
is eventually invoked. This algorithm is therefore polymorphic
with respect to the type of its argument, as is accepts instance of
subclasses of A, and its behavior depends on the methods of the
actual (dynamic) type of this instance.

GP provides parametric polymorphism, where a generic algo-
rithm is a function having (at least) one generic type variable or
parameter to qualify the type of an argument, instead of having
a fixed type. A parameterized algorithm is polymorphic with
respect to the type of its input, as this type can be freely chosen
(though it might be constrained, e.g. through a concept in C++).
Moreover the behavior or the algorithm depends on the type of
its input, e.g. this algorithm may invoke methods of this argu-
ment (the implementation of which depends on the type used as
effective parameter); also, the argument may be passed (again)
as argument to a call to an overloaded function, the resolution of
which depends on the type of the argument as well.

Binding time of a routine

Following the previous item, OOP and GP are different with
respect to the moment where a routine m is selected. In OOP, a
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routine implemented as polymorphic method requires the knowl-
edge of the exact (dynamic) type of its target (the object the
method belongs to). This information cannot be obtained until
the code is actually executed. Therefore polymorphic methods
are bound at run time. This mechanism is known as dynamic
dispatch or late binding. In GP, a generic routine cannot be used un-
less all its parameters are known. As these parameters are (static)
types, a compile-time information, the binding of parameterized
routines is done at compile time.

GP’s parameterized routines are similar to classic functions,
bound at compile time. Hence they do not introduce run-time
penalty and do not prevent optimization from the compiler. Poly-
morphic methods, however, cannot be bound at compile time.
The selection of a method’s implementation requires extra com-
putation compared to a classic function call. In addition, as the
compiler does not known which method will be called, it cannot
perform some optimizations (inlining of function bodies, constant
propagation, etc.). In the case of a call to a polymorphic method
executing very few instructions (e.g. an accessor) executed a lot
of times (e.g. within a loop), this can lead to major run-time over-
head: the accumulated time to perform the dynamic dispatches
may be significant compared to the time to execute the body of
the method. This pattern is very frequent in image processing,
and using polymorphic methods may be an issue if performance
is sought.

Number of times a routine is compiled

Though their invocation procedure differs from classic functions,
OOP’s polymorphic methods are compiled just like them, hence
each of them is compiled once. The situation is different with
GP’s parameterized functions, at least in C++, where the instantia-
tion model creates a new function per unique (combination of)
parameters. Such a routine may be compiled multiple times, de-
pending on its number of calls with different types of arguments.

Another important difference is the scope of each technique.
In OOP, every combination of an object and a polymorphic
method called with this object may be used at run time, as
each method is compiled once, independently of its use. In
GP however, generic routines available at run time must have
been instantiated previously at compile time. This means that
if a parameterized function has not been instantiated (either
implicitly or explicitly, see Section 2.2.3, p. 36) with a given (set
of) actual parameter(s) at compile time, then this routine will not
be available at run time. Every template–parameter combination
of must be planned ahead of the execution in GP, while in OOP
polymorphic method–object combinations used at run time need
not to be known at compile-time. In this regard, OOP offers more
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run-time flexibility than GP: from the run time point of view,
polymorphic methods proposes an open world framework, while
parameterized routines and data structures live in a closed world.

2.6 beyond generic programming : static metaprogram-
ming

Templates have been introduced the C++ language to provide
parameterized containers and routines in the first place. With the
development of template libraries, and in particular the Standard
Template Library, templates have helped shaped the Generic
Programming paradigm. C++ templates, however, have been
found to exceed the scope of GP. As they have been designed as a
powerful generating facility, they allowed new kinds of program-
ming constructs performing various computations a compile-time
known as static metaprogramming. This section presents this
technique and some of its applications.

2.6.1 C++ Template Metaprogramming

To introduce the notion of static metaprogramming, let us con-
sider the following simple example using templates.

template <unsigned n>
struct fact
{

static const unsigned val =
n * fact <n - 1>::val;

};

template <>
struct fact <0>
{

static const unsigned val = 1;
};

This code defines a class template fact containing a single un-
signed integer constant (val). The static qualifier in front of
val’s definition means that this constant is an attribute belonging
to the class, and not to a particular object: it is shared by all
instance of the class, and can be accessed directly from the class.
The class fact is however a template, and cannot be used without
a parameter. Therefore, for a given integer n, fact<n>::val re-
turns the value of val of fact<n>15. val has the curious property
of being defined recursively: the definition of fact<n>::val is
defined by a product of which a factor is fact<n− 1>::val. This
definition is valid because n is known at compile-time (as it is

15 Operation ‘c::m’, where c is a class, returns the member m of c.
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a template parameter), because C++ template support recursion,
and because the recursion terminates. The previous code contains
indeed an explicit specialization of fact<n> for the case where n
is 0: fact<0>::val is equal to 1 (see Section 2.2.3, p. 36). For a
given integer n,

fact<n>::val =

{
1 if n = 0
n× fact<n− 1>::val otherwise

In other words, fact<n>::val = n!, i.e. the factorial of n.
In the previous program, the class template fact is not used as

a generic data structure, but for computation purpose. fact acts
as a function, but it has a very different nature: it is “evaluated”
by the compiler, and produces a static (compile-time) result, as
a result of templates being a compile-time mechanism. In the
following expression fact<4>::val is replaced by the compiler
with the value of 4!(= 24).

unsigned x = fact <4>::val; // == 4!

This kind or programming style in C++ is known as static
metaprogramming or template metaprogramming. Metaprogram-
ming is the action of writing metaprograms, which are programs
that manipulates other programs (or even themselves). In a sense,
a compiler can be seen as a metaprogram. In the previous ex-
ample, fact is a metaprogram computing the factorial of a static
integer value. This computation is said to be static, as it occurs
during the compilation process.

Using the metaprogramming features of C++ templates, it is pos-
sible to write compilation-time “functions” similar to fact. Such
functions are implemented as class templates. “arguments” must
be constant known at compile-time “passed” to these functions as
template parameters. The “return value” must be implemented
as a static member of the class. These functions are said to be
pure: they do not have side effects, such as modifying a value or
performing input/output operations16. As C++ templates support
recursion, compile-time metaprograms can make use of recursive
functions (as fact does). The evaluation of such functions is
achieved through recursive template instantiations.

Template metaprogramming was discovered almost by acci-
dent by Erwin Unruh [78], who had written a program printed
out a list of prime numbers at compile-time as error messages.
The term “template metaprogramming” was coined by Todd
Veldhuizen [82].

C++ template metaprogramming offers a new language within
C++. Despite its curious syntax, this language is actually powerful.
It has been demonstrated to be Turing-complete [87] and could
theoretically be used to perform the same computations as a

16 Except for compiler errors triggered by invalid template code.
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Turing-complete general purpose programming language, includ-
ing C++ itself. Template metaprogramming is useful to generate
an optimized algorithm code for a given input, thereby trading
longer compilation times for better run-time efficiency. Classical
examples include compile-time computations of trigonometric
functions and FFT for static values [83, 80].

Like GP, static metaprogramming is not tied to C++. Other
Programming languages supporting metaprogramming include
Curl, D, Eiffel, Haskell, ML and XL.

2.6.2 Functions on Types and Traits Classes

Another powerful application of template metaprogramming is
computations on types. As template parameters can convey both
non-type and type values, template metaprogramming functions
“accepting” and “returning” types may be written. “Argument
passing” is similar to the case of metaprogramming function on
non-type values (see Section 2.6.1) ; “returning” a value works
differently though: instead of using a static constant member, a
typedef within the class template is used.

The following code shows a example of a “function” T 7→ T*
mapping a type T to the corresponding pointer type T*.

template <typename T>
struct ptr_type
{

typedef T* type;
};

This “function” is used in the same way as fact.

typedef ptr_type <int > t; // t == int*.
typedef ptr_type <char > v; // v == char*.
typedef ptr_type <v> w; // w == char **.

Functions on types are useful in generic code to attach external
properties and behaviors to a type. Consider for instance a
generic function sqr retuning the square of a value of type T.
Using T as return type of sqr is not a wide decision, as it may
cause overflows, especially when T is a small data type such as
signed char17. For instance, sqr(100) (= 10.000) does not fit on a
signed char, and would therefore create an overflow. Choosing
a fixed “larger” type is no better solution, as it is not robust to
changes. If e.g. double (double-precision floating point numbers)
were chosen as return type, sqr would become obsolete on a
system supporting quad-precision floating point numbers.

17 The range of values fitting on a signed char is usually [−128, 127].
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The solution to this problem is to make the return type of sqr
depend on T, by using a function on types. The following code
shows a possible solution.

// Default case: sqr<T> : T 7→ T
template <typename T>
struct sqr_return_value
{

typedef T type;
};

// Case of \code{signed char}:
// sqr<signed char> : signed char 7→ signed short
template <>
struct sqr_return_value <signed char >
{

typedef signed short type;
};

// Case of \code{unsigned char}:
// sqr<unsigned char> : unsigned char 7→ unsigned short
template <>
struct sqr_return_value <unsigned char >
{

typedef unsigned short type;
};

We can then use this function on type to define sqr’s return
type as sqr_return_value<T>::type. An implementation of sqr
could therefore be18:

template <typename T>
typename sqr_return_value <T>:: type
sqr(T x)
{

return x * x;
}

sqr<T> now depends on sqr_return_value<T> concerning its
return value type.

signed char x = 42;
// Returns 42 * 42 on a ‘signed short’
// (specialized return type).
sqr(x);

int y = 1000;

18 Note that the C++ ISO standard [40] requires the presence of the typename
keywords before sqr’s return type, as it comes from a typedef (type) within a
class template (sqr_return_value<T>), and because it is used in a “template
context” (the definition of sqr).
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// Returns 1000 * 1000 on an ‘int’
// (default return type).
sqr(y);

The list of specializations of sqr_return_value can be extended
as new input types for sqr are considered.
sqr_return_value<T> acts as a policy regarding the behavior

of a generic algorithm. This idea can be extended by storing more
information on the policy class, for instance typedefs, constants,
and even functions. The standard class std::numeric_limits
[40] is an example of such a class. For a built-in numeric type T,
std::numeric_limits<T> provides routines such as min() and
max() (returning the smallest and largest value of T), Boolean
values such as is_signed (telling whether a type is signed or
not), etc. Such a class is called a traits class. Traits class were
invented to add support for internationalization in the Standard
C++ Library [62, 61], to simplify input/output stream classes.

Traits classes are also used in the STL, in particular for iterators.
The class template std::iterator_traits [66, 40] defines useful
types associated to a given iterator type passed as parameter (in
particular the value type associated to the iterator). Traits can also
contain categories or tags, i.e. types that are used as labels. Such
types may be used to qualify the nature of a type, and help algo-
rithms adjust their behavior with respect to their inputs. This is
the case of the std::iterator_traits<I>::iterator_category
type, declaring the most specific concept (see Section 2.4, p. 49)
modeled by the iterator type I, using a type such as
std::input_iterator_tag, std::forward_iterator_tag,
std::bidirectional_iterator_tag, etc. (see also Section 2.2.3,
p. 36). An algorithm (such as std::reverse) may takes advan-
tage of the fact that I is a RandomAccessibleIterator to use an
implementation faster than the one used for a BidirectionalIterator.
This discussion is carried further in Section 4.6.4 (p. 140).
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A S TAT I C C + + O B J E C T- O R I E N T E D
P R O G R A M M I N G ( S C O O P ) PA R A D I G M

This chapter presents SCOOP, a new programming paradigm mixing
the benefits of GP and OOP, designed to provide a framework to sci-
entific software development. This paradigm enables the definition of
actual concept classes representing abstractions of the target domain.
As it does not rely on dynamic features, SCOOP does not introduce
run-time penalties, and is therefore suited to the production of efficient
applications. In addition to concept, properties can be added to describe
static characteristics of data types. These properties can used in compile-
time assertions, or to write a static dispatch mechanism for algorithm
selection. Finally, SCOOP also proposes the idea of morpher which are
lightweight object transformations. Morphers can be used to change
the behavior of an algorithm non-intrusively by transforming its input
beforehand.

Using Generic Programming to design scientific software is a
good strategy (see 2.3). GP provides abstraction mechanisms re-
quired to define reusable data structures and algorithm compati-
ble with the many data types involved in numerical computations
(integer, floating-point, complex types; vectors and arrays; ma-
trices and tensors, etc.). Besides GP implies no run-time penalty
per se, which makes it a good choice when efficiency is a primary
requirement, which is often the case in scientific applications.

OOP, on the other hand, has also many useful traits regarding
scientific software. Classes can be used to implement abstract
data types, which hides their implementation details and are
used through the type’s interface (methods and attributes). Data
hiding, provided by keywords private and protected in C++,
increases the separation between a type’s interface and its imple-
mentation. Inheritance is useful in two ways. First it can be used
as a factoring mechanism (implementation inheritance), where
data structures sharing implementation traits inherits from a com-
mon base class factoring common code. Then it can be used to
create named type constraints (or signatures) known as interfaces
in programming languages such as Java or C#1. Interfaces con-
tains only abstract methods (having no implementation) express
a set of syntactic requirements. A class inheriting from an inter-
face is to implement all the methods of the interface. Interfaces
inheritance thus offers an object-oriented abstraction mechanism:
in OOP algorithms express their constraints as interfaces, and

1 In C++ interfaces are implemented as abstract classes.
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type observe these requirements by inheriting from (or realizing)
these interfaces. However this abstraction mechanism has a cost,
as it is based on virtual methods (see Section 2.5, p. 59).

GP and OOP both have desirable as far as scientific software
is concerned. In this section we study how these programming
paradigms can be mixed in an efficient way, so as to fulfill scien-
tific and software engineering requirements. Such a strategy is
known as a multiparadigm approach: combining two paradigm
or more to solve programming problems. The first step towards
this unified paradigm relies on a programming pattern mixing
templates and inheritance (see Section 3.1). This pattern has been
explored and generalized by Burrus et al. [13] (see Section 3.2)
to design the Static C++ Object-Oriented Programming (SCOOP)
paradigm. This paradigm mixing OOP and GP has evolved over
the last ten years. We present its third evolution in this work,
implemented in the Olena 1.0 platform.

3.1 curiously recurring template pattern

The Curiously Recurring Template Pattern (CRTP) is a C++ con-
struction mixing two C++ features representative of OOP and GP,
namely inheritance and templates, respectively. Consider the
following two classes:

template <class E> struct A {};
struct B : A<B> {};

The class B inherits from a template class A where the effective
parameter is set to B itself. This valid C++ construct is known as
the Curiously Recurring Template Pattern (CRTP)2 The name of
the pattern has been coined by Coplien [15], who observed at
least it in three different works by Lorraine Juhl (for an Finite
State Machine (FSM) implementation); Barton and Nackman [7];
and Tim Budd[12]. This last example demonstrates a use of the
CRTP in Leda, a multiparadigm programming language mixing
imperative, object-oriented, functional, and logic-based program-
ming styles. The CRTP is indeed a multiparadigm programming
product from OOP and GP rather than a language-related feature.
The previous Leda example shows that it is not tied to C++. It is
also possible to implement it in the D programming language
[3].

The CRTP exhibits a curious circular dependency between
the derived and the base class. There is a first dependency
from the derived class to base class via inheritance, and a second
dependency from the base class to the derived class via a template

2 This pattern is sometimes also called the Barton-Nackman trick, although this
name refers to a different idiom (the Restricted Template Expansion) [7], which
however relies on the CRTP.
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parameter. The idea behind the CRTP is to combine templates
and inheritance to provide an abstract class with information on
its derived concrete class3.

In classical OOP, it is generally impossible to tell the exact
(most derived) type of an object at compile time. An object has
indeed two types: a static type, which is known at compile time;
and a dynamic type or exact type, which is known at run time,
and which can be a subtype of the static type. An object can
be always be converted towards the type of (one of) its base
class(es), as such a type is more general than its exact type, and
the conversion does not introduce type checking issues at compile
time. This the compiler can guarantee that the conversion is valid
statically. Therefore, a function taking an instance of the base
class as input can accept any object of its derived classes: this
feature is a trait of the inclusion polymorphism provided by the
OOP paradigm.

However the downward conversion, from a base class instance
to a derived class, cannot be checked at compile-time: as the real
type of an object is only known at run time, any conversion to a
type more precise than the static type requires run-time checks,
as it may fail at run-time.4 The compiler cannot guarantee that
such a conversion is valid statically.

In the case of the CRTP however, the information of the exact
type is propagated to the base class. Put differently, each base
class using the CRTP has a name specific to its derived class.
In the previous example, A<B> is base class of B and we can
statically guarantee that a conversion from an instance of A<B>
can be converted to B, as only instance of B have A<B> objects as
base classes. A downward conversion are is not implicit as an
upward conversion; the static_cast keyword must be used to
explicitly cast the an instance to a subtype.

B b;
// Implicit upward conversion.
A<B>& a = b;
// Explicit downward conversion.
B& b2 = static_cast <B&> (a);

Note that in the definition of the class template A, we have used
the name ‘E’ for the formal parameter of the base class template
holding the name of the derived class, standing for “exact”. We
stick to this convention in the rest of this thesis.

CRTP affects method calls as well. In classic OOP, calls to
polymorphic methods (called virtual function members in C++)
are resolved a run-time, as the executed code depends on the
exact type of the target (the object the method belongs to). This

3 Abstract classes cannot be instantiated, therefore they can only serve as base
classes.

4 Such conversions are performed with the dynamic_cast operator in C++.
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behavior is also distinctive of inclusion polymorphism. In the
CRTP however, the exact type is known at compile-time and
a method call does not require any run-time computation: the
method bindings is entirely done at compile-time.

The CRTP acts as static OOP paradigm. A direct benefit of
being static is getting rid of OOP run-time overheads. By inte-
grating at compile time information that is usually only available
at run time, the CRTP avoids run-time overheads of OOP mecha-
nism. Moreover, it enables static resolution of method calls and
opens the way for optimizations relying on static binding such
as inlining of function bodies.

As the CRTP trades flexibility for efficiency, its main drawback
of is its lack of dynamic possibilities. There is no equivalent
to polymorphic methods in CRTP, which are especially useful
when the exact type of an object cannot be determined statically
(for example when it depends on user input). Likewise, base
classes generated from a common class template (e.g., A) are not
compatible for different values of the exact type E. Instances of
the previous base class A<B> cannot be converted to the base class
A<C> of the following class C.

struct C : A<C> {};

In OOP, there would be no problem as the derived class would
share the exact same base class. In the CRTP this lack of base
class compatibility prevent inclusion polymorphism. A direct
consequence is the impossibility to create polymorphic containers,
such as a list, accepting instance of subtypes of a CRTP base
class. There is indeed no sweet spot between a type such as
std::list<A> (which is invalid, as A is not a type) and
std::list< A<B> > (which is too restrictive, as it does not accept
derived classes other than B, such as C).

Finally, as a product of template programming, the CRTP
suffers from the same issues. It generates as many base classes as
there are derived classes, whereas in classical OOP a single base
class would be compiled. This behavior may increase compilation
times, the size of the compiled object (library or program) and
even impact run time performances, as more code means more
memory cache use. fixmeMore on drawbacks of GP and CRTP?

Because of their static nature, CRTP classes are useful in con-
texts where efficiency is sought. They do not offer the flexibility
of inclusion polymorphism of classical OOP classes, but both
types of classes can coexist in a single program.

3.2 generalized curiously recurring template pattern

The initial formulation of the CRTP [15] includes only one class
and its base class: it is a two-level hierarchy. The issue of CRTP
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class hierarchies of more levels is not addressed by Coplien. Veld-
huizen has postulated the possibility to generalize the CRTP to
a class hierarchy of more than two levels [86]. Burrus et al. pro-
poses a generalization of the CRTP [13] that we call Generalized
Curiously Recurring Template Pattern (GCRTP). The idea is to
equip each non leaf class5 of a hierarchy with a parameter (E)
denoting the exact type of the leaf class that is derived from them.
The exact type E is then passed bottom-up recursively among the
non leaf classes. Such GCRTP class hierarchies are called static
hierarchies by Burrus et al.. The following lines shows an example
of a static hierarchy.

template <class E> struct A {};
template <class E> struct B : A<E> {};
template <class E> struct C : B<E> {};
struct D : C<D> {};

Note that in the previous example, a non leaf class (for instance
C) cannot be used a leaf classes, as its expect an exact type to
be passed as a parameter, which is C itself. However C alone
is not a valid type name, hence C<C> is also invalid. The initial
proposal of Burrus et al. supports non leaf concrete classes. We
do not detail nor use this feature in our work, as it increases the
complexity of the pattern without adding much expressive power.
Moreover, making non-leaf classes of a hierarchy abstract [57]—
or put differently, not deriving from concrete classes [76]—is a
sound software engineering principle.

3.3 the scoop paradigm

Based on the idea of the GCRTP, Burrus et al. have designed a
new programming paradigm mixing the benefits of OOP and GP
called SCOOP (Static C++ Object-Oriented Programming). The
paradigm has been later refined by Géraud and Levillain [34]
(“SCOOP 2”) to support additional features such as morphers
Section 3.3.6, p. 91. The third version of the paradigm that we
present in this thesis (“SCOOP 3”) is a simplified version of this
second design, yet providing the same features. It has been
used to develop the Milena library from the Olena 1.0 platform
[28]. Despite its name, SCOOP is not tied to C++ per se, and can
probably be adapted to a similar programming language such as
D.

3.3.1 Concepts

In SCOOP, classes are organized in static hierarchies using the
GCRTP. The top-most base class of all these classes is the same

5 We call leaf class a class that has no subclass.
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class template, so as to factor common paradigm-related equip-
ment, named Object<E>6. This class is defined as this:

template <typename E>
struct Object
{

typedef E exact_t;
protected:

Object ();
};

The protected constructor prevents Object<E> from being in-
stantiated directly7, and therefore ensures it is an abstract class.
The exact_t typedef contains the exact type (E) of the concrete
class derived from Object<E>.

Static class hierarchies deriving from Object are split in two
parts (see Figure 4). The upper part is related to the interfaces of
types, and contains classes expressing concepts (see Section 2.4,
p. 49). Such concepts are related to the domain, and should
be designed as orthogonal abstractions to be used to design
abstract (generic) algorithms later. In IP, abstractions can be Image,
Site_Set (set of point defining a domain), Neighborhood, Windows
(sliding window implementing a structural elements from MM),
etc. As a matter of fact, the Milena library features classes named
Image<E>, Site_Set<E>, Neighborhood<E>, Windows<E>, etc. to
implement these very abstractions. It is possible to refine a
concept by deriving from it. The Box<E> concept, representing
the abstract “box” (or hyperrectangle) in a discrete space of points
is a subclass of Site_Set<E>, as the latter is more general than
the former (the requirements of the concept Site_Set<E> are a
subset of the requirement of Box<E>).

As in the STL (see Section 2.2.3, p. 36) and similar generic
libraries (see Section 2.3, p. 48), SCOOP concepts shall define
requirements, to be fulfilled by classes modeling (implementing)
them (see Section 2.4, p. 49). Requirements are expressed as
syntactic and semantic constraints on the model and its instances
in the documentation of the concept. The two main kinds of
requirements are the ones that can be checked at compile-time:
associated types and services. Associated types are a set of typedefs
that the model must define. The documentation may specify
additional constraints on an associated type. For instance, an
image domain type in Milena, defined by the associated type
domain_t of the Image concept (see Table 2), must be a model of
the Site_Set. Services are the methods that must be provided by
a model of a concept. The constraint on each service is expressed
as the signature of a method.

6 In the initial SCOOP proposals [13, 34], this class is named Any<Exact>.
7 A protected can still be called by the constructor of a derived class.
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--[Interface]----------------------------------------------------
Top of the hierarchy | Object <E>

| ^
| |
| ,----------+-------------+------------.
| | | | |

Concepts and | Image <E> Site_Set <E> Neighborhood <E> ...
refined concepts | ^ ^

| | |
| | Box <E>

--[Implementation]---+--- | -------------------------------------
| |
| image_checked_ <E>

Abstract | ^
classes | |
factoring | image_base <S, E>
implementation | ^
code | |

| image_primary <T, S, E>
| ^
| |

concrete classes | image2d <T> = E (exact type) ...
-----------------------------------------------------------------

Figure 4: An example of static hierarchy from the Milena li-
brary following the design principles of the SCOOP
paradigm.

Note that in Milena we use the term site instead of point for the
sake of generality (see Section 4.4, p. 120). Table 2 also mentions
psites; their difference with sites is also explained in Section 4.4,
as well as other IP-related concepts.

The role of a concept is essentially to give an abstract notion
a name. Indeed, as the current C++ standard does not provide
any means to express the requirements of a concept8, concept
classes can basically be empty. However, it is possible to use
template metaprogramming techniques (see Section 2.6.1, p. 66)
to implement compile-time concept checking (see Section 2.4.2,
p. 55). Although this concept enforcement strategy has many
drawbacks, it is helpful to diagnose an error related to a wrong
use of a concept (see Section 3.3.4, p. 82).

3.3.2 Implementation Classes

The lower part of the static hierarchy is composed of imple-
mentations classes (see Figure 4) containing actual code. Leaf
classes represent concrete data type, while abstract (non leaf)
classes serve as factoring facilities. For instance, image2d<T> in
Figure 4 is a concrete image type of a 2-dimensional image the
domain of which is a box (rectangle) on Z2, mapping points of
this domain to a value T9. image2d<T> is derived from classes
such as image_primary<T, S, E> and image_base<S, E>, which
contains code shared by image2d<T> and other concrete image

8 Nor will the next C++ standard.
9 The parameter T of the concrete image image2d<T> should not be confused

with the parameter E of any of its base classes (e.g., Image<E>) : the former is a
means to make image2d<T> generic with respect to the type of value contained
in the image, while the latter is an artifact of the SCOOP paradigm.
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Image

Associated types
Type Model of Definition
domain_t Site_Set Type of the domain
site (Site) Type of a site
psite Point_Site Type of a site access
piter Site_Iterator Default iterator type
fwd_piter Site_Iterator Forward iterator type
bkd_piter Site_Iterator Backward iterator type
value Type of a value
rvalue Type of a read-only access
lvalue Type of a read/write access
vset Value_Set Type of the set of values

Mandatory Services
Method signature Definition
const domain_t& domain() const Return the image’s domain
bool has(const psite& p) const Site membership test
bool is_valid() const Image validity test
rvalue operator()(psite& p) const Read-only value at ima(p)
lvalue operator()(psite& p) Read/write value at ima(p)
const vset& values() const Return the value set

Optional Services
Method signature Definition
unsigned nsites() const; Return the number of sites

Table 2: Signature of the Image concept.
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classes. Being a model of Image, image2d<T> implements the
requirement of this concept. In particular, it provides definitions
for Image’s associated types and services (see Table 3), either
by defining them directly or by inheriting them from of a base
classes such as image_base<E>.

The interface of implementation classes may be richer than the
interfaces required by the concept(s) it models. This is especially
useful when its specific properties (see Section 3.3.5, p. 84) are
used to implement a faster variant of a generic algorithm (see
Section 4.6.4, p. 140). For instance, in addition to the mandatory
site-based accesses provided by operator(), image2d<T> sup-
ports value access through an index (a position relative to the
beginning of the data array) thanks to the following element
methods:

/// Read -only access to the image value
/// located at index \p i.
const T& element(unsigned i) const;
/// Read -write access to the image value
/// located at index \p i.
T& element(unsigned i);

Accessing (and therefore browsing) an image with an index is
faster than with a site (a point2d in this case), since the former is
implemented as a mere memory access, while the latter requires
some computation to obtain the value location beforehand.

3.3.3 Algorithms

As in GP, SCOOP algorithms are written as standalone (non
member) functions, to uncouple data structures and algorithms
[58]. Algorithms take their input as abstract data types. For
instance, a Milena algorithm algo taking models of Image as
input has the following signature:

template <typename I>
void algo(Image <I>& input);

The implementation of this algorithm however needs to known
the exact type of input, that is I. Therefore a routine exact
converting an instance of the SCOOP hierarchy to its exact type
comes in handy. The implementation is straightforward: it reuses
the downward conversion based on the static_cast operator
from Section 3.1 (p. 72)10.

template <typename E>

10 This simple implementation is yet limited. It cannot handle diamond inheri-
tance (where a class D is derived both from classes B and C, themselves inheriting
from a class A). The version of exact implemented in Milena is more complex
and is able to handle diamond hierarchies.
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image2d<T>

Associated types
Type Value Where defined
domain_t box2d image_base<E>
site point2d image_base<E>
psite point2d image_base<E>
piter box2d::piter image_base<E>
fwd_piter box2d::fwd_piter image_base<E>
bkd_piter box2d::bkd_piter image_base<E>
value T image2d<T>
rvalue const T& image2d<T>
lvalue T& image2d<T>
vset value::set<T> image2d<T>

Services
Method signature Definition
const box2d& domain() image2d<T>
bool has(const point2d& p) const image2d<T>
bool is_valid() const image_base<E>
const T& operator()(point2d& p) const image2d<T>
T& operator()(point2d& p) image2d<T>
const value::set<T>& values() const image2d<T>

Optional Services
Method signature Definition
unsigned nsites() const; image_base<E>

Table 3: image2d<T>, a model of Image.
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E& exact(Object <E>& o)
{

return static_cast <E&>(o);
}

By converting input to its exact type, the algorithm is able to
use the interface (methods, attributes, typedefs) of the exact type
(e.g. image2d<T>) that is only described in the concept constraining
the type of the input (Image<I>, where I = image2d<T>)11.

template <typename I>
void algo(Image <I>& input_)
{

// ‘input_ ’ (of type ‘Image <I>’) does not
// have a method ‘domain ()’.

// Convert ‘input_ ’ to its exact type (‘I ’).
I& input = exact(input_ );

// ‘input’ has a method ‘domain ()’.
typedef I:: domain_t = input.domain ();

// Perform some computation.
// ...

}

In classical OOP there is no similar issue as abstractions (ex-
pressed as abstract base classes) have an actual interface ex-
pressed as abstract method (pure virtual members). Therefore
the compiler is aware of the available methods, though their ac-
tual implementation is deferred to the exact (dynamic) type of
the input.

Beside this particularity, the use of algorithms is very similar
to GP. Calls do not require any explicit conversions of inputs
to their corresponding abstractions, are upward conversions are
automatic. In the following lines, ima is implicitly converted to
the type Image< image2d<int> > by the compiler when passed
to algo.

// Create a 512 x 512 image.
image2d <int > ima(512, 512);
// Initialize ‘ima’ with data.
// ...

algo(ima);

11 As a convention, in the implementation of an algorithm, we add an underscore
(‘_’) to the name of an argument that is to be converted to its exact type, so
that the original name (without underscore) can be used in the body of the
algorithm to refer to the object under its exact type
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3.3.4 Concept-Checking and Other Compile-Time Constraints

Section 2.4.2 (p. 55) defines concept checking as the action of
checking whether the effective parameters used in a template
specialization actually model the concepts of the corresponding
formal parameters of the template.

The SCOOP paradigm enforce concepts using named confor-
mance: to model a concept C, a type C must inherit from C<T>.
However, C does not express requirements on T per se. With
no further equipment, this concept checking strategy is a pure
naming convention, and does not enable the compiler to report
concept errors ahead of the use of T within a routine expecting a
parameter modeling the concept C.

Therefore, SCOOP encourages concept writers to equip their
concept classes with additional compile-time concept checking
clauses using C++ metaprogramming techniques (some of them
have been evoked in Section 2.6, p. 66) and proposing some tools
to simplify the writing of such checks. The technique is similar
to the static interfaces proposed by McNamara and Smaragdakis
[54]. Constraints are expressed as expressions performing no
operations (no-op) but that must still comply with syntactic and
semantic rules of the language. If any of these expressions are
deemed invalid by the compiler, then the model has failed to
fulfill the requirements of concept. Usually, these constraints are
located in the default constructor of the concept class. The fol-
lowing excerpt of the constructor of the Image<E> class in Milena
show constraints on required associated types and services:

1 template <typename E>
2 inline
3 Image <E>:: Image()
4 {
5 // Check associated types.
6

7 typedef typename E:: domain domain_t;
8 typedef typename E::site site;
9 typedef typename E::psite psite;

10

11 typedef typename E::piter piter;
12 typedef typename E:: fwd_piter fwd_piter;
13 typedef typename E:: bkd_piter bkd_piter;
14

15 typedef typename E::value value;
16 typedef typename E:: rvalue rvalue;
17 typedef typename E:: lvalue lvalue;
18

19 // ...
20

21

22 // Check services.
23

24 const domain_t& (E::*m1)() const = & E:: domain;
25 m1 = 0;
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26

27 bool (E::*m2)( const psite& p) const = & E::has;
28 m2 = 0;
29

30 bool (E::*m3)() const = & E:: is_valid;
31 m3 = 0;
32

33 rvalue (E::*m4)( const psite& p) const = & E:: operator ();
34 m4 = 0;
35 lvalue (E::*m5)( const psite& p) = & E:: operator ();
36 m5 = 0;
37

38 // ...
39 }

These constraints represent some of the requirements of the Im-
age concept from Table 2 (p. 78). We recall that E is the exact
type inheriting from Image<E>, which also means that E shall be
a model of Image. Firstly, associated types required by a con-
cept are defined as a typedef (lines 7–17). For instance Image
require a domain_t associated type from the model (E), which
implied that the expression E::domain_t shall represent a valid
type, which may be given an alias of the same name in the con-
cept class (line 7). Secondly, services can be checked by creating
a pointer on each required method (member pointer) having
as type the expected signature (lines 24–36). Unless the model
provides a method with the name assigned to the pointer and
having the same signature, the compilation will fail to com-
pile the constructor of Image, revealing a lack in the concept
enforcement. Line 24 shows how Image ensure that the model
E provides a method const domain_t& domain() const: it cre-
ates a pointer to a member (m1) having the required signature
(const domain_t& (E::*)() const), and initializes it with the
address of the method from the exact type (& E::domain). If
E does not provide a domain() method, or if this method does
not match the expected signature, the compiler will report an
error. Although the syntax of this technique is cumbersome, it
is effective to the point that it can distinguish two methods by
their const nature (e.g., rvalue operator()(psite& p) const
and lvalue operator()(psite& p) in lines 33–26).

In addition to these concept checking tools, compile-time con-
straints can be expressed using static assertions implemented
using metaprogramming constructs triggering compile-time er-
rors when they are not satisfied. Milena provides metaprogram-
ming constructs (see Section 2.6, p. 66) to perform compile-time
computations on types and constants values. For instance, the
class template metal::equal<T1, T2>12 is used to compare two
types T1 and T2. metal::equal<T1, T2> defines a class (static)
method check() if and only if T1 and T2 are equal. This template

12 Milena’s metal namespace is dedicated to metaprogramming.
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can be used for example within an algorithm working only on
binary images (e.g., a component labeling algorithm) to ensure
that the input image has values of type bool. The first lines of
such an algorithm could be as follows:

template <typename I, typename J>
void
labeling (const Image <I>& input ,

Image <J>& output)
{

// Precondition: Ensure the value type
// of ‘I’ is ‘bool ’.
metal::equal <I::value , bool >:: check ();

// ...
}

When I is not an image of bool, the compiler is unable to find
the check() method, and stops the compilation. This mechanism
is similar to the BOOST_STATIC_ASSERT macro [14] and to the
static_assert keyword [46] of the forthcoming C++ standard.

The idioms presented in this section make up for C++’s lack of
proper language constructs to enforce concepts. However, these
techniques have several drawbacks. First and foremost, they make
use of a verbose and unnatural syntax, which is a classical side
effect of template metaprogramming, and templates in general.
Secondly, they may not cover the whole spectrum of concept
requirements. A simple example is checking for a template
member function: as C++ forbids pointers on (non-specialized)
functions13, we cannot use the technique shown above to check
the existence of such a member function. Finally, these concept
check expressions generally yield long and complex errors from
compilers, like any template-related errors.

3.3.5 Properties

One of the motivations at the origin of the SCOOP paradigm is to
augment generic data structure with semantic information related
to the target domain [34]. By attaching extra information to a type,
it is possible to let algorithms inspect its characteristics and take
advantage of them. Such algorithms may bring improvements
with respect to one or several of the following aspects:

execution speed Fast implementations of an algorithm may
be known for for a structure exhibiting e.g. a regular or-
ganization of data, or computing results on the fly. . See

13 Like any template, a template (member) function is “potential” code. Only
when fully specialized (instantiated) does a template function generate actual
code and is given a memory location, i.e. an address a pointer can point to.
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Section 4.6.3 (p. 134) for more information on such imple-
mentations and examples in the domain of IP, and Sec-
tion 4.6.4 (p. 140) for details on how to implement selection
of an implementation based on input types’ properties.

memory usage Likewise, there may be variants of an algo-
rithm using less memory than the default implementation,
for a data structure meeting some requirements.

tracing, debugging and adjusting algorithms Addi-
tional information provided by a type’s semantic informa-
tion may be useful to understand the behavior of an algo-
rithm, fix its bugs and possibly improve its implementation.

In SCOOP semantic information attached to data structure
are called properties. A property is a static piece of information
written by the implementer of a type describing an aspect of
this type. Such information is usually related to the application
domain such as IP; and it is non-trivial, meaning that it cannot
in general be inferred by the compiler (e.g. to perform some
optimization). So this programming approach is considered
declarative. As properties are compile-time information, they may
be used in a template metaprogram (see Section 2.6, p. 66) to
generate a dedicated code within an algorithm with zero run-time
overhead.

A property is related to an abstraction. In a IP context, design-
ers may want to define properties for abstractions of the domain
such asImage, Site_Set (image domain), Value (image value type),
Window (sliding window or morphological structuring element),
etc. An abstraction’s properties form a set that is first declared.
This declaration introduces the name of all properties, but does
not give a value to them, as they are abstract. The documentation
should describe the meaning and the intent of each property.
Table 4 shows the properties of the Image concept in Milena.

A concrete class modeling an abstraction shall define each of
the abstraction’s properties. Meaningful values may be provided
by the designer of the abstraction, so that implementers of its
models use the same convention, which is useful when these
properties are later used to implement algorithms variants.

Properties are implemented as traits classes14 (see Section 2.6.2,
p. 68). In addition, they are organized as a class hierarchy ordered
like the data structure hierarchy. A set of properties is a list of
(key, value) pairs implemented as typedefs: the key is the newly
introduced type alias, while the “value” is the type upon which
the typedef is defined. The latter type is often a type dedicated
to the definition of a property, which is a part of a class hierarchy.

14 For that matter, the classes enclosing the definition of properties are named
“traits” in Milena.
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Name Meaning

Miscellaneous properties
category Image nature: primary or morpher

(see Section 3.3.6, p. 91)
speed Ability to provide fact access/browsing
size Size of the image: regular or very large

Values properties
vw_io Read-only or read/write values (data)
vw_set Data stored in zero, one or several sets
value_access Directed or indirect (e.g. computed) access
value_storage Layout in memory: unique value, single

block, piece-wise or disrupted data
value_alignment Values aligned w.r.t. a grid or not

Domain and geometry properties
pw_io The image provides a read-write

operator(const psite\& p) or not
localization Site located on a grid (isotropic or not),

some other space, or no location at all
dimension Dimension of the space (if any)

Extended domain properties
ext_domain Presence and nature of an extended

domain (fixed, infinite, extensible)
ext_value Number of values constituting the domain

(one or many)
ext_io Input/output operations in the extended

domain: none, read-only, read/write
Data properties

kind Kind of values: color, gray-level, binary, etc.
nature Nature of values: scalar, vectorial, etc.
quant Quantification: low or high

Table 4: Properties of the Image concept in Milena. Prefixes “pw”
and “vw” stand for “point-wise” and “value-wise” re-
spectively.
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The top of this hierarchy (any) is the most general value of the
property.

Following the OOP paradigm, an inherited property may either
be left unaltered (keeping the value of the base class’ property)
or given a new value to reflect a change in the semantic of the
class with respect to its base class.

To simplify the work of data structure implementers, the de-
signers of properties should provide default values for each set of
properties. For instance, Milena has a trait::undefined_image_<I>
class template “setting” all the properties listed in Table 4 to the
“value” (type) undef:

namespace trait
{

template <typename I>
struct undefined_image_
{

typedef undef category;
typedef undef speed;
typedef undef size;
// ...

};
}

Actual values of properties are themselves organized as sep-
arate hierarchies. For instance, the speed property of an image
should be define as one of the types of the following trait::image::speed
hierarchy:

namespace trait
{

namespace image
{

struct speed
{

struct any {};
struct slow : any {};
struct fast : any {};
struct fastest : fast {};

};
}

}

A speed::fast image is an image that can be processed with
a pixel iterator, a small object faster than a site iterator since it
browses the memory where the image data is stored instead of
browsing the domain of the image, which is made of sites (e.g.,
2D points). A speed::fastest image is an image that can be
processed with even lower-level (and faster) tools, such as point-
ers or routines like memcpy() (byte-level memory copying). A
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speed::slow image does not support such access mechanisms:
it can only be browsed with a site iterator delivering a site (e.g.
p) corresponding to a location in the image’s domain. Such
a site can be used as input of the image’s operator() to ac-
cess the corresponding value (v = image(p)). This operation
is slower than using a pixel iterator (speed::fast) or a pointer
(speed::fastest), since it implies a computation to obtain the
address of the value (v), whereas the two previous access types
have a direct knowledge of this address.

The inheritance relation between two values represent the in-
clusion. Here, a speed::fastest image is also a speed::fast
image (and also a speed::any image), meaning that an algorithm
working on speed::fast images will also be able to process
speed::fastest.

Many images types store their data in a single buffer15, which is
the sole requirement a speed::fast image shall fulfill. Therefore,
Milena provides a trait::default_image_<T, I> class template
derived from trait::undefined_image_<I>, where the speed
property of an image type I having values of type T is set to
speed::fast. The rest of the class defines default values for
properties kind and quant computed from the properties of the
value type T:

namespace trait
{

template <typename T, typename I>
struct default_image_ : undefined_image_ <I>
{

// Miscellaneous properties.
public:

// Speed is fast by default.
typedef speed::fast speed;

// Data properties.
private:

typedef mlc_equal(mln_trait_value_quant(T),
value:: quant ::high)

is_high_quant_;
public:

typedef mln_trait_value_kind(T) kind;
typedef mln_trait_value_nature(T) nature;
typedef mlc_if(is_high_quant_ ,

image:: quant::high ,
image:: quant::low) quant;

};
}

In the previous code, mlc_equal and mlc_if are shortcut macros
performing metaprogramming operations (resp. compile-time
type equality and if-based test). mlc_equal is in fact a short

15 This buffer may take into account the space needed to store the values of a
potential extended domain.
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alias for the metal::equal metaprogramming construct seen in
Section 3.3.4 (p. 82), defined as this:

#define mlc_equal(T1, T2) metal::equal < T1, T2 >

Macros invocations mln_trait_value_quant(T), mln_trait_value_-
kind(T) and mln_trait_value_nature are used to query proper-
ties associated to a value type, stored in the traits class trait::value_:

#define mln_trait_value_quant(V) \
typename trait::value_ < V >::quant

#define mln_trait_value_kind(V) \
typename trait::value_ < V >::kind

#define mln_trait_value_nature(V) \
typename mln::trait::value_ < V >::nature

trait::default_image_<T, I> factors values of properties which
are shared among several image types, and hence shortens the
property list of these classes. image2d<T> is an example of such a
class. It inherits from trait::default_image_<T, image2d<I> >
and only defines the remaining properties:

namespace trait
{

template <typename T>
struct image_ < image2d <T> >

: default_image_ < T, image2d <T> >
{

// Miscellaneous properties.
typedef category :: primary category;
typedef speed:: fastest speed;
typedef size:: regular size;

// Values properties.
typedef vw_io::none vw_io;
typedef vw_set ::none vw_set;
typedef value_access :: direct value_access;
typedef value_storage :: one_block value_storage;
typedef value_alignment :: with_grid value_alignment;

// Domain and geometry properties.
typedef pw_io:: read_write pw_io;
typedef localization :: basic_grid localization;
typedef dimension :: two_d dimension;

// Extended domain properties.
typedef ext_domain :: extendable ext_domain;
typedef ext_value :: multiple ext_value;
typedef ext_io :: read_write ext_io;

};
}

Constraints on Properties

In order to constitute a consistent and meaningful set of informa-
tion, the values assigned to the properties of a type, it may be
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useful to develop a set of constraints on the properties for every
concerned abstraction. Such constraints shall be part of the doc-
umentation, and may be enforced along with concept-checking
statements, either in implementation classes (e.g. within abstract
implementation classes where such checks can be factored), in
algorithms making use of said properties, or even in external,
stand-alone tests.

For instance, the documentation of Milena regarding Image
properties states that a “fastest” image shall store all its values
in a contiguous block of data and shall have an extended do-
main to accommodate browsing around sites (with respect to a
neighborhood or sliding window) located on the image’s border,
without a prior membership test. Indeed in many cases it is
faster to allow an algorithm to browse sites outside the official
domain of an image by supplying an extended domain, instead
of systematically checking whether accessed sites belong to the
initial domain (which requires extra computation and above all,
probable memory access, that are even more time consuming).
This constraint can be expressed as this:

∀I trait::image_ < I >::speed = speed:: fastest
⇒ (trait::image_ < I >:: value_storage

= value_storage :: oneblock
∧ trait::image_ < I >:: ext_domain

= ext_domain ::some)

Specific Interface

A type’s properties convey some of the semantics of this type,
with the intent to help authors of algorithms to leverage this
information. Taking advantage of such a characteristic offered by
a data structure (reflected by one or several of its properties) may
require an augmented interface (additional associated types and
services) with respect to the minimal interface imposed by the
concept modeled by the structure. This extra interface shall be
mentioned in the documentation of the properties and may be
enforced along with concept-checking statements.

We have seen earlier that speed::fastest image types must
store their data in a single buffer (value_storage::oneblock)
and provide an extended domain (ext_domain::some). These
two property values come with extra interface requirements.
Milena’s documentation states that value_storage::oneblock
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images shall provide the following extra interface16 in addition
to the one required by Image (see Table 2, p. 78)17:

Extra interface for value_storage::oneblock image types.

Associated types
Type Model of Definition
dpoint Dpoint Delta-point type.

Services
Method signature Definition
unsigned nelements_() Number of ele-

ments in the buffer
psite point_at_index_(unsigned i) Psite corresponding

to the index i
unsigned delta_index_(dpoint dp) Delta-index related

to delta-point dp.

Likewise, ext_domain::some images must features the following
additional service:

Extra interface for ext_domain::some image types.

Services
Method signature Definition
unsigned border_() Return the border thickness.

Algorithms providing an implementation variant for speed::fastest
may make used of the typedefs and methods shown previ-
ously. For instance, they may browse the values of an im-
age ima by iterating directly on its memory buffer, returned
by ima.point_at_index_(0) and comprising ima.nelements_().
The class image2d<T>, being a speed::fastest image type, fea-
tures the above interface and can therefore benefit from faster
implementations.

3.3.6 Morphers

The second proposal of the SCOOP paradigm [34] introduces
the idea that generic data types in a reusable programming
framework should be decomposed into

• primary data structures, i.e. standalone data types storing
actual data such as images, vectors, graphs, etc.; and

16 Note that methods which are part of the specific interface often have a trailing
underscore in their name to remind users that they are not part of the concept
requirement, and to discourage their use in generic implementations. They
may however be used in algorithms variants optimized for types having certain
properties; see Section 4.6.3 (p. 134) on generic optimizations for more details.

17 The notions of delta-point and delta-index are presented in Sections 4.4.2
(p. 125) and 4.4.5 (p. 128).
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• light data types with no or little actual data build on top of
another type (or more, but we do not address this case in
this thesis) and acting like a type transformations or morphers,
by adding new services, modifying the behavior of the
underlying type, changing its interface to adapt it to another
interface, etc.

By light, we mean that morpher data types are not meant to
carry actual data, like primary data structure do. Instead, as
they are built on top of another data structure (either a primary
or a morpher type), they are expected to use the data of this
underlying type instead, instead of duplicate them. Morphers
may thus delegate some of their operations to the structure they
are based on.

Definition

A morpher M is a generic type parameterized by a type T (“the
underlying type”), built on top on top of this type. M<T> realizes a
type transformation of T and should observe the following rules:

• An instance of M<T> must holds a reference on an instance
of T. There shall be not data duplication: a morpher instance
is a light object that access the data of the underlying type
through a reference, not a copy.

• M<T> must provide an interface similar to T’s, or derived
from T’s, according to the nature of the transformation. For
instance, a morpher adding logging capabilities to a type
to record a trace of each method called on an object does
not change the interface the underlying type; the morpher
only alters the behavior of the object at run time. On the
other hand, a morpher turning a 3D image into a 2D image
by offering a view one of its slices along a given plane
introduces important change in the interface of the initial
type: instead of using 3D points to access the values as
in the case of the initial image, the morpher object uses
2D points, and shall refuse 3D points as argument of its
operator().

• By default, an instance M<T> delegates its operations (method
calls) to the aggregated T instance, unless M<T> provides a re-
placement for it or if the transformation does not allow this
service. In the previous example of the morpher logging
read and write access within an image type, M<T> delegates
every method call to the T , except for M<T>::operator():
the morpher provides its own implementation of this rou-
tine, logging each call (e.g. into a file), and eventually
delegates the actual access to data to T::operator(). In
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the case of the second morpher example above, most of
the methods of the morpher supersede the methods of the
underlying type to match the deep changes of the interface,
although all of them will contain calls to the methods of
the initial type in fine.

• The coupling between the morpher type and the underlying
type should be minimal, to ensure a maximal reusability of
the morpher. To make M and T as orthogonal as possible,
M<T> should use T’s associated types instead of specific
types.

• The properties of M<T> should be defined by taking into
account the properties of T and the transformation induced
by M.

Morphers uses an architecture based on aggregation, to model
the has a relation (an M<T> has a T); and delegation, as some or
all of the calls to M<T>’s method may be direct or indirect calls to
T’s methods). There should be no inheritance link between M<T>
and T (i.e., M<T> shall not be a subclass of T). Indeed, as far as
interfaces are concerned, inheritance models the is a relation in
OOP. However, some morphers alter the interface (and conse-
quently the implementation) of their underlying type so much
that we can no longer say that M<T> is a T. This is the case of the
slice morpher mentioned above, which turns a 3D image into a
2D one: a 2D image is not a 3D image.

Purpose and Illustrations

The idea of morphers is a continuation of the idea of lifting from
Figure 1 (p. 47). Even in a generic programming context, it is
not uncommon to find a set of algorithms sharing a common
structure, but having slight differences. For instance, many IP
algorithms can be implemented with an “mask” passed as extra
argument, limiting its processing area within the input image(s).
To illustrate this issue, let us consider a simple algorithm filling
the values of an image ima with a value v, named fill. A defi-
nition of fill is shown below. As the full listing corresponding
to this example (as well as the next ones) introduces notions of
generic IP from Milena that are beyond the scope of this chapter
and that are not directly related to the topic of morphers, we only
briefly present some of the features being used. More details are
given later in Sections 4.6 (p. 132) and 4.7 (p. 142).

template <typename I, typename V>
void
fill(Image <I> ima_ , const V& val)
{

I& ima = exact(ima_);
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// ‘p’ browses the sites of ima’s domain.
typename I::piter p(ima.domain ());
for(p.start (); p.is_valid (); p.next ())

ima(p) = v;
}

I::piter is a site iterator type associated to the image type
I, much like C::iterator is an STL iterator type associated
to the STL container C, where C may be std::vector<int>,
std::list<float>, etc. (see p. 41). p is a site iterator object,
and is passed the ima’s domain as argument (ima.domain()) at
its construction. Milena’s site iterators does not work like STL
iterators. The latter work similarly to pointers, while the former
are object attached to a site set (here, the domain of an image)
and behaving like a site. The call to p.start() positions p at
the beginning of the domain; p.is_valid() indicate whether
p is withing the boundaries of its site site; and p.is_valid()
advances p to the next item in the site set.

Some patterns are so frequently used in Milena that the library
features shortcuts for accessing associated types and iterating
with a site iterator. Obtaining the site iterator type associated to
a type T is shorter to write with the mln_piter macro defined as
this:

#define mln_piter(T) typename T::piter

Likewise, the for-loop site iteration above is so common that
Milena provides a for_all macro:

#define for_all(x) \
for(x.start (); x.is_valid (); x.next ())

With the previous definitions, we can rewrite the fill as a
shorter and clearer function:

template <typename I, typename V>
void
fill(Image <I> ima_ , const V& val)
{

I& ima = exact(ima_);

mln_piter(I) p(ima.domain ());
for_all(p)

ima(p) = v;
}

We can define a variant of fill taking an mask object im-
plemented as a (binary) image18 as an extra argument. The

18 Where mask(p) = true (resp. false) means that p belongs (resp. does not
belong) to the mask.
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implementation is similar to the previous one, except an extra
condition on mask(p).

template <typename I, typename V>
void
fill_within_mask(Image <I> ima_ , const V& val ,

const Image <J>& mask_)
{

I& ima = exact(ima_);
const J& ima = exact(mask_); // A binary image.

mln_piter(I) p(ima.domain ());
for_all(p)

if (mask(p))
ima(p) = v;

}

Despite their similarity, the two previous algorithms, though
generic, require two different implementations. Likewise, each
additional variant, as small as it may be, introduces new functions
with redundant parts. As a last example, if fill were to process
only the red channel of a red-green-blue (RGB) color image, yet
another implementation would be needed:

template <typename I, typename V>
void
fill_red_channel(Image <I> ima_ , const V& val)
{

I& ima = exact(ima_); // An RGB image.

mln_piter(I) p(ima.domain ());
for_all(p)

ima(p).red() = v;
}

In the previous example, ima(p) returns the location of the value
in ima associated to p (an RGB triplet), and ima(p).red() returns
only the red component of this value. This routine is again very
similar to the previous two others, and proceeds with the code
duplication phenomenon that we precisely tried to avoid by using
GP in the first place.

An alternative strategy to code duplication is to identify the
shared structure of the routines to write a single algorithm (fill),
and act on the input to change the behavior of the algorithm from
the outside. In the case of the fill_within_mask, this amounts
to embed the mask into the image object, and have it present a
different domain taking the mask into account. Such a type could
be written like this:

class masked_image2d <T>
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: ... // Some class derived from
// Image < masked_image2d <T> >.

{
public:

// Instead of a box2d , the domain is now
// a mask.
typedef mask2d domain_t;
// Likewise , the site iterator is now
// related to a mask.
typedef mask2d ::piter piter;

// Construction of a 2D masked image.
masked_image2d(image2d <T>& image ,

const mask2d& mask)
: image_(image), mask_(mask)

{
}

// Return the mask as domain.
const mask2d& domain () const
{

return mask_;
}

// Query the mask for site membership.
bool has(const point2d& p) const
{

return mask_.has(p);
}

private
/// The actual image.
image2d <T>& image_;
/// The domain implemented as a 2D mask.
mask2d mask_;

};

where mask2d is a site set type implementing a binary mask,
possibly containing itself an instance of image2d<bool> (but
other implementations are possible). Likewise, mask2d::piter
is a new site iterator type browsing a mask2d (instead of a
box2d::piter traversing a box2d). We postpone the actual defi-
nition of masked_image2d<T>’s base class to a later section (see
Section 4.7, p. 142) as this matter beyond the topic of morphers
in general.

We can observe that initial implementation of fill is actu-
ally already generic enough to accept this new image type, and
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therefore it is perfectly possible to reuse it to process a masked_-
image2d:

// An 2D initial image.
image2d <int > ima1;
// Initialize ‘ima’ with data.
// ...

// A 2D mask (compatible with ‘ima ’).
mask2d mask;
// Initialize ‘mask’ with data.
// ...

// Create a masked image.
masked_image2d <int > masked_ima(ima , mask);
// Apply the original ‘fill’ to it.
fill(masked_ima , 42);

The invocation of fill on the last line triggers the specializa-
tion of the fill< masked_image2d<int>, int >, where the do-
main returned by ima.domain() is no longer a box2d, but a
mask2d. The associated piter type returned by mln_piter(I)
is a mask2d::piter initialized with the input’s mask (domain).
This iterator browses only the sites that are member of the mask,
therefore the for_all(p) ima(p) = v assigns only the value in
the mask. In other words, this specialization of fill performs
the exact same operations as the loop of the fill_within_mask,
but does not require a new implementation. The behavior of the
algorithm is different because its input is different.

We can push this idea further by turning masked_image2d into
a type compatible with any image type, not just image2d<T>.
To do so, this new type must be generic with respect to both
the image type and the mask type. Milena’s image_if<I, F>
(see Section 4.7, p. 142) implements this idea. This image type
is built on top of an Image of type I, and a functor of type F.
In Milena, functors must model the Function concept or one of
its refined concepts like Function_v2b, representing a function
from a value (v) to a Boolean (b) (a unary predicate). An unary
predicate f where the value is a site is indeed more general that
a mask: its implementation may be based on a binary image
ima (f(p) = ima(p)), a site set s (f(p) = s.has(p)) or as true
function g (f(p) = ima(p)). The user code is very similar to the
previous example, except that a functor is now used as a mask:

// An image.
I ima;
// Initialize ‘ima’ with data.
// ...
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// Some predicate functor on sites
// implementing a mask.
F mask;

// Create a masked image using the ‘image_if ’
// morpher.
image_if <I, F> masked_ima(ima , mask);
// Apply the original ‘fill’ to it.
fill(masked_ima , 42);

In Milena, an instance of a morpher type is called a morphed image.
Section 4.7 (p. 142) shows examples of morphers on images,
including image_if.

The implementation of image_if<I, F> is not tied to a specific
I or F: it is a generic and reusable data type based on another
image type. Such a type is called a morpher, as it acts as a type
transformation. image_if can indeed be seen as function from the
Cartesian product of the set of image types and the set of unary
predicates on sites, to the set of images types, transforming the
domain of the input image according to the predicate:

image_if :
{

Image × Function_v2b → Image
(I , F) 7→ image_if<I, F>

Following the example of fill_within_mask, fill can be used
to replace the fill_red_channel routine, by passing as input it
an instance of a morpher (component_image) acting as a view on
the initial RGB image, presenting only is one of its channels (e.g.
the red one) when reading data from and writing data to this
morphed image19:

// Shortcut.
typedef image2d <int > I;
// An 2D initial image.
I ima1;
// Initialize ‘ima’ with data.
// ...

// Create a view showing only the component
// number 0 (red) of ‘ima ’.
component_image <I> ima_red_channel(ima , 0);
// Set the level of red to zero in ‘ima’
fill(ima_red_channel , 0);

The call fill(ima_red_channel, 0) on the last line has an im-
pact on ima as well: as a morphed image based on ima, ima_red_-
channel does not hold any data per se. instead, ima_red_channel

19 Note that component_image is not an actual type of Milena. Instead, the library
proposes a more general morpher to apply a function f after reading a value in
the underlying image, and if applicable to apply its inverse f−1 before writing
a value (see Section 4.7, p. 142)
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keeps a reference on the initial image. Each time a value is read in
ima_red_channel (e.g. v = ima_red_channel(p)), the morphed
image delegates the read operation to ima and select the red
component (ima(p).red()). Similarly, every write operation (e.g.
ima_red_channel(p) = 127) is translated as a write operation
on the red component of ima (ima(p).red() = 127).

In conclusion, with the addition of morphers (e.g. image_-
if, component_image), a single generic implementation of an
algorithm (fill) may be used to perform different operation
(filling an image with a value, filling a subset of this image, filling
only a component of this image).

Applications of Morphers

Morphers can be used to implement various services. We present
here broad categories of morpher uses in this section. It is difficult
to establish a precise classification of morpher types for two
reasons. First, the boundaries between categories used to classify
morphers types may be a bit blurry and show some overlap. It
may be for instance difficult to determine the relation between
an adapter and a view (see below): according to the definition
and context, one can be included in the other, they may overlap,
or be distinct notion. Then, some morphers are often closely
related to their application domain, and some category may not
be transposed easily to another domain. Actual image-related
examples are detailed in Section 4.7 (p. 142).

adding data or operations To extend a data type with
new data (attributes) or operations (methods), one may adopt
several strategies. Firstly, creating a whole new type offering the
same interface as the initial data type, plus some new attributes
and/or methods. We do not recommend this code duplication
approach, as it is error-prone (when fixing a bug in duplicated
code, it is not uncommon to forget one of the copies), cumber-
some (modifying duplicated code requires multiple editions),
and does it does not scale (each new extension augments the size
of the code). Moreover, the original and the extended types are
unrelated and therefore incompatible.

A second strategy is to derive the new type from the initial type,
using inheritance as a factoring means. No code is duplicated and
types are compatibles, provided inclusion polymorphism (virtual
methods) is used (instances of the extended type can be assigned
to variables of the initial type). This approach has nevertheless
two drawbacks: first, inclusion polymorphism may induce run-
time overhead (see Section 2.5, p. 59); then, the extension is tied
to a unique type: the inheritance relationship cannot be changed
to extended another type.
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The third strategy is to implement the extension as a morpher.
There is no code redundancy and the extension is not tied to a
particular type. Instead, it forms a reusable piece of code, acting
a type transformation function (here, an extension).

In IP, useful extension morphers may be used to add non-
standard operations to an image. For instance, Mathematical
Morphology (MM) algorithms require that the values of the
image are organized as a lattice defining for each pair a, b of
values a supremum (a ∨ b) and an infimum (a ∧ b). For value
types that does not define a total order on their values, these
two operations do not usually have an obvious definition. This
is the case of the RGB color space, where there is no natural
order between values. It is however possible to define a lattice for
RGB values within an image [4]. The integration of such a lattice
structure within an image type can be implemented as morpher
defining a supremum and an infimum operation on the image’s
values. On of the advantages of this solution is that more than
one lattice can be implemented and “attached” to an image, as
each of them are defined inside a separate morpher that can be
used with any compatible image.

Another useful morpher is a type extending the domain of
an image, either by providing actual data corresponding to sites
outside the initial domain, or a function computing these values
from the image. Extending the domain of an image allows users
to control the behavior of algorithm using a neighborhood or a
window (see Section 4.4.5, p. 128), on the borders of an image.

adapting a type to another interface Some morphers
act as adapters between a type and a client (most often, an algo-
rithm), where the type does not match the interface expected
by the client: the morpher exposes the required interface and
delegates requests (with possible adjustments) to the underlying
type.

The slice_image mentioned earlier is an adapter of 3D regular
image to the interface of a 2D regular image, where “regular”
means that the image has a box as domain and is built on an
orthonormal grid. In the following example, slice_image is used
to adapt the interface of an 3D image of integers (image3d<int>)
to the interface of a pretty-printing routine displaying 2D images
on the terminal’s standard output (println):

// The initial data type.
typedef image3d <int > I;
// An instance of this type.
image3d <int > ima3d;
// Initialize ‘ima3d’ with data.
// ...
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// The slice number 2 of ‘ima3d ’.
slice_image <I> slice(ima3d , 2);

// Print ‘slice’ on the standard output.
println(slice);

The slice object above adapts the interface of ima3d to the inter-
face (a 2D image) expected by the client, println. The domain
of slice is a box2d, and its size is deduced from the domain
of ima3d (a box3). When println browses slice’s domain, it
browses a set of point2ds that are translated by slice::operator()
into corresponding point3ds in ima3d. This mechanism also
works when writing data into the morpher: values are actu-
ally written into the underlying type. A call to fill(slice, 0)
would set all values of the slice number 2 of ima3d to 0.

Using a morpher as a “glue” between the type and its client
has some advantages:

• By having to actual (copied) data, morphers offer a light
solution to the issue of adapting a type to another interface.
There is no duplication of the initial data in the morpher
(not any allocation of data of similar size): read and written
values are instead computed on-the-fly. So morphers save
some memory space, and as a consequence some computa-
tion time as well, as memory allocation and initialization
have a cost in terms of execution time.

• Instead of writing a new ad hoc client (algorithm) able to
process data of the initial type, or the converse (developing
a new type compatible with the client), writing morpher
is usually a shorter and safer solution, minimizing code
duplication.

• The morpher is a piece of reusable code. In addition to
generic data structures and generic algorithms, a generic
framework may provide a collection of morphers, notably
usable as glue code.

In some use cases, an adapter provide the service of a view: an
object presenting some data in another form. The slice_image
morpher is an example of view: it shows a subset (a slice) of a
3D image as a 2D image. Data read from and written to the view
are read from and written to the original image.

changing the behavior of a type Another use of mor-
phers is to change the behavior of the underlying type so that
initial data can be processed differently. The example of the
image_if morpher illustrates this application. For an image type
I and a predicate f (having type F) on I’s sites, image_if<I, F>
changes the behavior of the iterators: instead of traversing the



102 a static c++ object-oriented programming (scoop) paradigm

whole domain d of I, they are now limited to the subset of d veri-
fying the predicate f. This morpher is especially useful to limit
the values processed by an algorithm to a region characterized
by f.

Not that since it creates a restriction of an image’s domain, the
image_if morpher also qualifies as a view.

creating a new type based on another one A mor-
pher can also be used a building brick for creating a new type
based on another one. Such a type remains a light object as it
does not create not copy data per se.

For instance, a stack_image morpher based on a 2D image of
type I may stack several instances of I “vertically” to create a
3D image, provided they have the same size. Each image, stored
as a reference in an array of the morpher, corresponds to a slice
of the 3D volume. In a sense, such a morpher is the inverse of
the slice_image morpher seen previously. More generally, such
a morpher may be used to create an (n + 1)-dimensional image
from a set of n-dimensional images.

Let us consider again a set of images of type I sharing the
same size, having values of type V. One could imagine another
morpher to arrange this set of images “horizontally’, by creating
an image having a type similar to I’s, but where the value type is
an arrays of V values, instead of V. This morpher does not change
the dimension of the image; it only affects I’s value type. For
instance, one could implement an RGB color image by using this
morpher to combine three gray-level images corresponding to
the intensity level in each channel (red, green, blue).

Using a morpher to create a new type is usually different
from using a morpher as an adapter, as the new type is not
necessarily designed to provide an interface expected by some
client (algorithm). Morpher-based type creation shares some
similarities with morpher-based adaptation when it is used as
a view. The stack_image morpher is an example of view, for
instance when it is used to represent a set of 2D images (e.g.
the slices acquired by a 3D imaging device or the frames of a
sequence) as a 3D volume.

lazy function application Finally, as a type transforma-
tion on a type T, a morpher can also be used to implement a
function on the instances of T. There is however an important
difference with a traditional function or even a functor: instead of
representing the function itself, a morpher represent the result of
its application. The values of the actual result are not computed
when the morpher object is created; instead, values are computed
on-the-fly, in a lazy fashion.
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Milena provides a morpher type illustrating this idea, named
fun_image<F, I>. This morpher is built atop an image ima of
type I having values of type V, and a functor f of type F, mapping
values of type V to another type W. An instance of this morpher
type represent the result of f(ima). fun_image<F, I> present the
same interface as I, except for its value type, which is W instead of
V. The function application occurs only when values are accessed
in the morpher. If we note m = f(ima), then for a given site p,
m(p) triggers the computation of f(ima(p)).

Such a morpher could also be extended to support bijective
functions: instead of taking a single functor f of type F, it may
require a second functor g of type G such that g = f−1. Writing
data to m uses g prior to writing data into ima: m(p) = 42 is
translated as ima(p) = g(42).

Implementing functions on data structures a morphers has
again the interesting property of creating no data. This may
be really efficient when several operations are applied success-
fully to an object. For instance, implement the computation
f3(f2(f1(ima))) as the successive application of three functions
f1, f2, f3 creates three images, requiring as many memory allo-
cation. On the other hand, implementing these function applica-
tions using three morpher fun_image<F, I> objects would create
no image data per se. Only if the result of the whole computation
were stored in another image (e.g., ima2 = f3(f2(f1(ima))),
would the code allocate memory for a new image, ima220. When
ima is large, avoiding the allocation cost induced by the function-
based approached may be a real gain in performance, or simply
a necessity (if all the images would fit into the memory).

Note that the previous illustration showed an example of mor-
pher representing a lazy application of a function on the values
of an image. It is possible to apply a function on the sites of an
image as well, for instance to implement on-the-fly geometrical
transformations.

Morphers and Design Patterns

Morphers can be seen as a generalization of some design patterns,
with a static flavor. Design patterns are software engineering
solutions to a recurring software design issue, often in the context
of OOP. They have been introduced by Gamma et al. in their
seminal book [31]. We study in this section the relationships
between morphers and design patterns.

A morpher may be used to implement design patterns such as
Adapter (adapting the interface of a type to another one), Decorator
(dynamically add behavior to an existing object), Proxy (creating

20 Note that even in this case, the allocation is not triggered by the use of the
morphers, but by the construction (or assignment) to ima2
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an object acting as an interface for another object), Observer (an
object subscribed to another object, and receiving notifications
from it).

Morphers can also be part of an implementation of the Strategy
design pattern (used to defined a family of algorithms as a set
of interchangeable objects), as morphers can play a role to imple-
ment variants of an algorithm, by affecting the behavior of one or
more of its element(s). For the Likewise, morphers can be used
to implement a Template Method (defines the program skeleton
of an algorithm, where the definition of some steps may be de-
ferred and possibly overridden to implement various algorithms).
Note that a more general approach to implement an “algorithm
skeleton” is to implement is as a canvas of algorithms or pattern
of algorithms. In both the case of Strategy and Template Method,
the action of the morpher(s) is “external”, as they alter the input
(and possibly the output) of an algorithm.

Finally, the architecture of primary data structures and mor-
phers is similar in its organization to the Composite design pat-
tern, which mixes in a tree structure leaf (standalone) objects
and “composite” objects (aggregating other “child” objects). In
our case, primary data structures are the leaves of a tree, while
morphers are composites. Morpher hierarchies are usually sim-
ple and not deep: many use cases involve only a primary data
structure (e.g. image3d<int>) as the (sole) child of a morpher
(e.g. slice_image<I>, with I = image3d<int>).

Note that generic version of existing design patterns have
been proposed by Duret-Lutz et al. [33, 26]. Some uses case of
morphers resemble some of these design patterns, namely Generic
Bridge , Generic Template Method and Generic Decorator . In the
case of the Generic Bridge and the Generic Template Method, this
similarity includes the use of the CRTP (see Section 3.1, p. 72)

Constraints on Morphers

A morpher may place constraints on its underlying type, the
same way a generic algorithm may express constraints on the
type(s) of its argument(s). From a design point of view, these
constraints should be expressed as concepts (see Section 2.4,
p. 49). However, morpher-related concept checking faces the same
issues as algorithm-related concept checking (see Section 2.4.2,
p. 55). Fortunately, SCOOP techniques for enforcing compile-time
verifications (see Section 3.3.4, p. 82) can be applied to morphers
as well.

Static assertions are usually expressed at the beginning of an al-
gorithm. In the case of a morpher, such assertions may be placed
within the constructor(s) of the class. For instance, Milena’s
slice_image<I> morpher creating a 2D view from the slice of a
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3D image of type I, contains the following static precondition in
its constructor to ensure that I’s domain is a 3D box:

mlc_equal(typename I::domain_t , box3d ):: check ();

Morphers and Properties

As it may modify the behavior of a data type, a morphers may
also change its semantics. Properties of the new type must be
adjusted accordingly. In many cases, a properties of a morphed
type are is similar to the same property in the underlying type.
For such a property, the morpher types does not need to give a
definition of its own, but can instead delegate the definition of this
property to the underlying type.

In practice, the number of delegated properties in a morpher
depends on the nature of the morpher: the more the semantic and
the interface of the morphed type differs from the original type,
the less delegations there are. A morpher adding logging facilities
to some methods of a type does not really change the nature of
the underlying type, and most (if not all) of its properties will be
delegated. On the other hand, a morpher type like fun_image,
transforming the values of the initial image, has to provide fresh
definitions for value- and data-related properties (see below).
Other properties may however be delegated.

To shorten the definitions of morphers’ properties, it is useful
to provide for each concerned abstraction a base class containing
default values for relevant properties, i.e. delegations to the cor-
responding property values in the underlying type. In Milena,
the traits class trait::default_image_morpher plays this role
for Image morpher types, the same way trait::default_image_-
defines default properties for primary Image data types (see Sec-
tion 3.3.5, p. 84).
default_image_morpher<D, T, I> provides values for the im-

age properties (see Table 4, p. 86) of the image morpher type I
built atop the image type D (the delegation) having values of type
T, by using delegations to D’s properties:

namespace trait
{

template <typename D, typename T, typename I>
struct default_image_morpher : default_image_ <T, I>
{

// Miscellaneous properties: delegations (except
// for ‘category ’).
typedef mln_internal_trait_image_speed_from(D)

speed;
typedef typename image_ <D>:: size size;

// Values properties: delegations.
typedef mln_internal_trait_image_vw_io_from(D)

vw_io;



106 a static c++ object-oriented programming (scoop) paradigm

typedef typename image_ <D>:: vw_set vw_set;
typedef typename image_ <D>:: value_access

value_access;
typedef typename image_ <D>:: value_storage

value_storage;
typedef typename image_ <D>:: value_alignment

value_alignment;

// Domain and geometry properties: delegations.
typedef mln_internal_trait_image_pw_io_from(D)

pw_io;
typedef typename image_ <D>:: localization

localization;
typedef typename image_ <D>:: dimension dimension;

// Extended domain properties: delegations.
typedef typename image_ <D>:: ext_domain ext_domain;
typedef typename image_ <D>:: ext_value ext_value;
typedef typename image_ <D>:: ext_io ext_io;

// Data properties: delegations.
typedef typename image_ <D>:: nature nature;
typedef typename image_ <D>:: kind kind;
typedef typename image_ <D>:: quant quant;

};
}

The only exception id the category property, reflecting the very
nature of the morpher type M, for which a default value cannot
be decently provided: it is the responsibility of the morpher’s set
of properties to define the category property.

Most delegations are direct: they are defined as aliases of the
property of the same name within the underlying type. E.g., for
a property p:

typedef typename image_ <D>::p p;

Some properties are implemented as indirect delegations: this
happens when the definition of delegation depends on a feature
of the initial type (D). In the previous example, the speed property
is computed from D’s speed using the mln_internal_trait_-
image_speed_from macro:

#define mln_internal_trait_image_speed_from(I) \
mlc_if( mlc_equal( mln_trait_image_speed(I), \

trait:: image::speed :: fastest ), \
trait:: image ::speed ::fast , \
mln_trait_image_speed(I) )

mln_trait_image_speed is a shortcut macro to fetch the speed
property of an image type defined as this:

#define mln_trait_image_speed(I) \
typename trait ::image_ < I >::speed

The mln_internal_trait_image_speed_from macro prevents an
image morpher type from having speed::fastest as default
value for the speed property (if so, the speed is changed to



3.3 the scoop paradigm 107

speed::fast by default). This is because most morphers intro-
duce extra computations and/or change the organization of the
image data, therefore suppressing the speed::fastest behavior
of their underlying type.21

Likewise, the vw_io and pw_io properties related to input/out-
put accesses (see Table 4, p. 86) cannot be given constant default
values in default_image_morpher<D, T, I>. Their definitions
must take into account whether the initial image type is constant
or mutable (resp.) by checking whether the type passed as ef-
fective parameter for D has a const qualifier in its definition, to
define by default the input/output value- and point-wise accesses
as read-only or read/write (resp.) This is the role of the mln_-
internal_trait_image_pw_io_from and mln_internal_trait_-
image_vw_io_from macros, defined as this:

#define mln_internal_trait_image_vw_io_from(I) \
mlc_if( mlc_is_const(I), \

vw_io::read , \
mln_trait_image_vw_io(I) )

#define mln_internal_trait_image_pw_io_from(I) \
mlc_if( mlc_is_const(I), \

pw_io::read , \
mln_trait_image_pw_io(I) )

The mlc_is_const macro is a shortcut for a metaprogramming
construct determining whether the type passed as argument has
a const qualifier or not. It it used as a condition of the mlc_if
macro to choose respectively for the vw_io and vw_io properties
between the read-only policy (vw_io::read, pw_io::read) and
the initial property value, obtained with mln_trait_image_vw_io
and mln_trait_image_pw_io. These two macros are shortcuts to
get the vw_io and vw_io properties of an image type:

#define mln_trait_image_pw_io(I) \
typename mln::trait::image_ < I >::pw_io

#define mln_trait_image_vw_io(I) \
typename mln::trait::image_ < I >::vw_io

The definition of default_image_morpher<D, T, I> above is
very effective to factor the definitions of image morpher types
properties. The following lines show for example how Milena de-
fines the set of properties image_< fun_image<F, I> >, related
to the morpher type image_< fun_image<F, I> > representing
the application of a function of type F to an image of type I (see
Section 3.3.6, p. 91):

namespace trait
{

template <typename F, typename I>
struct image_ < fun_image <F, I> >

21 This is just a default value; if the morpher does not degrade the performance
of the initial image type, it may define speed as speed::fastest.
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: default_image_morpher < I,
mln_result(F),
fun_image <F, I> >

{
// Miscellaneous properties.
typedef image:: category :: value_morpher category;

// Values properties.
typedef image:: value_access :: computed

value_access;
typedef image:: value_storage :: disrupted

value_storage;

// Data properties.
private:

typedef
mlc_equal(mln_trait_value_quant(mln_result(F)),

value:: quant ::high) is_high_quant_;

public:
typedef mln_trait_value_kind(mln_result(F)) kind;
typedef mln_trait_value_nature(mln_result(F))

nature;
typedef mlc_if(is_high_quant_ ,

image:: quant::high ,
image:: quant::low) quant;

};
}

The previous listing shows that image_< fun_image<F, I> > gets
some of its definitions of properties from default_image_morpher
< I, mln_result(F), fun_image<F, I> > while it provide its
own for the others. The mln_result(F) macro retrieves the re-
sult type of the functor type F, e.g., if F represents a function
float → int, then mln_result(F) = int. It is actually defined
as an alias for F’s associated type named result, which is part of
the signature of every model of the Function concept:

#define mln_result(T) typename T:: result

Thus default_image_morpher is made aware of the new value
type introduced by the morpher.

Properties category, value_access, value_storage are given
values by image_< fun_image<F, I> >, while data-related prop-
erties (kind, nature and quant) are defined as in default_-
image_ (see Section 3.3.5, p. 84), but this time using mln_result(F)
as value type, instead of the underlying image’s value type.
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G E N E R I C I T Y I N I M A G E P R O C E S S I N G

We propose in this chapter an organization of generic software compo-
nents for Image Processing, ordered by their categories and properties.
We show this design is well suited to the creation of reusable software.
We then study the impact of genericity on run-time performances, and
show how to retain efficiency in a generic fashion (without resorting
to specific or non reusable solutions). Finally, we introduce the notion
of generic object transformations or morphers, used to create new
data types from existing ones and to alter the behavior of algorithms
externally.

We believe that one of the goals of an IP framework is to
provide its IP practitioners with a collection of useful, reusable
and efficient algorithms. This idea was already mentioned by
Stepanov [2]:

“I mentioned before the dream of programmers hav-
ing standard repositories of abstract components with
interfaces that are well understood and that conform
to common paradigms.”

This principle is developed in the context of IP throughout this
chapter.

4.1 motivation for generic image processing software

In IP as in many scientific computing domain, software can often
be decomposed in three parts:

data structures The different kinds of containers offered to
represent data set processed by the framework. In IP, such
data structures are mainly images. But an IP framework
may also provide, depending on its complexity, graphs
(Section 4.5.2, p. 130), cell complexes (Section 4.5.3, p. 131),
topological maps, etc. More generally, scientific software
data structures encompass mathematical notions such as
vectors or matrices; computer science entities such as au-
tomata, decision diagrams, etc.

values The different types of elements that can be stored in
data structures. Such elements can be scalar types, such as
Boolean, integer, floating-point or complex value types, but
also more complex values such as tuples, vectors, matrices,
or points (especially in IP). As a matter of fact, it is possible

109
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to use a data structure as the value of another data structure;
for instance, a 3D image acquired using Diffusion Tensor
Imaging (DTI) (a Magnetic Resonance Imaging (MRI) tech-
nique) may have tensor values, where each voxel contains
a symmetric positive definite 3× 3 matrix describing the
3-dimensional shape of the diffusion.

algorithms Non-elementary operations to be applied to data
sets. An algorithm may not necessarily be tied to a specific
data structure in theory, and may therefore be compati-
ble with various input types. In practice, this versatility
requires multiple (specific) implementations one per data
type, or a generic implementation (as seen in Section 2.1.1,
p. 29).

One of the motivations behind generic IP software is to avoid
code redundancy (in particular, several implementations of an
algorithm for various input types) while maintaining run-time
efficiency. Object-Oriented Programming (OOP) might be seen as
a potential solution at first to factor the code of similar algorithms.
Instead of writing several specific algorithms for the various
compatible input types (e.g. binary_image, gray_level_image,
etc.), one may write a single implementation accepting input of an
abstract data types (e.g. an abstract class image). This algorithm
would therefore accept as input any instance of a class deriving
from this abstract data type (e.g., all image classes inheriting
from image). However, OOP does not deliver the performance
expected in a scientific numerical context, because of its run-time
mechanisms, and thus cannot be used in practice. GP, on the
other hand, does not suffer from similar issues.

Let S, V and A be respectively the number of theoretic data
structures, value types and algorithms provided by a scientific
framework. If this framework is not generic, then there would
be at most R = A× S× V1 different routines to accommodate
all the variants [35]. Likewise, the total number of actual data
structures is the combination of every type of data structure
with every value type: D = S× V. So in the non-generic case,
the number of entities (the total number of algorithms, data
structures and value types implementations) to maintain is E =

A× S×V + S×V +V = ((A+ 1)× S+ 1)×V. The numbers R,
S, and E are prone to a combinatorial explosion in a non-generic
context. If the framework is generic however, then the number of
(generic) routine R equals A, as generic algorithms are orthogonal
to data structures and value types: R does not grow with S nor
V. Neither does D = S grow with V, as data structures are

1 For simplicity’s sake, we make the hypothesis that all algorithms are compatible
with all data structures and that the latter are themselves compatible with all
value types.
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themselves orthogonal to their value types. The total number of
entities to maintain is consequently E = A + S + V.

In addition, the framework may support transformed types,
or morphers (as seen in Section 3.3.6, p. 91), thus increasing
the number of entities to maintain [34]. Let M be the number
of these type transformations. If we take into account the case
that corresponds to a single application of a morpher (thus to
primary data structures only, not to morphed types), the number
of routines to implement in a non generic framework is:

R = A× S×V︸ ︷︷ ︸
Non-morphed case

+ A× S×V ×M︸ ︷︷ ︸
Uses of single morpher

= A× S×V × (1 + M)

But morphers can also be applied to types that have already
been transformed, which increases the number of potential com-
binations. If we limit ourselves to n applications of morphers,
the number of algorithm variants rises again: R = A× S×V ×
(1 + M)n, which tends towards ∞ when n tends towards ∞, thus
adding to the combinatorial explosion problem.

There is no similar issue in the case of the generic approach.
The number of (generic) routines is the same (R = A), and the
total number of elements is just increased by M, as morphers are
orthogonal to data structures, and the total number of elements
to maintain is E = A + S + V + M.

In conclusion, the generic approach scales with the extension
of the framework in whatever dimension (A, S, V, M). For
this reason, and because it does introduce run-time penalty per
se, a generic strategy is suitable for scientific software, and in
particular IP software.

4.2 design choices

The first section of this chapter (p. 109) exposed motivations
to think create Image Processing (IP) software in generic fash-
ion. The present section presents additional design choices for
a generic IP framework, that we believe are especially relevant
in the context of IP, both from a technical and practical point of
view.

4.2.1 The Choice of SCOOP

The generic approach is indeed well suited to design and imple-
ment reusable and efficient IP software. However, the SCOOP
paradigm, which can be seen as an advanced GP paradigm with
some OOP flavor, seems much more appropriate to implement
a generic IP framework. The incentive to use SCOOP has been
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presented in the previous chapter, but in the context of IP, this
choice is especially relevant for the following reasons.

compile-time checking Thanks to both static (metaprogram-
ming) assertions (see ) and SCOOP’ concept- and property-
based checks (see ), many errors can be detected at compile-
time. Though C++ compiler messages may be long and
difficult to read (see ), compile-time error are nevertheless
easier to understand and fix than many run-time errors (for
instance, an invalid memory access). Moreover, as such
errors can be detected early (before users run any code),
some of them may be detected by the authors of the code,
instead of its users.

no run-time overhead SCOOP is a compile-time paradigm:
it does not rely on dynamic behavior (such as polymorphic
methods) and does not introduces run-time costs per se.

concept-based polymorphism As SCOOP is able to express
concepts, it can be used to create overloaded routines that
can be distinguished by the concept of their inputs (see
). This is especially useful in the case of binary operators
overloaded with respect to the concepts of their operands.
For instance, there may be two generic implementations of
operator==, one for Image s and another for Value s:

template <typename I1, typename I2>
bool operator ==( const Image <I1 >& ima1 ,

const Image <I2 >& ima2);

template <typename V1, typename V2>
bool operator ==( const Value <V1 >& val1 ,

const Value <V2 >& val2);

Thanks to the use of concepts in the signatures of these
two overloaded operators, the addition of two Image s (resp.
two Value s) is not ambiguous and calls the former (resp.
latter) routine:

image2d <int > ima1 = ... // Initialization.
image2d <int > ima2 = ... // Initialization.
if (ima1 == ima2) // Equality on ‘Images ’.

{ /* ... */ }

// ‘int_u8 ’ and ‘int_u16 ’ (8- and 16-bit
// unsigned integer types) are models of
// the ‘Value’ concept.
int_u8 i = 42;
int_u16 j = 51;
if (i == j) // Equality on ‘Values ’.

{ /* ... */ }
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Concept-based overloading improves the expressive power
of the language. Indeed, overloading (and template special-
ization) are somehow limited, as they enable the definition
of an alternative routines with respect to a given (tuple of)
type(s). This is especially frustrating in the context of tem-
plates, where explicit specialization contrasts the generality
and extensibility of the template mechanism. With concept-
based overloading, one may defined variants with respect
to a (tuple of) concept(s), which is much more general.

properties and property-based polymorphism SCOOP’s
properties enable the characterization of a type (possibly
a generic one) with respect to its capabilities. They can be
used to create and automatically select a more efficient vari-
ants of an algorithm if its input supports it. Such variants
are called generic optimizations (see ): they help improve
performances without writing specific, non-reusable code.
For instance many acip algorithms can be rewritten to take
advantage of images having their values stores in a sin-
gle linear contiguous memory block (buffer); such values
can be manipulated with pointers, which are faster than
iterators.

morphers Another important feature brought by SCOOP is
type transformations or morphers (see ). IP-related mor-
phers are detailed in depth in Section 4.7 (p. 142). Morphers
can be useful to implement e.g.,

• Lazy function application to images (e.g., thresholding,
color conversion, etc.).

• Domain restrictions (e.g. masks) and domain exten-
sions (e.g. wrapping a 2D image around one (resp.
two) of its dimension(s) to make it have the topology
of a cylinder (resp. a torus)).

• Image composition (e.g. stacking a set of 2D images
to create a 3D volume) and image decomposition (e.g.
viewing the slice of a 3D image as 2D image).

Morphers improve the expressive power of the framework
and are efficient (they do not create intermediate temporary
values that may introduce memory and run-time costs).

4.2.2 The Choice of C++

The SCOOP paradigm has been initially designed and imple-
mented in the C++ programming language. But as said previously
in Section 3.3 (p. 75), SCOOP is not tied to C++ specifically. We
believe this paradigm can be for instance transposed in the D
programming language, which supports the programming traits
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required by SCOOP (generic programming, inheritance, compile-
time metaprogramming).

C++ has many drawbacks. Its syntax is complex and sometimes
unfriendly; C++ compilers often emit long and hard to under-
stand error messages; the language features dangerous low-level
features (mostly inherited from C) such as pointers, casts and
union, that may make debugging a program a long and painful
work; and the language does not feature automatic memory man-
agement (through garbage collection), which adds to the work of
the developer.

Yet C++ seems to be the best option to implement a SCOOP-
based IP software framework, and what is more, for reasons
which are mostly not related to SCOOP. The following list tries
to summarize why C++ is the best compromise as for generic IP
software.

standardized language The C++ language is defined by an
ISO/IEC international open standard [40]. A standardized
language benefits from the work of hundreds of people
coming from different places, in order to create a robust,
long-lasting, precisely-defined, useful tool. As the language
does not belong to a single entity, it is more likely to be
durable, and it is less prone to incompatible evolutions.
C++ is developed in an open fashion, thus all the work of
the committee on the next version of the standard is freely
available on the Web.

widespread language Nowadays, standard-compliant C++

compilers are available on virtually any computing plat-
form. This aspect guarantees that one may be able to com-
pile a C++ program on its programming environment. This
statement is not only valid today, but also for the future,
as C++ is still actively maintained and developed by its ISO
standards committee, as are compilers and tools. This is
especially relevant in industry and research contexts, where
the durability of a technology is fundamental.

well known language Like C and Java, C++ is a language
taught in a lot a computer science curricula, and in particu-
lar in IP courses. Stroustrup estimates the number of C++

users to be more than 3 million in 2004 [75]. Therefore the
probability for a new user of an IP framework to known
C++ is high (compared to another language). Using a less-
known language would probably divide the audience of
the framework by a ten, a hundred or even more.

well supported language C++ benefits from many great
tools. There are many compilers, debuggers, libraries, GUI
toolkits and Integrated Development Environments (IDEs)
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for the language on most platform, both as proprietary and
free software. Most of this tools have existed for many years
and are robust, reliable, and efficient.

efficiency Due to its mix between low-level and high-level
capabilities, C++ is deemed the fastest language, or one of
the fastest languages—or more accurately, producing the
fastest or among the fastest programs [1]. Together with
genericity, we consider efficiency a fundamental require-
ment for IP software, since data may be large and/or may
need to be processed fast.

versatility C++ features several programming paradigm, in-
cluding procedural programming, data abstraction (or en-
capsulation), Object-Oriented Programming (OOP), Generic
Programming (GP), and in to some extent, Functional
Programming (FP) (in particular in the forthcoming stan-
dard [43]). One of the strengths of the language is not to
impose a specific programming style: user may choose to
use a single style, or use a mix of several styles; for that
matter SCOOP is a programming paradigm based on OOP
and GP. This freedom adds to the expressiveness of the
language. In addition, C++ is one of the language best sup-
porting GP (as for expressiveness and efficiency) [2, 32]; this
is especially relevant in our case, as our approach strongly
relies on GP. Finally, some C++ features such as overloading
and user-defined operators provide useful syntactic sugar
(syntactic replacement for longer and/or more complex
equivalent language constructs). Such shortcuts are helpful
to write concise and elegant code.

control and ease of use The language lets users control
some low-level aspects such as memory management (as
in the C language), which is fundamental in the context of
efficient scientific software. C++, however, provides more
user-friendly means to take advantage of this opportunity,
thanks to the programming traits mentioned previously.
In the particular case of memory management, objects’
constructors and destructors help automate the allocation
and deallocation of memory (but also the initialization and
release of resources such as files or network sockets). This is
a good trade-off between handling these elements manually
(as in C), which is error-prone and implies a lot of work;
and letting the run-time environment take care of it (as
in Java, which uses garbage collection) at the expense of
some run-time performance (though it is simpler, garbage
collection is not yet as efficient as deterministic hand-made
memory management).
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4.3 organization

Following the motivations for a generic IP software framework
exposed in Section 4.1 (p. 109) and the design choices consider
relevant for the implementation of such a framework (Section 4.2,
p. 111), we describe in the present section a proposal for a soft-
ware infrastructure for generic IP. This proposal tries to handle
the three axis of variety encountered in the field of IP: the diver-
sity of data (image) types (Section 1.1.1), the diversity of users
(Section 1.1.2, p. 17) and the diversity of use cases (Section 1.1.3,
p. 18).

4.3.1 General Architecture

First of all, handling the many image types required by IP prac-
titioners requires not only requires a framework providing data
structures implementing these images types, but also flexible
enough to be support the addition and the integration of new
types easily. GP is here useful in two ways: firstly, to reduce
the number of data structures to maintain as much as possible,
by using parameterized types as a factoring means. Immedi-
ate illustrations include image types taking their value type as
a parameter (for instance, Milena’s image2d<T>, but also more
complex data types, like the ones based on morphers (see Sec-
tion 3.3.6, p. 91). GP is also of prime importance regarding
algorithms: these should be implemented in a generic manner so
that the framework scales with the addition of new image types.

Secondly, the diversity of users shows in the various degree
of knowledge with respect to image processing techniques, the
types of images manipulated, software tools, and in many cases,
programming; but also in the nature and complexity of the task
to perform. Depending on the user and their work, the most
fitted operation mode may be an interactive session where IP
programs are built with graphical widgets (boxes, buttons, links,
etc.) and data are visually represented and updated at each
change; or a scripting interface, where the user inputs commands
in an; or an IDE, where the user writes and assembles algorithms
to be compiled and run later. To each of these operation modes
corresponds a User Interface (UI), which is the set of elements
a user manipulates to interact with the framework (a Graphical
User Interface (GUI) with visualization capabilities, an interactive-
loop interpreter, the Application Program Interface (API) of a
library, etc.). We have seen in Section 1.1.4 (p. 20) that most
solutions rarely address all the needs of this wide spectrum
in a uniform manner. Usually, a tool is designed to properly
offer one or two UI, and it is sometimes extended to cover some
interfaces, sometimes in a degraded form. For instance many
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image processing libraries initially target a compiled language
such as C++ for performance reasons, but also often provide
bindings for an interpreted language such as Python (for instance,
many of the projects of Chapter 4, p. 109). While the former
requires some non-trivial programming knowledge, the latter can
often be used in an interactive mode and can be learned easily
and rapidly, so that newcomers may quickly write prototypes
and conduct experiments. However, this “second mode” may not
offer all the features of the primary (compiled) one (e.g., all data
structures or algorithm may not be available) or be as efficient
(if the bindings introduce were to introduce run-time overhead).
A reusable framework should therefore provide as many UIs as
possible, and be open enough to support future additional User
Interface (UI).

The third and final axis of diversity is related to the type of
work a user wants to perform with their tool. For example the
IP task they have to deal with may be purely illustrative, e.g. in
pedagogical environnements, or to produce figures for a paper;
a simple experiment, requiring a few manipulations or lines of
code); a slightly bigger prototype, needing more lines of code;
or a full application, which may require some work to process
very large data, be generalized to many data types, or produce
optimized implementations required in an industrial context. As
in the previous item, each of these tasks is achieved efficiently
with the right tool. The process of writing, compiling, debugging
and running a program is not recommended when one simply
want to run a single algorithm to demonstrate it during a lecture.
Conversely, an interpreted script is not the most efficient solution
to processing a large base of data as fast as possible. Therefore
a framework should provide several UIs to also encompass as
many use cases as possible. Moreover, it might be useful to
be able to access a given feature, e.g., a segmentation tool, by
different means over time. For instance such a segmentation
algorithm may be used initially through a GUI so as to test it on
a few images, adjust its parameters and evaluate its results. Then,
if it is deemed suitable to process a whole data set, it may be later
be run from a Command Line Interface (CLI), as a small program
run from a terminal. Likewise, more complex processing chains
may be developed from a convenient prototyping environment,
and later be turned into more efficient, compiled programs.

To address theses three degrees of diversity (data types, users,
use cases), we propose a software architecture based on a generic
approach, which is well suited to handle the variety of applicable
IP operations (see Section 4.1, p. 109). This architecture is based
on the following elements:
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1. A core made of a generic and efficient C++ library, containing
generic data structures and algorithms for image processing,
implemented using the SCOOP paradigm (see 3).

2. “Satellite” components based on this library, such as bind-
ings to dynamic languages such as Python or Ruby, CLIs,
GUIs, Web services, etc. These components are to provide
various UIs for the various categories of users and the dif-
ferent kinds of tasks they want to perform. They should
be kept as light as possible, and let the core library (1) do
as much work as possible, both to avoid redundancy and
concentrate the optimization efforts in this core library.

3. Some “glue code” between 1 and 2, which consist in au-
tomated operations to keep 2 minimal while leaving 1 un-
touched and still benefiting from its qualities (efficiency,
reusability).

The benefit of this architecture is that most of the difficult work
(in particular C++ template programming and metaprogramming)
is done in the core library, which is generic, efficient and reusable.
The glue code tries to keep as much as possible of the generic-
ity, efficiency and reusability of the core library. Moreover, as
time goes, development made with high-level UIs can be refac-
tored and integrated into lower-level tools, so as to improve their
genericity, efficiency and more generally their reusability.

This architecture is implemented in the Olena project, a Free
Software generic IP platform. The first item is the Milena library
mentioned previously, and is detailed in the remaining of this
chapter. Items 2 and 3 are sketched in Section 6.3.1 (p. 158).

4.3.2 Core Library

According to Stepanov,

“The fundamental idea of generic programming is
to classify abstract software components and their
behavior and come up with a standard taxonomy.”
[2]

Following this principle, we propose to build the core library of
our IP platform on a set of orthogonal concepts corresponding
to entities of the domain (Image Processing). By orthogonal
concepts, we mean concepts with as few dependencies as possible
on one another, so as to achieve separation of concerns in the
library: the junction between two collaborating components in
the library (e.g. an image and a structuring element involved
in a morphological dilation) should be minimal, so that one
may be changed with no impact on the other. Here, the code
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of the image type should not be affected when substituting a
structuring element based on a set of points for a structuring
element describing a (centered) disc solely by its radius.

An essential task of the design of the library is therefore to
define concepts (in the sense of GP) representing essential notions
such as an image, a point, a neighborhood, a structuring element,
etc. In addition to defining the contents of theses concepts (as pre-
sented in 2.4.1), their interactions should be carefully designed, as
any change regarding a concept or the connection of two concept
may also have a deep impact on the contents of the library; it may
not only affect the concept classes themselves (see Section 3.3.1,
p. 75), but also their models (see Section 3.3.2, p. 77) and the
algorithms that depend on these concepts (seeSection 3.3.3, p. 79).
The image-related concepts of the core library are presented in
Section 4.4.

Burrus et al. prompt designers of scientific libraries to imple-
ment data structures and algorithms as uncorrelated entities [13],
a style advocated by the SCOOP paradigm (see Section 3.3.3),
and previously the Standard Template Library (STL). Therefore
algorithms are implemented in a procedural fashion, instead of
being written as member functions (methods) of classes.

We should also take into account the size of the various popu-
lations of users outlined in Section 1.1.2 (p. 17)), so as to make
the library as usable as possible for everybody. The majority of
the public of the framework are expected to be end users, that
should not be required to have a deep knowledge of C++, OOP,
GP or even SCOOP. The task of simply using algorithms from the
library and assembling them to create (non-generic) processing
chains should remain easy and accessible to a programmer with
a knowledge of the C programming language. Thanks to the
procedural aspect of the library, running algorithm amounts to
calling functions, which makes Milena very similar to a classical
C library at this level of use, if we except type names carrying
parameters (such as image2d<int>). Such types can be “hidden”
by using typedef declarations at the beginning of the code, e.g.

typedef image2d <int > I;

Other users of the library, extending it by writing new algorithms
or data structures, are expected to be knowledgeable about C++

and the design of the library. The difficulty rises gradually from
writing non-generic algorithms, to writing generic algorithms, to
writing new (possibly generic) data types. Writing non-generic
algorithms requires some knowledge on the manipulation of data
structures (images, site sets, windows, etc.) and iterators, for
which an understanding of some OOP principles should suffice.
Writing generic algorithms is more difficult, as it involves con-
cepts and other GP- and SCOOP-related notions (associated types,
concept checking, conversions to exact type, etc.). Lastly, writing
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data structures (e.g. a new image type) is an advanced task, as it
may require the creation of several collaborating classes (e.g., a
new site set, new iterator types, etc.) modeling the corresponding
concepts.

4.4 concepts

This section presents the essential concepts of our core library.
Milena contains more than 40 concept, but only present here
the most important ones, starting with the central Image concept
[49]. Actual types modeling these concepts are later presented
in Section 4.5 (p. 129).

4.4.1 Images

We start the presentation of the library’s concepts with the Image.
We have already mentioned this concept in the description of
SCOOP’s concepts in Section 3.3.1 (p. 75), and its signature has
been given as an illustration in Table 2 (p. 78). The Image concept
is especially important in Milena, since it appears virtually in
all IP-related routines of the library, as a constraint on the input
type(s) of an algorithm, as shown in Section 3.3.3 (p. 79).

Let us consider a more detailed explanation of the Image con-
cept in this section, in the context of IP rather than software
engineering and GP. The goal of Image is to encapsulate the char-
acteristics of all image types of the library, with as few details as
possible to make it flexible enough to represent all conceivable
image types, while keeping essential aspects to make it actually
useful.

In order to build the Image concept in a top-down fashion, we
propose the following definition of an in image [48, 64].

Definition. An image I is a function from a domain D to a set of
values V . The elements of D are called the sites of I, while the elements
of V are its values.

For example in the case of a binary 2D regular image, the domain
D is a 2D discrete rectangular space aligned with the axes of
the image (a 2D “box”) and the value V is set of Boolean values,
represented by the bool type in C++. Elements of the domain are
2D points within the box, while elements of the value set are
values true and false.

For the sake of generality, we use the term site instead of point.
Our framework shall be able to manipulate many kinds of images,
for which the term “point” would not be appropriate. Consider
for instance an initial 2D image on which a segmentation method
has been run; from the set of obtain regions, we can create a
Region Adjacency Graph (RAG) where each vertex corresponds
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to a region, and for each pair of neighboring regions (sharing a
boundary), an edge is created between the corresponding vertices.
If we consider the set of vertices of the graph, and associate to
each of them a value of a given set, like the size of the region
corresponding to a vertex, we can also consider this “decorated”
graph as an image in the sense of the previous definition, asso-
ciating data to each element of its domain (its set of vertices)2.
While it is perfectly normal to refer to the elements of the initial
image’s domain as points (since they represent members of the
Z2 space) it would be incorrect to consider vertices (or edges) of
the RAG-based image as points. Therefore, we prefer the term
“site” since it covers a more general notion.

Domain and Value Set

In order to materialize the existence of a domain and a value set
in each type of image, we build in the Image image two associated
types (see Section 3.3.1, p. 75) for D and V : the associated types
domain_t and vset (see Table 2 (p. 78)). Therefore, for each
image type I (model of Image), I::domain_t and I::vset are
to represent its domain and value set respectively. However
I::domain_t and I::vset are only types, i.e. static descriptions
of the domain and value set objects associated with an instance
ima of I. To access these objects, the concept provide accessors
in its signature, namely the domain() and values() methods.
The following statement therefore fetches the domain of ima and
stores it in a value of the appropriate type:

const I:: domain_t& d = ima.domain ();

Note that if the previous line were to be used in a template context
(i.e., within a generic routine or a parameterized container), the
type of d should be preceded by the typename keyword in to
comply with C++ syntactic rules, leading to long declarations
lines:

const typename I:: domain_t& d = ima.domain ();

To work around the syntactic verbosity of C++ regarding the
use of associated types, we may introduce shortcut macros, the
same way we did in Section 3.3.6 (p. 94) to simplify the use of
iterators. Such macros have the same structure: they are name
mln_type , where type or type _t is the corresponding associated
type passed as argument of the macro. In the current case, the
mln_domain macro would be written as this:

#define mln_domain(T) typename T:: domain_t

2 Note that we may as well use the set of edges of the RAG as a domain to build
an image in the same way.
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For symmetric reasons, we provide versions of such macros
without the typename keyword, the name of which contains a
trailing underscore character:

#define mln_domain_(T) T:: domain_t

Sites, Point Sites and Values

The Image concept also contains some more associated types
regarding sites and values:

• site is the type of an element of the domain. It usually
represent an actual location and is meant to convey geomet-
rical information, contrary to the psite associated type (see
below). Regarding the original 2D image mentioned earlier,
the site type would we a 2D point (implemented by the
point2d class in Milena). But in the case of the RAG-based
image built from a segmentation of the previous 2D image,
site could be a much more complex type. For example,
each site object could be a comprehensive geometrical de-
scription of the corresponding region, with the list of all its
pixels. There is indeed no actual limit to what a site can
be (see Section 4.4.2), which makes it a powerful concept
of the library as it can be arbitrarily complex and take part
in the construction of very sophisticated image types. The
drawback of such freedom is that the site associated type
cannot be reliably used to access the values of an image ef-
ficiently. In the case of the RAG-based image, obtaining the
value associated to a region by the means of a site encoding
its geometry would necessarily imply some computations
at each access, making this image type unusable in contexts
where efficiency is required. To prevent slow accesses to
images, the Image concept introduces another associated
type, called psite.

• The psite (short for point site) associated type is merely a
simple site descriptor, and shall only contain the minimal in-
formation to access the values of an image in an reasonably
efficient manner. In the previous case of the RAG-based im-
age, a typical psite object would only contain an identifier
of one of the vertex of the graph (e.g., a number and possi-
bly a reference to the graph structure to prevent this point
site from being used with a totally different graph-based
image). Note that the psite and the site associated to an
image type may refer to the same type if the psite suffices
to describe the location and geometrical information of a
site. This is the case of regular 2D images, where a 2D
point (an instance of point2d) is enough to represent the
location and geometry of an element of a discrete 2D box.
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The Image concept contains methods to access values of the
image using psite values (see below), but there is no such
mechanism for sites (when site 6= psite).

• value is the type of an element of the value set. However,
this type is not used in the signatures of image methods re-
turning values from psite presented hereafter. Instead, the
Image concept has two extra associated types corresponding
to value accesses performed in read-only and read/write
modes, respectively named rvalue and lvalue. In many
(but not all) cases, lvalue is equal to value& and rvalue is
defined as const value& (references to the location of the
value in memory). However, some images types provide
very different types for these three associated types. In par-
ticular, when the actual values are manipulated indirectly,
a proxy objects (having a type different from value) may
be built and returned by the image for lvalue and rvalue.

To access the values of an image, the Image concept requires the
existence of two methods named operator(), for read-only and
read/write accesses. Both take psites as argument and return
either an rvalue or an lvalue (see 2). The definition of a method
operator() “overloads” the definition of the operator ‘()’ for the
considered image type, and making it look like a function, or
more precisely, a functor (see p. 42), as in the following example.

// A 3x3 binary , 2D image.
image2d <bool > ima (3, 3);
// A 2d point at row 1 and column 1,
// that can serve as a psite of ‘ima ’.
point2d p(1,1);
// Write into ‘ima’ at psite ‘p’
// by using its ‘operator ()’.
ima(p) = 3;

All the members of the domain of an image are valid arguments
to the image’s operator(). But in some cases, one may want to
access a location that may not be part of the domain. Accessing
the neighbor of a point site of the image is a typical example of
non-guaranteed operation. To ensure that such a statement is
valid, the Image concept requires its models to provide a has()
method checking whether is argument belongs to the image’s
domain. More generally, the is_valid() method checks if the
image is globally usable, and answers negatively e.g. if the image
has not be initialized.
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Iterators

The last part of the Image concept is related to iterators. We only
show aspects of iterators related in images in this section; Sec-
tion 4.4.4 (p. 127) contains more details on the iterator concepts.

As in the STL and many other C++ libraries, the traversal of
containers (here, images) is performed with small objects encap-
sulating the services of moving from one element to another and
returning the “pointed” element. Browsing an image requires
(point) site iterators or piters. Image has three associated iter-
ator types: fwd_piter is the type of an iterator traversing the
image’s data in the forward direction, while bkd_piter advances
in the backward direction. piter is the default piter type, and
by default is expected to be an alias of fwd_piter. The notions
of forward and backward traversals are not strictly formalized;
for instance, this order cannot be guaranteed to always follow a
lexicographic order on the coordinates of the domain’s space. The
only constraint required by the Image concept is that a backward
iterator should traverse the sites of an image in the reverse order
of the corresponding forward iterator.

Piter objects shall be initialized with their iteration target, that
is the domain of the image. An iterator browsing the values of
an image ima of type I in no specific order is typically created
with the following line:

mln_piter(I) p(ima.domain ());

where mln_piter is the shortcut macro to access I’s piter as-
sociated type. Milena provides another useful shortcut macro
presented in section 3.3.6 (p. 94) to iterate on the image’s domain
using this iterator, named for_all. As the iterator can be used
like a point site, we it may use it to directly to manipulate the
image’s values, as in the following example.

for_all(p) // Iterate on the domain of ‘ima ’.
ima(p) = ima(p) + 3;

A site iterator is bound to the domain of an image, which is
a site set (see 4.4.3), but it is not tied to an image in particular.
Therefore, a single iterator may be used to iterate on several
images sharing the same domain.

typedef image2d <int > I;
// Two 10x10 integer images.
I ima1 (10, 10);
// Initialize ima1.
// ...
I ima2 (10, 10);
// Initialize ima2.
// ...
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// A third image with the same domain.
I ima3 (10, 10);
// Fill ‘ima3’ with the point -wise addition
// of ‘ima1’ and ‘ima2’ using a single
// piter ‘p’.
mln_piter(I) p(ima3.domain ());
for_all(p)

ima3(p) = ima1(p) + ima2(p);

We believe the previous code is much more readable for an IP
practitioner, as it looks like an algorithm from a paper manip-
ulating points (instead of iterators). The equivalent code in an
STL-style would require three iterators (one per image), which
makes it both longer and more complex to non-specialists of C++.

We conclude this description of the Image concept with a preci-
sion on domains and iterators. The Image concept does not place
any constraint on the size of a domain, as long as it countable.
A domain may even be infinite. However, the data browsed by
the site iterator of an image must be finite, to guarantee that a
for_all loop will terminate. It is for instance valid to imple-
ment a 1D image (a signal) the domain of which is Z3 showing
non-null values on a finite subset (e.g. the range [1, 100], and
having a value of zero on the rest of the domain. While the
(theoretic) domain may be is infinite, the set of actual values is
finite. To form a valid image, the iterator and the domain objects
associated to it must therefore be implemented to limit the set of
sites browsed by iterators, e.g. to the range [1, 100] of non-null
values.

4.4.2 Sites

As mentioned in the previous section, Image concepts expects
its models to define two site-related associated types: site and
psite (possibly to the same type). We therefore introduce two
related concepts, Site and Point_Site. On the on hand, we have
seen there are no actual constraints on the structure and behavior
of a site. Milena proposes an empty Site concept to possibly mark
some types as explicit sites, but the library does not require sites
to inherit from this concept.

On the other hand, the Point_Site has a more precise interface,
as shown in Table 5. A point site object must able to convert
itself into the corresponding site object (but the converse is not
true), hence the site associated type and the conversion operator
‘operator site’. The C++ language indeed allows the creation of
user-defined conversion routines within classes. Such methods

3 With usual tools, we can only approximate such an infinite domain (e.g. by
using a built-in type like int or long).
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Point_Site

Associated types
Type Model of Definition
site (Site) Type of a site

Optional associated types
Type Model of Definition
point Point Type of point.
dpoint Delta_Point_Site Type of delta-point.
coord Type of coordinate.

Services
Method signature Definition
operator site() Conversion to site.

Optional Services

Method signature Definition
const unsigned dim (attribute) Dimension
const point& to_point() Conversion to point type
coord operator[](unsigned i) Access to coordinate i

Table 5: Signature of the Point_Site concept.

can be invoked implicitly (for instance, during an assignment
to an l-value of the target type) or explicitly (by using a cast
operator).

The concept also contains optional associated types and ser-
vices that are only relevant when the site represent a point-like
entity in an digital space, like the dimension of the space, the
conversion to a an actual point type or the access to a coordi-
nate of the point site. Among these optional elements, a point
site may define an associated delta-point or delta-point site type
(dpoint or dpsite for short). A dpoint represents the difference
between two point objects. Delta points are especially useful to
implement windows and neighborhoods in regular images (see
sec:ip-win-nbh).

4.4.3 Site Sets

A site set represents a set of point sites4. Such as set may contain
an actual enumeration of point sites (e.g. as an array of psites) or
represent a regular organization of psites described by parameters
(e.g a box aligned on the axis of an orthogonal space defined by
two opposite corners).

Table 6 shows the signature of this concept. Like an Image, a
Site_Set shall define a site, a psite, a fwd_piter and a bkd_-
piter types, as well a has() method. All have the same meaning

4 Despite its name, a site set contains point sites (psites)
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Site_Set

Associated types
Type Model of Definition
site (Site) Type of a site
psite Point_Site Type of a point site
fwd_piter Site_Iterator Forward iterator type
bkd_piter Site_Iterator Backward iterator type

Services
Method signature Definition
bool has(const psite& p) const Psite membership test

Table 6: Signature of the Site_Set concept.

as in Image (see Section 4.4.1, p. 120). In practice many images
indeed delegate the definition of these types and services to their
underlying domain_t type (e.g. for a image I, I::fwd_iterator
is often an alias for I::domain_t::fwd_iterator.

Site sets serves to define the domains of images (see Sec-
tion 4.4.1, p. 120). Such site set often contain structural infor-
mation of combinatorial, topological or geometrical nature in
addition to “containing” psites. For example a 2D digital box
(implemented by the box2d type in Milena) not only defines a rect-
angle compose of discrete points and defined by it top right-hand
and bottom left-hand corners, but also a regular digital topolog-
ical space containing no holes, with usual 4- and 8-adjacencies
between point sites. Likewise, a site set based on the vertices of
graph exhibit a natural adjacency of sites connected by an edge.
Such information are often used in by window and neighborhood
objects (see Section 4.4.5, p. 128).

It is also possible to define unstructured sites set, acting as bare
psite containers (arrays, sets, priority queues, etc.). Such site sets
are especially useful in the implementation of generic algorithm.

Section 4.5 (p. 129) presents several image types along with the
site sets used as their domains.

4.4.4 Iterators

Many C++ libraries have adopted the programming style of STL,
where algorithms take a range as input expressed as a pair of two
iterators (see 2.2.3, p. 41). If we were to traverse an image ima
of type I implemented as an STL container to apply a function
f to each of its elements, we would write a loop similar to the
following one.

for (I:: iterator i = ima.begin()
i != ima.end(), ++i)

f(*i);
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Iterator

Services
Method signature Definition
bool is_valid() const Validity test
void invalidate() Invalidate iterator
void start() Place iterator at the start
void next() Advance to next item

Table 7: Signature of the Iterator concept.

Site_Iterator
refines Iterator

Associated types
Type Model of Definition
target Type of target (iterated set)
site (Site) Type of a site

Services
Method signature Definition
const target& target(); Access to target
operator psite&(); Conversion to psite
site& to_site(); Conversion to site

Table 8: Signature of the Site_Iterator concept.

While this kind of code may look familiar to many C++ pro-
grammers, it will probably seem lengthy and complex to an IP
practitioners having little or no knowledge in C++. For this reason,
Milena’s iterators have been designed to look like an entity more
common in IP, namely points (or more precisely point sites). The
previous example translates in Milena as this:

mln_piter(I) p(ima.domain ();
for_all(p)

f(p);

Iterating on an image is done by iterating on its domain, not
the image itself. Domains may be shared among different images.
Therefore, iterators on sites (and (p)sites themselves) are not tied
to an image.

Table 7 presents the general (not image-related) Iterator con-
cept, while Table 8 shows the Site_Iterator concept, describing
iterators on domains (site sets), windows and neighborhood.

4.4.5 Windows and Neighborhoods

A Window represent a sliding window relative to a point site
(reference psite), and mapping this location to other psites of an
image’s domain. In a sense, a window can be seen as a function
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from a psite to a set of psites. Windows are for example used to
implement structuring elements of mathematical morphology.

Windows on regular domains can be expressed as a constant
set of delta-points, that is a set of vector displacement from the
reference psite to the psites of the window. On non-regular
windows, the psites are computed on the fly: such windows
behave more like actual functions.

The Neighborhood concept is similar to Window, but add extra
constraints on its models. For instance, a neighborhood must me
centered, symmetric and it shall not contain its reference psite.
Models of this represent neighborhood or adjacency relations,
such a the 4- or 8-connectivity in 2D.

Windows and neighborhoods each declare associated (forward
and backward) iterator types. These iterators are named “qiters”
for windows (by analogy with “piters” on domains), and “niters”
for neighborhoods.

The concept of Weighted_Window associates weights to the
psites of a window. It is used to implement kernels in convolu-
tions.

4.5 data structures

In this section, we present some image data structures with their
companion types (sites, site sets, etc.).

We have seen in Section 4.4.1 (p. 120) that a generic image type
may offer different degrees of parameterization, meaning that
the structure of an image can be more or less constrained. The
shape of image2d<T> is an example of constrained shape: this
image has a fixed site set (box2d) and its point sites (point2d) are
also points (in Z2). On the contrary, a graph-based image can
represent a vertex- or edge-valued graph in any “geometrical”
space—even one that cannot be represented for technical reasons,
such as R11).

We can observe than more general image (less constrained
images) can often represent more constrained images. For in-
stance, a vertex-valued graph-based image based on a graph
representing a box of Z2 of type vertex_image<point2d, bool>
(see Section 4.5.2) can be used to represent the same information
as image2d<bool>.

However, as vertex_image<point2d, bool> may accept any
graph as domain, it cannot make the same hypotheses as image2d<bool>
with respect to the shape of data. For instance, accessing the value
of a site using its spatial information (e.g., the (42, 51) in Z2) is
natural with image2d<bool>, as its sites are also points (there is
here a bijection—the identity—between a psite and a point). The
memory location of this value is computed with respect to the
address of the image’s data and using the row (42) and column
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(51) indices. However, in the case of vertex_image<point2d,
bool>, this 2D point is merely some spatial information, not
directly linked to the location of the value, as there is only an
uni-directional mapping from sites to spatial information in this
image type. Getting a psite from a site implies either a cost in
time (by browsing the list of psites to find the one associated with
the searched point) or a cost in space (by storing the site-to-psite
mapping in addition to existing the psite-to-site mapping).. ‘
Likewise, vertex_image<point2d, bool> cannot consider that
the 4-connected neighbors of a site are always located at a fixed
offset in memory with respect to the location of the site. . Con-
trary to image2d<bool> (see 4.6.3), we cannot use an offset-based
fast iteration on neighbors with vertex_image<point2d, bool>.
There is hence a trade-off between efficiency and generality here.
Therefore, it is useful to provide various image types, instead of
a single one flexible enough to represent any data structure, at
the expense of run-time or memory usage penalties.

4.5.1 Classical Data Structures

Classical data structures are regular data structure with a compact
memory representation. Essentially, they represent boxes on Zn,
with n being at least 2, sometimes 3, and more rarely other values
(1, 4, 5 etc.). Images types such as image2d<T> or image3d<T> are
example of regular data structures.

The domain of these data structure is an instance of box<P>
where P is a type of point (e.g. point2d, point3d).

Iterators associated with this domain aggregate an contains an
instance of this point type. They traverse the hyper-rectangular
space defined by this box in the classic forward or backward
raster order.

Windows and neighborhoods are composed of delta-points
(or dpoints), that is, object representing the difference between
two points of the grid. For instance, in Milena the standard
c4 neighborhood object (of type neighb2d) contains an array
with the following dpoints: {(−1, 0), (0,−1), (0,+1), (+1, 0)}.
Iterators on windows and neighborhoods contains a reference to
a center point as well as an index of the previous array.

4.5.2 Graphs

Graph-based images are a composed of a triplet:

• A domain object containing an undirected graph structure
(with no data attached to vertices nor to edges). This do-
main can be shared by several images, even if they does
not have the same value type. Each point site is assigned a
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Figure 5: A simplicial 3-complex.

number corresponding to a vertex or edge, depending on
the image type.

• A function from the point sites of the image (either the
vertices or the edges) to a site type (e.g. point2d). This
function describes the geometry of the graph.

• A function from the point sites of the image to the corre-
sponding values.

The last two items are usually implemented as arrays, as domains
are shall not change once they are used as domain of an image.
In Milena, vertex_image<P, V> and edge_image<P, V> respec-
tively implement vertex- and edge-valued graph-based images,
where vertices are located on points of type P, and values of type
V are attached to vertices and edges respectively.

Iterators on graph-based images contain a reference to their
target domain, as well as a number (vertex or edge identifier).
Windows and neighborhoods objects act as functions from a point
site to a set of point site. These functions (e.g., mapping a vertex
psite to the adjacent edge psites) are actually implemented within
neighborhood and window iterators.

4.5.3 Cell Complexes

Intuitively, complexes can be seen as a generalization of graphs.
An informal definition of a simplicial complex (or simplicial d-
complex) is “a set of simplices” (plural of simplex), where a
simplex or n-simplex is the simplest manifold that can be created
using n points (with 0 ≤ n ≤ d). A 0-simplex is a point, a
1-simplex a line segment, a 2-simplex a triangle, a 3-simplex a
tetrahedron. A graph is indeed a 1-complex. Figure 5 shows an
example of a simplicial complex.

Likewise, a cubical complex or cubical d-complex can be thought
as a set of n-faces (with 0 ≤ n ≤ d) in Zd, like points (0-faces),
edges (1-faces), squares (2-faces), cubes (3-faces) or hypercubes
(4-faces). Figure 6 depicts a cubical complex sample.
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Figure 6: A cubical 2-complex.

Milena provide a general abstract data structure to implement
cell complexes, including simplicial and cubical complexes, called
topo::complex<D>, where D is a integer denoting the dimension
of the complex. Internally, topo::complex<D> contains D + 1
arrays to stores faces, one array per dimension (0 to D). What
is actually stored for a array cell of D-face is the list of adjacent
(D− 1)-faces and adjacent (D+ 1)-faces (except for 0- and D-faces
that respectively do not have (D− 1)-faces and adjacent (D+ 1)-
faces). This structure is not related to the image world, much like
inner graphs from the previous section.

To represent complexes in the realm of images, the library
provides a complex-based site set, p_complex<D, G>, wrapping a
topo::complex<D> object. The G parameter is the type of a geom-
etry object, associating location information (sites) to each face
of the complex. The image type complex_image<D, G, V> uses
this site set as a domain, with the same meaning for parameters
D and G, while V represent the values associated to each face of
the complex image.

Domain iterators, windows, neighborhoods and their iterators
works in a similar fashion as in graph-based image, except that
there is by default no constraints on the dimension of browsed
faces.

Cell complexes are useful to represent inter-pixel data structures,
allowing users to store data between primary image elements
(pixels, voxels, polygons of a mesh, etc.). Examples of use are
shown in Chapter 5.

4.6 algorithms

4.6.1 Generic Algorithms

A generic algorithm is an abstract definition of a set of opera-
tions to perform some computations. It should contain as little
implementation details as possible on the data structures it uses.
The exact type of its input should not be fixed in this definition,
but instead be represented by parameters, so that its applicability
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Algorithm 4.1: Non generic implementation of fill.
void fill(const image& ima , unsigned char v)
{

for (unsigned int r = 0; r < ima.nrows (); ++r)
for (unsigned int c = 0; c < ima.ncols (); ++c)

ima(r, c) = v;
}

Algorithm 4.2: Generic implementation of fill.
namespace generic
{

template <typename I, typename V>
void fill(Image <I>& ima_ , const V& v)
{

I& ima = exact(ima_);
mln_piter(I) p(ima.domain ());
for_all(p)

ima(p) = v;
}

}

is not restricted to a particular type. Likewise, the types of its
output and its intermediate values should not be fixed, but either
taken as parameters or deduced from other parameters.

For instance Algorithm 4.1 shows a non generic implementa-
tion of the fill algorithm, assigning a value to the pixels of an
image. An important limitation of this algorithm comes from
the use of nested loops to implement image traversal (one for
each dimension). Indeed not only this technique fails to scale
to higher dimensions, but it also does not handle special use
case such as the restriction of the image’s domain by a mask, nor
the non-regular (e.g., graph-based) image types. We have seen
that a classical solution to this problem is to resort to iterators,
which help to uncouple data structures and algorithms. Another
limitation of Algorithm 4.1 is related to value types: this imple-
mentation of fill can only handle an image type compatible
with the unsigned int value type.

Algorithm 4.2 shows an implementation that has non of the
limitations mentioned previously. Instead of implementing the
logic of traversal itself, it uses a point site iterator (piter) targeting
the domain of the input image. Moreover, both the image type
and the value type are now free “type variables” (parameters I
and V respectively), making this implementation virtually com-
patible with any input, as long as the image type models the
Image concept.
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Chapter 5 present some examples of more complex IP algo-
rithms implemented in a generic fashion.

4.6.2 Type Deduction

We have mentioned that generic algorithm should use as type
only parameters or types deduced from parameters to be as
generic as possible. Type deductions are implemented with
static programming techniques (Section 2.6, p. 66), as traits (Sec-
tion 2.6.2, p. 68). The most simple case, when the deduced type is
the same as one of the template parameter, does not even require
a traits class: the parameter can be used directly. Other cases can
be more or less complex.

For instance, most IP algorithms producing an output image
must be able to create an data structure in memory to receive the
values of the output. However, some input types represent images
with no actual data. An image type implemented as a uniform
function on a domain is an example of such an image: its only
data are a single value and a domain: each access to any elements
of its domain indeed always the same value, so there is no need to
store it multiple times. Applying an IP operator to such an image,
however, may not yield a uniform image. Therefore, the output
type deduced for the corresponding cannot be the same as the
input type parameter. Milena proposes a mechanism to deduce
for each image type a corresponding “concrete” image type, able
to store actual values. We do not explain this mechanism here,
as it depends on complex metaprogramming techniques that
are out of the scope of this thesis. This system is abstracted by
the mln_concrete(I) macro, returning the concrete data type
corresponding to the (image) type I. Note that when I is already
an image type with actual data in memory, mln_concrete(I) =
I.

Likewise, the mln_ch_value_(I, V) macro, relying on a mech-
anism similar to mln_concrete()’s, deduce the concrete type
of I while changing its value type to V. For instance, mln_-
ch_value_(image2d<int>, bool) returns the concrete type of
image2d<int> with a value type type set to bool, that is
image2d<bool>.

4.6.3 Efficiency Considerations

Let us consider two implementations of a classical morphological
operator, a dilation with a flat structuring element. Algorithm 4.3
shows a non-generic implementation of this algorithm, while
Algorithm 4.3 proposes a generic implementation of this operator
[48]. We do not discuss the benefits of the generic approach
over the non-generic one, as they have been covered in previous
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Algorithm 4.3: Non-generic dilation implementation.
image dilation(const image& input)
{

image output(input.nrows(), input.ncols ());
for (unsigned r = 0; r < input.nrows (); ++r)

for (unsigned c = 0; c < input.ncols (); ++c)
{

unsigned char sup = input(r,c);
if (r != 0

&& input(r-1,c) > sup)
sup = input(r-1,c);

if (r != input.nrows ()-1
&& input(r+1,c) > sup)

sup = input(r+1,c);
if (c != 0

&& input(r,c-1) > sup)
sup = input(r,c-1);

if (c != input.ncols ()-1
&& input(r,c+1) > sup)

sup = input(r,c+1);
output(r, c) = sup;

}
return output;

}

sections. In this section we emphasize on efficiency consideration
in the context of generic software.

The Cost of Abstraction

Table 9 show execution times of several implementations of the di-
lation algorithm, including the two previously mentioned. These
figures exhibit an important run time overhead in the generic
case (Algorithm 4.4), which is about ten times longer to execute
than the non-generic one (Algorithm 4.3). This is not a conse-
quence of the GP paradigm per se. It is rather due to the highly
abstract style of Algorithm 4.4, which in return makes the routine
very versatile with respect to the context of use. The non-generic
version is faster than the generic one because it takes advantage
of known features of the input types. For instance the structuring
element is “built in the function” (whereas it is an object taken as
a generic input in Algorithm 4.4): its size is constant and known
at compile-time. Such implementation traits are useful static
(compile-time) information that the compiler can use to optimize
the code. Hence, what prevents a code from being generic seems
to be the condition to generate fast code: implementation details.
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Algorithm 4.4: Generic dilation implementation.
template <typename I, typename W>
I dilation(const I& input , const W& win)
{

I output; initialize(output , input );
// Iterator on sites of the domain of ‘input ’.
mln_piter(I) p(input.domain ());
// Iterator on the neighbors of ‘p’
// with respect to ‘win ’.
mln_qiter(W) q(win , p);
for_all(p)

{
// Accumulator computing the supremum
// with respect to ‘win ’.
accu::supremum <mln_value(I)> sup;
for_all(q) if (input.has(q))

sup.take(input(q));
output(p) = sup.to_result ();

}
return output;

}

Generic Optimizations

The balance between genericity (the ability to handle many dif-
ferent data types) and efficiency (the run-time speed) admittedly
depends on the level of details, but these two aspects are not
entirely antagonistic: by carefully choosing the amount of specific
traits used in an algorithm, one can create intermediate variants
showing good run-time performance while keeping many generic
traits.

For instance, a means to speed up Algorithm 4.4 is to avoid
using site iterators to browse the domain of the input and output
image. In Milena, site iterators can be automatically converted
into sites (points), that is, locations in the domain of one (or
several) image(s). Such location information is not tied to a given
image: in the case of a regular 2D image, a site point2d(42, 51)
is compatible with every regular, 2D, integer coordinate-based
domain of the library (including toric spaces, non-rectangular 2D
subspaces of Z2, etc.). This is why iterator p is used to refer to
the same location in both input and output in Algorithm 4.4.

The price to pay for such a general expression is usually a run-
time overhead: computations have to be performed each time
a site iterator is used to access data from an image. However,
this flexibility is not always needed when the data to process
exhibit noteworthy properties. For instance, an image of which
values are stored in a contiguous, linear memory space, can be
browsed using a pointer, directly accessing values in a sequential
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Algorithm 4.5: Partially generic optimized dilation.
template <typename I, typename W>
I dilation(const I& input , const W& win)
{

I output; initialize(output , input );
// Iterator on the pixels of ‘input ’.
mln_pixter(const I) pi(input);
// Iterator on the pixels of ‘output ’.
mln_pixter(I) po(output );
// Iterator on the neighbor pixels of ‘pi ’.
mln_qixter(const I, W) q(pi , win);
for_all_2(pi, po)

{
accu::supremum <mln_value(I)> sup;
for_all(q)

sup.take(q.val ());
po.val() = sup.to_result ();

}
return output;

}

manner using their memory addresses, instead of computing a
location at each access. In Milena, such pointers are encapsulated
in small objects called pixel iterators or pixters (a pixel refers to a
(site, value) pair in an image). Pixters are bound to one image,
and cannot be used to iterate on another image. Pixters can
also be used to browse spatially invariant structuring elements
(windows), as long as the underlying image domain is regular.

Algorithm 4.5 shows a reimplementation of Algorithm 4.4
where site iterators have been replaced by pixel iterators. The
code is very similar, except that images input and output are
now browsed with two different iterators (each of them holding
a pointer to the data of the corresponding image). Such an
implementation of the morphological dilation is less generic
than Algorithm 4.4. Even so, it can still be used with a wide
variety of image types, as long as their data present a regular
organization, which comprises any-dimension classical image
using a single linear buffer to store its values. Besides, it is
compatible with any spatially invariant structuring element (or
in other words, any constant window). Thus it remains more
generic than Algorithm 4.3. As for efficiency, Algorithm 4.5
matches almost Algorithm 4.3 in terms of speed (see Table 9), so
it is a good alternative to the generic dilation, when the trade-
off between genericity and efficiency can be shifted towards the
latter.

The approach presented here can be applied to other algo-
rithms of the IP literature for which optimized implementations
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have been proposed. These optimizations are in practice compat-
ible with a range of input types, so their implementations can
be considered as generic optimizations since they are not tied to a
specific type [50].

Extra Generic Optimizations

The approach proposed here can be carried further to improve
the efficiency of generic optimizations. The idea is to involve
data structures in the optimization effort: instead of acting only
on algorithms, we can implement new optimized variants by
working on their inputs as well.

For instance, in place of a window containing a dynamic array
of vectors (e.g., {(−1, 0), (0,−1), (0, 0), (0,+1), (+1, 0)} in the
case of a 4-connected spatially-invariant structuring element) –
the size of which is known at run time –, we can implement
and use a static window containing a static array carrying the
same data, but of which contents and size are known at compile
time. Modern compilers make use of this additional informa-
tion to perform efficient optimizations (e.g, replace the loop over
the elements of the window by unrolled equivalent code). In
this particular case, the implementation requires the creation of
two new, simple data types (static window, static pixel iterator).
No new implementation of the dilation is required: using Al-
gorithm 4.5 with this new window suffices. The resulting code
gives run times which are not only faster than the non-generic
version of Algorithm 4.3, but which may also be faster than a
hand-made, pointer-based optimized (hence non-generic) version
of the dilation (see the next section).

Results and Evaluation

Table 9 shows execution times of various implementations of the
morphological dilation with a 4-connected structuring element
(window) applied to images of growing sizes (512× 512, 1024×
1024 and 2048× 2048 pixels) . Times shown correspond to 10

iterative invocations. Tests were conducted on a PC running
Debian GNU/Linux, featuring an Intel Pentium 4 CPU running
at 3.4 GHz with 2 GB RAM at 400 MHz, using the C++ compiler
g++ (GCC) version 4.4.5, invoked with optimization option ‘-03’.

In addition to the dilation implementations presented previ-
ously, an additional non-generic version using pointer-based
optimizations shown in Algorithm 4.6 has been added to the
test suite, so as to further compare non-generic code—mostly
optimized by hand —and generic code—mostly optimized by the
compiler.

The overhead of the most generic algorithm is important: about
ten times longer than Algorithm 4.3. The highly adaptable code



4.6 algorithms 139

Implementation Time (s) per image (px)
5122 10242 20482

Non generic (Alg. 4.3) 0.10 0.39 1.53

Non generic, pointer-based (Alg. 4.6) 0.07 0.33 1.27

Generic (Alg. 4.4) 0.99 4.07 16.23

Fast, partly generic (Alg. 4.5) 0.13 0.54 1.95

Alg. 4.5 with a static window 0.06 0.28 1.03

Table 9: Execution times of various dilation implementations.

Algorithm 4.6: Non-generic, pointer-based optimized dilation im-
plementation.

image dilation(const image& input)
{

// Offsets corresponding to a 4-connected
// structuring element moving on ‘input ’.
ptrdiff_t win_offset [4] =

{ &input(-1, 0) - &input(0, 0),
&input(+1, 0) - &input(0, 0),
&input(0, -1) - &input(0, 0),
&input(0, +1) - &input(0, 0) };

// Initialization of the output image.
image output(input.nrows(), input.ncols ());
for (unsigned int r = 0; r < input.nrows (); ++r)
{

const unsigned* pi = &input(r, 0);
unsigned* po = &output(r, 0);
for (; pi < &input(r, 0) + input.ncols ();

++pi, ++po)
{

unsigned char sup = *pi;
if (r != 0

&& *(pi + win_offset [0]) > sup)
sup = *(pi + win_offset [0]);

if (r != input.nrows () - 1
&& *(pi + win_offset [1]) > sup)

sup = *(pi + win_offset [1]);
if (pi != &input(r, 0)

&& *(pi + win_offset [2]) > sup)
sup = *(pi + win_offset [2]);

if (pi != &input(r, 0) + input.ncols () - 1
&& *(pi + win_offset [3]) > sup)

sup = *(pi + win_offset [3]);
*po = sup;

}
}
return output;

}
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Algorithm 4.7: Partially generic filling implementation.
template <typename I, typename V>
inline
void fill_one_block(Image <I>& ima_ , const V& v)
{

I& ima = exact(ima_);
data:: memset_(ima , ima.point_at_index (0), v,

opt:: nelements(ima));
}

of Algorithm 4.4 is free of implementation detail that the com-
piler could use to generate fast code (image values access with no
indirection, statically-known structuring element). Algorithm 4.5
proposes a trade-off between genericity and efficiency: it is about
30% times slower than Algorithm 4.3, but is generic enough to
work on many regular image types (as a matter of fact, the most
common ones). The case of the dilation with a static window
is even more interesting: reusing the same code (Algorithm 4.5)
with a less generic input (a static window representing a fixed
and spatially invariant structuring-element) makes the code twice
faster, to the point that it outperforms the manually optimized
pointer-based implementation. Therefore, having several im-
plementations (namely Algorithms 4.4 and 4.5) is useful when
flexibility and efficiency are sought.

4.6.4 Properties of Data Structures and Property-Based Overloading

In this section, we present a mechanism to automate the selection
of the best known variants of an algorithm at compile-time, based
on properties of input types. This technique completes the generic
optimization strategy proposed above.

For instance, let us consider the generic implementation of
the fill algorithm shown in Algorithm 4.2 and a fast variant
of this algorithm proposed in Algorithm 4.7. This algorithm
is less general than the former. It expects its input image to
present its data as a single linear block of values and uses a low-
level routine called data::memset_ generalizing the memset()
standard C function performing a rapid initialization of a C
array.

To automate the selection of the best fill variant, we imple-
ment a dispatch algorithm composed of three parts.

1. The first element is a facade (see Algorithm 4.8) having the
same interface as the generic implementation. This routine
queries the input type’s properties and delegate to the best
version based on them. Here, the mln_trait_image_value_access
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Algorithm 4.8: Facade of the fill dispatch mechanism.
// Facade.
template <typename I, typename V>
inline
void fill(Image <I>& ima , const V& v)
{

// Dispatch following the ‘‘value_access ’’
// property.
fill_dispatch(mln_trait_image_value_access(I)(),

ima , v);
}

Algorithm 4.9: Default delegation of the fill dispatch mecha-
nism.

// Default dispatch case.
template <typename I, typename V>
void
fill_dispatch(trait ::image:: value_access ::any ,

Image <I>& ima , const V& v)
{

// Delegate to the generic (non -optimized)
// version.
generic ::fill(ima , v);

}

macro retrieves the value_access (see 4) property of the
image input type (I).

2. The second step is to provide a default delegation calling
the generic version (see Algorithm 4.9)5. This way the dis-
patch mechanisms is guaranteed to find an implementation.

3. The last step consists in providing generic optimizations
for subsets of image types satisfying a constraint on one or
more properties. As shown in Algorithm 4.10, the dispatch
delegates the call to the fill_one_block variant when the
image type I provides a direct (i.e. involving no computa-
tion) access to its values.

This mechanism, called property-based overloading, is much more
powerful than simple type-based overloading or than the explicit
template specialization mechanism. Each dispatch case of for-
mer covers a whole subset of the space of types, while the later
techniques enable the definition of variants overloaded or (resp.
specialized) for a single specific type (resp. template). Property-

5 The trait::image::value_access::any value is the default value of the
value_access property (see Section 3.3.5, p. 84).



142 genericity in image processing

Algorithm 4.10: Delegation of the fill dispatch mechanism for
images with direct access to values.

// Fast version (for images with direct access to
// values ).
template <typename I, typename V>
void
fill_dispatch(trait ::image:: value_access ::direct ,

Image <I>& ima , const V& v)
{

fill_one_block(ima , v);
}

based overloading is static mechanism resolved by the compiler:
the dispatch induces no penalty at run-time.

4.7 image morphers

3.3.6 presents the idea of morphers and present some examples.
In IP, morpher may be developed for various entities, such a
images, site sets or values. We only concentrate on image mor-
phers in this section. Such morphers may be divided in three
categories.

domain morphers These morphers affect the domain of an
image. The image_if and slice_image morphers, changing
the domain of its target, are an example of such morphers.

value-related morphers Morphers may also change the be-
havior of an image’s values. The fun_image, applying a
function on-the-fly is one of them.

identity morphers The third category of morphers are de-
rived from the identity function, introducing no change to
an image. A morpher logging accesses to the value of an
image for profiling purpose falls in this category.
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A P P L I C AT I O N S O F G E N E R I C I M A G E
P R O C E S S I N G

This chapter illustrates the possibilities of the framework proposed in
this thesis by presenting examples of actual generic Image Processing
algorithms that have been implemented in the Milena library. Their
full implementation is given and explained. Applications of theses
algorithms is then shown for various data types, so as to demonstrating
the generality of their definition.

The examples shown in this chapter illustrate methods from
mathematical morphology and digital geometry. These domains
have been indeed particularly developed in the Olena project
from the algorithmic point of view. The scope of the platform is
however not limited to these domains.

5.1 a generic watershed transform implementation

Our first example presents an implementation of a classic mor-
phological tool used in segmentation, a watershed transform by
flooding based on hierarchical queues. Algorithm 5.1 shows an
implementation based on the ideas proposed in 4, and imple-
mented in Milena. This generic routine implements the watershed
transform algorithm proposed by Meyer [56].

The idea of the watershed transform, initially proposed by
Beucher and Lantuéjoul [8], is to consider a 2D intensity (gray-
level, integer) input image as a landscape, where high values
denotes peaks and low values represent valleys. The first step is
to identify regional minima of this image which are flat zones
having no neighbor with a lower altitude. The watershed algo-
rithms then simulates the introduction of sources of water in each
of these regional minima, progressively flooding the landscape.
A barrier is built at locations were two bodies of water or more
meet. The watershed is made of this set of barriers. Other parts
belong to catchment basins attached to an initial minimum.

In many cases, the watershed transform is not performed di-
rectly on the input gray-level image. Instead, the gradient of this
image is computed first, and the watershed transform is run on
the intensity image representing the magnitude of this gradient.
A high gradient intensity indeed show the presence of contours.
By applying the watershed transform on this intensity image, we
expect the watershed line to follow the contours of the initial
image.

143
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Algorithm 5.1: Generic implementation of watershed transform.
namespace watershed {

template <typename L, typename I, typename N>
3 mln_ch_value(I, L)

flooding(const Image <I>& input_ ,
const Neighborhood <N>& nbh_ ,

6 L& n_basins)
{

const I input = exact(input_ );
9 const N nbh = exact(nbh_);

typedef L marker;
// Label of non -minimum (watershed) pixels is 0.

12 const marker unmarked = literal ::zero;
typedef mln_value(I) V;
const V max = mln_max(V);

15 // Initialize the output with markers (minima ).
mln_ch_value(I, marker) output =

labeling :: regional_minima (input , nbh , n_basins );
18 // Hierarchical queue.

typedef mln_psite(I) psite;
typedef p_queue_fast <psite > Q;

21 p_priority <V, Q> queue;
// Image keeping track of processed psites.
mln_ch_value(I, bool) in_queue;

24 initialize(in_queue , input );
data::fill(in_queue , false);
// Initialize , then process the hierarchical queue.

27 mln_piter(I) p(output.domain ());
mln_niter(N) n(nbh , p);
for_all(p)

30 if (output(p) == unmarked)
for_all(n)

if (output.domain ().has(n) && output(n) != unmarked)
33 {

queue.push(max - input(p), p);
in_queue(p) = true;

36 break;
}

while (! queue.is_empty ()) {
39 psite p = queue.front (); queue.pop();

marker adjacent_marker = unmarked;
bool single_adjacent_marker_p = true;

42 mln_niter(N) n(nbh , p);
for_all(n)

if (output.domain ().has(n) && output(n) != unmarked)
45 {

if (adjacent_marker == unmarked) {
adjacent_marker = output(n);

48 single_adjacent_marker_p = true;
}
else if (adjacent_marker != output(n)) {

51 single_adjacent_marker_p = false;
break;

}
54 }

if (single_adjacent_marker_p) {
output(p) = adjacent_marker;

57 for_all(n)
if (output.domain ().has(n) && output(n) == unmarked

&& ! in_queue(n))
60 {

queue.push(max - input(n), n);
in_queue(n) = true;

63 }
}

}
66 return output;

}
}
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The watershed transform produces a segmentation of the initial
image. Initially, each of its regional minima is given a unique
label. A special label is reserved for pixels1 which are eventually
part of the watershed. Catchment basins made of connected
components are supersets of their corresponding regional minima
and form the regions of the final segmentation. Watershed pixels
form a connected curve separating these regions.

Algorithm 5.1 proposed a generic implementation of this prin-
ciple based on a hierarchical queue data structure (lines 19–20)..
The special label 0 is reserved for watershed pixels (line 11).
The output image is initialized with an image of regional min-
ima computed with the labeling::regional_minima() routine.
These minima form the initial basins of the landscape that will
grow during the algorithm. This steps also determines the num-
ber of basins, stored in the n_basins variable. At the end of the
algorithm, each region (non-watershed) pixel is thus given a label
in the range [1, n_basins]. To prevent a point site from being
processed twice, processed point sites are marked in a binary
image having the same structure as the input and output image
(lines 22–24).

The hierarchical queue is initialized with site sets adjacent to
regional minima with a priority inversely proportional to their
level (lines 28–36). The queue is then processed until it gets empty.
Point sites are extracted one by one starting with the one having
the lowest level or highest priority (line 38). The neighborhood of
this site set is then explored to determine if it belongs to a basin
(lines 42–53). If so, the corresponding pixel is given the label of
that basin in the output image, and neighboring point sites no
yet processed are added to the hierarchical queue (lines 54–62).
The image returned by the algorithm is label map where each
pixel of the same region are assigned a common positive label,
while watershed pixels are denoted by the label 0.

The implementation proposed in Algorithm 5.1 shows to im-
plementation detail bound to the type of the input image. It
can therefore be used with a variety of data structures, as long
as their values are scalar and are totally ordered. Likewise, the
connectivity of the regions is not fixed, and can be freely chosen
thanks to the second argument of the watershed::flooding rou-
tine. Finally, the last argument is not an input, but an output:
n_basins is assigned the number of regions of the segmentation
during the execution of the algorithm.

1 For simplification purpose, the name “pixel” is used in this description of the
watershed transform. A more appropriate term, not limited to 2D regular
images, would be “image element”, composed of a point site and the associated
value.
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Figure 7: A Generic Morphological Segmentation Chain.

Algorithm 5.2: Implementation of a Generic Morphological Seg-
mentation Chain.

template <typename L, typename I, typename N>
mln_ch_value(I, L)
chain(const I& ima , const N& nbh , int l, L& nb)
{

mln_concrete(I) c = closing ::area(ima , nbh , l);
return watershed :: flooding(c, nbh , nb);

}

5.1.1 Generic Morphological Segmentation Chain

To illustrate the previous algorithm, we present a simple generic
IP processing chain performing a segmentation and composed
of two operators, shown on Figure 7 [48]. From an image ima,
this chain compute an area closing c using criterion value lambda;
then, it performs a watershed transform by flooding on c to
obtain a segmentation s. A generic implementation of this chain
is given by Figure 7.

The watershed transform often produces “over-segmented”
results. As the number of regions is the same as the number of
regional (local) minima, it is very sensitive to the local extrema
produces by noise. The area closing step is used as an “extrema
killer”: it flattens small valley component that have an area
smaller than the parameter l. The resulting segmentation thus
contains a smaller number of regions.

We have applied this segmentation chain on different images
ima. All of the following illustrations use the exact same Milena
code shown in 5.2

Regular 2-Dimensional Image

In the example of Figure 8, we have first computed a morpho-
logical gradient used as an input for the processing chain. A
4-connected window is used to compute both this gradient image
and the output (Figure 8c), where basins have been labeled with
random colors.



5.1 a generic watershed transform implementation 147

(a) Input.

(b) Morphological gradient of (a).

(c) Result of the segmentation on (b).

Figure 8: Results of the segmentation chain from Algorithm 5.2
on a regular 2D image.
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Vertex-Valued Graph-Based Image

Figure 9 shows an example of planar graph-based [90] gray-
level image, from which a gradient is computed using the vertex
adjacency as neighboring relation. The result shows four basins
separated by a watershed line on pixels.

Edge-Valued Graph-Based Image

The example shown in Figure 10 is also based on a graph, but
where values are stored on edges instead of vertices. The graph
is built from the triangulation of a set of points in a 2D space.
The value assigned to each edge is its length. Therefore regional
minima on Figure 10b correspond to shortest edges. The resulting
segmentation Figure 10c can be interpreted as a clustering of
the initial data set. This approach can be generalized to any
n-dimensional, showing that an image segmentation algorithm
such as the watershed transform can also be used as a data
mining tool.

Simplicial Complex-Based Image

In this last example, a triangular mesh is viewed as a cell 2-
complex, composed of triangles, edges and vertices (Figure 11a).
From this image, we can compute maximum curvature values on
each triangle of the complex, and compute an average curvature
on its edges. Finally, a watershed cut [17] on edges is computed,
and basins are propagated to adjacent triangles and vertices for
visualization purpose (Figure 11c).
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(a) Input.

(b) Morphological gradient of (a).

(c) Result of the segmentation on (b).

Figure 9: Results of the segmentation chain from Algorithm 5.2
on a Vertex-Valued Graph-Based Image.
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(a) Vertices of a graph.

(b) Graph obtained by the triangulation
of (a), the edges of which are valued
with the length.

(c) Result of the segmentation on (b).

Figure 10: Results of the segmentation chain from Algorithm 5.2
on an Edge-Valued Graph-Based Image.
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(a) Triangular mesh surface seen as a cell
complex-based image and used as in-
put.

(b) Maximum surface curvature com-
puted on the edges of (a).

(c) Result of the segmentation on (b) (ex-
tended to triangles).

Figure 11: Results of the segmentation chain from Algorithm 5.2
on a Cell Complex-Based Image.





6
C O N C L U S I O N S

This last part summarizes the contributions of this thesis. We
present some reflexions on the ideas presented in this work.
Finally we propose perspectives for future research works.

6.1 contributions

This thesis proposes an approach to design and build IP soft-
ware in a generic manner, in order to create a reusable software.
We illustrated our point with examples coming from the Olena
platform and especially from the Milena library.

6.1.1 A Programming Paradigm for Scientific Computing

The first steps towards a generic architecture are exposed in the
first two chapters, which detailed the design and implementa-
tion framework of our proposal. Chapter 2 contains a general
presentation of the GP paradigm, and why we think it is an
ideal context to develop reusable and efficient software. In the
language chosen to implement our solution, C++, GP is realized
through the template keyword. Templates incidentally enable
another programming paradigm useful in the context of efficient
scientific software, static metaprogramming. This technique con-
sists in diverting templates to use them as a new language within
C++ to express compile-time programs (or “metaprograms”) “ex-
ecuted” by the compiler. Static metaprogramming applications
include the computation of values at compile-time, additional
user-defined verifications performed by the compiler (static as-
sertions) and functions on types, all of which are later effectively
used in the Milena library.

Chapter 3 contains a definition of a new programming paradigm,
SCOOP, mixing the benefits of GP and OOP: high-level program-
ming based on abstractions, orthogonal development of data
structures and algorithms, and preservation of efficiency. The
SCOOP approach also encourages designers to describe character-
istics of data structures belonging to a given abstraction as static
properties. Thanks to metaprogramming, algorithms can query
the properties of their inputs’ types at compile-time in order to
express a static precondition or to select an alternative imple-
mentation that is known to perform better for a types satisfying
certain properties.

153
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We also presented a strategy enabled by SCOOP to create
lightweight transformations of data such as images or values,
called morphers. Morphers are especially useful to change the
behavior of an algorithm “externally”, by applying a transfor-
mation to their input, with no modification of the data structure
or the algorithm. Morphers are not specific to a data type in
particular, and are therefore orthogonal to them, thus increasing
the reusability and the expressive power of the framework.

These qualities makes SCOOP a framework really suited to
scientific computing and to IP in particular. The paradigm pre-
sented in this thesis is a simplified version of a previous version
proposal [34], which is itself based on a first version [13] used in
previous releases of the Olena project [28].

6.1.2 An Architecture for Generic Image Processing Proposal

Chapter 4 proposes an architecture for generic IP centered on a
generic core library. We advocated an orthogonal decomposition
of IP software in data (image) structures, values and algorithms,
so as to minimize redundancy and maximize reusability. We
showed that GP is a good choice to organize this software de-
composition. We also justified our choice of SCOOP and C++ to
implement our generic core library, because of the available fea-
tures (compile-time checking, zero run-time overhead, concept-
and property-based polymorphisms, morphers) and for practical
reasons.

We then introduced a set of IP-related abstractions called con-
cepts, representing essential notions of the domain, starting with
a very general definition of an “image”. Concrete entities con-
forming to these concepts, called models, collaborate through
the GP notion of associated types, thus exhibiting a first aspect
of software decomposition and separation of concerns. More
generally, our proposal provides four orthogonal axes regarding
the application of generic image processing algorithms:

• the data (image) structure axis,

• the value type axis,

• the algorithm,

• and the morpher axis (axes), as one morpher of more may
be applied to an image before being processed.

Given a data structure, a value type, an algorithm and a (possibly
empty) sequence of morphers, one may easily create new use
cases by changing one of these elements without touching the
others.

We also presented existing generic IP frameworks and com-
pared our approach to them.
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6.1.3 Design and Use of Non-Classical Data in Image Processing

Several actual data structures are also presented in Chapter 4.
As long as they respect the requirements of an algorithm, the
examples shown are compatible with a single generic definition
of this one, therefore demonstrating the sustainability of our
design. These data structures include less common entities such
as vertex- and edge-valued graphs and cell complexes. Chapter 5

showed examples of applications for these various data types.
Our experience has shown that thanks to the generic design of

the framework, it is possible to integrate new image-related data
structures in a relatively fast and easy way—including collabo-
rating types such as iterators and windows—and such that these
new data types are compatible with existing algorithms.

6.1.4 Addressing Efficiency Issues using Generic Optimizations

We also proposed a non-specific approach to implement fast vari-
ants of existing algorithms for input types having interesting
properties. For such an optimized routine, instead of targeting
an image type in particular, this strategy circumscribes the set of
valid input types by enumerating the required properties, thus
allowing a whole subset of the input types compatible with the
initial generic implementation. This notion of generic optimiza-
tion adds to the reusability of the framework.

Moreover, data types’ properties enable an automatic selection
mechanism of the best estimated variant at compile-time, called
property-based overloading. The selection algorithm is written
as a static dispatch mechanism.

6.1.5 Software Contributions

The ideas presented here have been implemented in the Olena
platform, and in particular in Milena, its core library. We can
consider Olena as a software contribution demonstrating the
practicability of the approach presented in this thesis. Olena
version 1.0 has been released during the work of this thesis in
2009 and continues to be developed. This thesis presents some
of the important design features of this particular version of the
project, that was started more than ten years ago.

Milena has served as a basis to achieve several tasks. In particu-
lar, the library has been used to implement various segmentation,
registration, and evaluation methods in the context of a joint ef-
fort with the Institut Gustave-Roussy. We have also experimented
the segmentation and skeletonization of digital models of stat-
ues, represented as triangular meshes with existing mathematical
morphology and discrete geometry tools (watershed transform,
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connected filters, homotopic thinnings). A module dedicated
to Document Image Analysis (DIA) based on Milena has been
recently developed within the Olena platform during the SCRIBO
project [47], and will be packaged with the next release of the
platform.

Olena is developed following open source principles. The
whole source code changes are available on the Web, as well
as development tools (problem reports, documentation, mailing
lists, etc.). The platform is distributed as Free Software under
the GNU General Public License (GNU GPL). We believe Free
Software is a good strategy to deliver reproducible research re-
sults. In addition to providing the source code of the platform,
we also gradually include algorithms and examples used in the
publications related to the project into the code base, so that
readers may themselves reproduce the results of the papers.

6.2 reflexions

The programming idioms proposed in this thesis and imple-
mented in Milena—such as inheritance-based concept checking;
point-like iterators targeting a domain, window or neighborhood;
morpher-based control of algorithm behavior; or property-based
algorithm selection—somehow constitute a new “language” for
IP hosted by C++. The eventuality of designing a whole new lan-
guage for IP has been brought up several times during the design
and implementation of the Olena project. The main motivation to
create a DSL to implement the ideas of the generic IP framework
proposed in this thesis was to provide a better and simpler tool
to users. Although it is a powerful and efficient language, C++

is also complex and not as user-friendly as other popular lan-
guages such as Java, C#, Python, Ruby or languages of the ML
family. Its syntax, based on C’s, not only inherits the difficult
idiosyncrasies of its ancestor but also adds its own constructs
often characterized by lengthy statements.

However, we believe like Stroustrup that the cost of designing,
implementing and maintaining a new programming language
to address a specific need is almost always too high in compar-
ison to the benefits brought by this language [74]. A library
written in a widespread general-purpose language is a much
more affordable and effective solution to provide domain-specific
elements to the programmer. In the same spirit Veldhuizen
and Dennis also propose the concept of active libraries [88] as
an alternative to language extensions, DSLs and object-oriented
solution that are hard to optimize. Active libraries provide an
abstraction-based design along with the means to optimize them.
They are based on techniques such as component generation (e.g.
through GP), reflection and meta-level processing, run-time code
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generation, partial evaluation, multilevel languages or extensi-
ble programming tools. Examples of such libraries include the
Blitz++ generic array library [85], the POOMA parallel physics
library [45], the Matrix Template Library (MTL) [70] and the
FFTW (Fastest Fourier Transform in the West) library [30]. By its
design, Milena can also be considered as an active library.

Instead of designing and implementing a complete DSL dedi-
cated to Milena, including a whole language tool set (compiler,
debugger, profiler, libraries, etc.), several paths have been con-
sidered to provide an alternative syntax to the C++ library. This
approach is also recommended by Stroustrup [74]. Participants to
the project proposed several solutions. A first approach was to ex-
tend the C++ language with new constructs implementing Milena
idioms, such as concept definition, concept checking, GCRTP con-
structs, property-based dispatch algorithms and more generally
all static metaprogramming constructs which suffers from an un-
friendly and verbose syntax. This language extension would thus
provide syntactic sugar for the most complex parts of the frame-
work. This proposal was not based on the modification of an
existing C++ compiler but on a program transformation strategy.
An extended C++ program would be processed by a front-end
program performing lexical and syntactic analyses (scanning and
parsing), building an annotated Abstract Syntax Tree (AST) rep-
resenting the input program, rewriting this tree by translating
elements part of the extension into standard C++ constructs, and
finally turning this new AST into a program using the concrete
syntax of standard C++. Annotations of the initial AST would
serve to recreate a layout of the code as close as possible to the in-
put’s. This effort was conducted within the Transformers project
[53, 9, 21], based on the Stratego/XT program transformation
platform [11]. Alas, because of remaining complex issues regard-
ing C++ syntax disambiguation, the project has not been able to
handle this C++ extension proposal yet. Other attempts to pro-
vide a more user-friendly syntax for Milena included a prototype
front-end written in Ruby, and a small language dedicated to
SCOOP-based libraries, called SCOOL (Static C++ Object-Oriented
Language). This last proposal used similar ideas to the Transform-
ers project: the SCOOL compiler, implemented in the Stratego
language, was actually a front end transforming its input into
equivalent C++ programs.

The future ISO C++ standard expected in 2011 also contains
many interesting additions addressing language issues arising
in Milena. To name a few: a new meaning for the auto keyword
providing simple type inference that will replace long types in
templates (already shortened in Milena with the use of macros);
r-value references solving the issue of non-const temporary vari-
able passed as arguments, lambda expressions providing anony-
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mous functions in a more concise manner than functors; inherited
constructors factoring redundant parts of class hierarchies; and
template aliases implementing the service of “template typedefs”.

We conclude this section by a remark on a current trend of
rich run-time environments. Scientific software has been tradi-
tionally implemented with compiled language such as Fortran,
C or more recently C++ because of the efficiency of the code they
produce. However, more and more relatively recent languages,
either interpreted (such as Python, Ruby, Tcl, or JavaScript) or
running as bytecode in a virtual machine (Java, C#) are used
to create scientific applications. They handle the issue of ef-
ficiency either by delegating intensive computation tasks to a
third party component (e.g. a Fortran or C library) or by using
powerful techniques enabled by a rich run-time environment (in-
terpreter, virtual machine): run-time introspection and reflection,
Just-In-Time (JIT) compiling and optimization. Even if compiled
languages are still considered the best option to produce efficient
scientific applications, languages with dynamic features might
offer interesting possibilities in the future. The path taken by
Milena does not offer so much run-time services, because effi-
ciency has been considered as a priority. However, we try to
regain some of the flexibility of dynamic languages through our
a dynamic-static “bridge” proposal explained in the next section.

6.3 perspectives

In this last section presents perspectives for the evolution of the
work presented in this thesis and for the Olena project.

6.3.1 A Dynamic-Static Bridge

IP projects centered on a C and C++ library sometimes offer an
additional layer on top of this library to make this core avail-
able outside its originating language. This layer often serves
to expose the library to other programming languages, and in
particular to dynamic languages such as Python, Ruby, Perl or
Tcl; or to encapsulate some of the routines as command line
programs. For example VIGRA, ITK, Morph-M, Yayi and Pink
expose the contents of their core library through a Python inter-
face. ImageMagick, GraphicMagick, ImLib3D and CImg offer an
interactive use through command-line programs. For CImg, this
tool, called G’MIC also serves as a binding for the GIMP (GNU
Image Manipulation Program).

These additional User Interfaces (UIs) enlarge the spectrum
of users and uses cases targeted by their corresponding project.
CLI tools are very convenient to quickly run simple tasks, in
comparison to the work required by the library approach, which
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imposes to write a program (even if ii is a small one), compile it,
and possibly debug it, before actually running it. CLI tools are
also useful to apply the same operation to a list of image files in
a batch processing fashion.

Being able to access a C or C++ library from Python, Ruby, Perl
or other dynamic languages is useful in many ways. Firstly, these
languages often provide an interactive user interface or shell,
which is ideal to discover and experiment a new library. Secondly,
these languages are simpler and more user-friendly than C and
C++. New users can learn their most important features in a
couple of hours and be able to write small programs rapidly.
Understanding and correcting errors in dynamic programs is
also faster and simpler than with compiled languages. Thirdly,
these languages offer many ready-to-use libraries. The SciPy
initiative shows for example an effort to bring a scientific stack to
the Python language to create a scientific environment competing
with products such as MATLAB. Finally, dynamic languages are
ideal to bring together various software components. In some
use cases, languages such a Python or Ruby can be used only to
provide a flexible “glue” between efficient components written
in C and C++.

Providing such additional UIs requires additional efforts though.
Some projects contain a tool to generate command-line tools or
bindings for a dynamic languages semi-automatically. This mech-
anism is usually based on two components: a description of the
elements (routines, classes) of the core library to be “wrapped”
into an new interface, and interface generator. Developers of the
library are expected to provide the former, while the latter is a
generic component. For example the IP operators of the ImLib3D
library are accompanied by XML descriptions that are used to
generate the corresponding command line tools [10, Appendix B].
CImg also has its own mechanism, G’MIC, to present algorithms
to the CLI. But most projects usually depend on a third party
generator. For instance VIGRA, Morph-M, Yayi and Pink use
the Boost.Python library to generate Python bindings, while ITK
uses the Simplified Wrapper and Interface Generator (SWIG).
The approach chosen by SWIG is interesting, as it proposes to
directly use C or C++ header files as a description of the code to be
wrapped, while other systems (including Boost.Python) requires
this description to be manually written. Another advantage of
SWIG is that it can target many languages, including Python,
Ruby, Perl, PHP, Java, C#, Tcl, Objective Caml, R and Octave, D
and Go.

Nevertheless, in the context of generic code based on C++ tem-
plates, the wrapping techniques listed previously are limited.
Indeed tools such Boost.Python or SWIG depend on compiled
code. The glue code they generate is a thin layer delegating the
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Figure 12: Overview of the Olena Platform

actual work to elements of the core C or C++ library. Therefore,
they expect to find this library as a (set of) compiled entitie(s)1.
However we have seen in Section 2.1.4 (p. 32) that C++ generic
libraries are only composed of non-compiled code, as they are
made of (non instantiated) template classes and functions, thus
preventing a classic wrapping process such as the one performed
by Boost.Python or SWIG to be used as-is.

A technique that is usually used to nevertheless wrap generic
libraries is to manually instantiate the templates with a chosen set
of effective parameters and compile them, and to then wrap these
explicit instantiations in a traditional way. In other words, the
library is specialized once and for all for all the use cases deemed
useful. Although this approach does not raise technical difficul-
ties, it suffers from an important limitation: the obtained code
is no longer generic. The set of data structures and algorithms
available in the generated Python interface is indeed limited to
the template specializations instantiated explicitly beforehand.
Despite this limitation, the Olena project has provided some
Python2 and Ruby3 bindings using this paradigm of instantiated
genericity. This approach is depicted on the left part of Figure 12.

To overcome these limitations, we propose another solution
based on a small component, not depending on the target lan-
guage, and providing the service of a dynamic-static bridge. This

1 Depending on the platform, these compiled libraries bear a file name extension
such as ‘.a’, ‘.so’, ‘.lib’, ‘.dll’, ‘.dylib’.

2 Since Olena 0.7.
3 Since Olena 1.0.
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possibility has been mentioned since the early days of the Olena
project [25]. The idea of this component is to create a very gen-
eral interface on top of a generic library, showing only opaque
data types such as var, function, method, ctor representing re-
spectively a variable, a function, a method and a constructor.
These high-level abstract elements are compiled in a library. At
run-time, these types can be instantiated and used as a proxies
representing an actual entity. The power of the dynamic-static
bridge is that the underlying actual object can be a pointer to
an entity of a type that does not exist yet. In this case, the sys-
tem simply tries to create the type on-the-fly at run time. This
operation requires both the name of the entity and the location
of its definition so that an interface code may be later created,
instantiated, compiled and dynamically loaded into the current
program. These two pieces of information are passed as character
strings.

For instance, let us consider the following template routine
from Milena, located in the ‘mln/data/fill.hh’ header of the
library:

template <typename I, typename D>
void fill(Image <I>& ima , const D& data);

This template can be represented by an object fill of type fun
in our dynamic-static bridge with the following two instructions.

include( " mln/data/ f i l l . hh " );
fun fill( " mln : : data : : f i l l " );

Note that include is a routine that has nothing to do with the
#include C++ preprocessor directive. So far, these statements
only declared the existence of the template mln::data::fill; no
code has been instantiated nor compiled, since mln::data::fill
is not a valid function name, as it is not fully specialized (see
Section 2.2.3, p. 36). Constructors of data structures may also
be declared to the system similarly, this time as instances of the
ctor type.

include( " mln/ core /image/image2d . hh " );
ctor mk_image2d_int( " mln : : image2d< i n t > " );

The previous lines create an mk_image2d_int representing the
construction of an instance of the 2D integer image type mln::image2d<int>.
Here also, no code is instantiated nor compiled. mk_image2d_int
is a functor (see 2.2.3, p. 42), containing generic operator() meth-
ods for any number of arguments of any type. Invoking such an
operator triggers the wrapping process:

var ima = mk_image2d_int (3, 3);

The previous lines execute the following actions:
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1. A small C++ function containing a call to the constructor
with the arguments passed to mk_image2d_int
(mln::image2d<int>::image2d(int, int)) is created.

2. This function is compiled using a Just-In-Time (JIT) compil-
ing mechanism, thus automatically instantiating the
mln::image2d<I> template class with the effective param-
eter I = int, as well as the constructor mentioned previ-
ously.

3. A small dynamic module4 is created for this compiled
function.

4. The above module is loaded dynamically into the program
currently running, and the address of the function created
in step 1 is stored as a pointer into an attribute of the proxy
(mk_image2d_int object).

5. The proxy calls the underlying freshly loaded function by
using the previous pointer, and passes the arguments it has
received through the initial call of its operator() (here, the
two integers 3, 3).

6. The value returned by the previous call is then passed to
the constructor of the ima object of type var. ima is also a
proxy, but this time for a variable. Its constructor stores the
values passed as argument in an attribute.

If during this process any error occurs, it is reported as an excep-
tion.

The previous example illustrates the philosophy of the dynamic-
static bridge. The top-level (dynamic) layer, delimited by the
“visible” code shown in the example only manipulates abstract
and opaque objects (instances of var, ctor, fun, etc.), and is there-
fore very simple. For instance, no template code is visible5. This
interface can be used to simplify the manipulation of a template li-
brary, and may be wrapped by a classic tool such as Boost.Python
or SWIG. The bottom-level (static) layer comprises the “hidden”
code produced as a side effect of the execution of the top-level
layer. Here, it includes the instantiated and compiled constructor
of mln::image2d<int> as well as the actual image object built by
the call to this constructor and stored in the proxy object var.

Despite the actual types of the manipulated data are hidden in
the bottom-level layer of the system, the proxy objects can interact
at the upper level and delegate the actual actions to the actual

4 A dynamic module is similar to a dynamic or shared library on most modern
platforms.

5 With the exception of the instantiated type mln::image2d<int> mentioned in a
character string.
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functions and objects in the lower level. Consider for instance the
following statement:

fill(ima , 0);

The previous line instantiates the mln::data::fill<I, D> rou-
tine “contained” in the proxy object fill with the effective pa-
rameters I = mln::image2d<int> and D = int, respectively con-
veyed by the first and the second arguments passed to fill’s
operator(). The routine is then compiled and run, taking as ar-
gument the image object stored in the proxy ima and the integer
value 0.

It is interesting to note that the dynamic-static bridge presented
here shares some similarity with Object-Oriented Programming
(OOP)6: the code is manipulated through abstractions (expressed
as abstract classes in OOP) and the actual execution is delegated
to hidden implementations (expressed as concrete subclasses
in oop). Both mechanisms are dynamic: they do not require
an “explicit” compiling step to handle new cases, contrary to
GP (see Section 2.5.2, p. 62). Thus, the dynamic-static bridge
solution is more flexible than solely GP. For instance it can be
wrapped like any classic compiled library to produce Python
bindings or be linked into a third-party visual programming GUI.
From the performance point of view, the dynamic-static bridge
induces some run-time penalties caused by the JIT generation,
instantiation, compilation and dynamic loading of code, as well
as dynamic type conversions. However, most of these costs can
be amortized by the use of a cache mechanism. Once a particular
instantiation of a generic type or algorithm has been used, this
penalty becomes negligible.

We have implemented a prototype based on these ideas in the
Olena platform, based on a previous work by Nicolas Pouillard
and Damien Thivolle. We have been able to use this component
to create truly generic SWIG Python bindings on top of Milena,
preserving the genericity of the library while preserving most of
its performances. This strategy is represented on the right-hand
part of Figure 12.

The two paradigms used in this case, SCOOP and the dynamic-
static bridge, show an interesting characteristic of the Olena
platform:

• On the one hand static metaprogramming is used within
SCOOP to perform computations at compile time, includ-
ing manipulations of types, therefore executing programs at
compile-time.

6 Besides, let us note that this dynamic-static bridge is implemented using OOP
(and gp).
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• On the other hand, the dynamic-static bridge uses JIT com-
piling techniques to use template code at run-time, thus
compiling programs at run-time.

This approach demonstrates unusual but effective uses of the C++

language. In a sense, this combination shares some traits with
dynamic solutions mentioned at the end of Section 6.2.

Evolutions and improvements of this dynamic-static bridge
prototype include the study of compiling toolkits such as LLVM
to replace our current solution using an ad hoc JIT compiling
component based on the g++ (GCC) compiler.

Furthermore we mentioned in Section 4.3 (p. 116) that develop-
ments conducted with high-level tools (e.g. through the Python
interface of Milena) that have matured should at some point be
reimplemented in lower-level tools (Milena). This effort would
improve their genericity, efficiency and reusability. An algorithm
written in Python and reimplemented in C++ could thus be made
available to other high-level interfaces, such as a Perl or Ruby
interpreter. However, this work has to be done by hand cur-
rently. Automating or semi-automating this translation would
improve the cooperation between users of high-level interfaces
and maintainers of the lower-level core library.

6.3.2 A New Implementation Language?

We have explained our choice of the C++ programming language
in Section 4.2.2 (p. 113). It is however interesting to consider other
languages to host Milena and an implementation of the SCOOP
paradigm. So far, we have looked at the following languages.

d The D programming language [3] can be described as a cleanly
designed successor to C++. It shares many traits with its par-
ent: general-purpose compiled language targeting efficient
code generation, multiple paradigm programming (proce-
dural programming, OOP, GP, Functional Programming
(FP), metaprogramming), C-style syntax. The syntax and
semantics of D are however much simpler than in C++.

D would be a interesting candidate for a possible reimple-
mentation of Olena. SCOOP could probably we adapted
for this language, since we have been able to implement
the GCRTP idiom (see Section 3.2, p. 74) in D. However,
the language does not feature multiple inheritance of (im-
plementation) classes, which is used in several places in
Milena.

haskell Among the languages supporting the GP paradigm,
Haskell stands as one of the best candidates [32]. Haskell
is a compiled general-purpose, purely functional language
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with strong static typing and using lazy evaluation. Because
it is not an imperative nor an object-oriented language, it
would probably be difficult to directly adapt the ideas pre-
sented in this thesis to Haskell. However, some notions have
almost equivalent constructs in that language. For exam-
ple, concepts can be transposed into type classes, imposing
constraints on their instances (models).

None of these languages can compete with C++ regarding gen-
eral qualities such as its widespread ability, the fact that is taught
is many CS curricula, and the large amount of libraries, tools and
documentation for this language. Moreover, and despite their
advantages, we do not know yet whether the architecture that
we propose can be transposed in any of them. Whether these
languages actually feature all the properties required by our ap-
proach is unknown to this day, and would require a thorough
experimentation.

6.3.3 Parallel Computing

Another research direction to extend our work is related to the
integration of parallel computing into our framework. Parallel
programming is becoming more an more important these days,
because CPUs have reached physical limits preventing a continu-
ous increase in clock frequencies at a reasonable cost. Progresses
in sequential computing offered by a single processing unit are
thus being held back. For this reason processor manufacturers
have developed during the past years products containing two or
more independent processing units. These multi-core CPUs make
up for the majority of computer processors nowadays.

Harnessing this increased “horizontal” computing power is
however not automatic nor easy. Parallel computing is a program-
ming paradigm often requiring a complete redesign of algorithms,
programs and libraries to bring substantial gains. Various initia-
tives such as OpenCL or the Intel Threading Building Blocks have
been proposed to simplify the development of parallel programs.

In our case, the main difficulty is to accommodate parallel
programming idioms with a generic design. This problem shares
some similarities with the generic optimization issue presented
in Section 4.6.3, where instead of defining a specific solution to
address performance problems, the proposed strategy covers a
whole subset of use cases. We should tackle the issue of parallel
programming integration in the same way, so as to preserve
the orthogonality of obtained algorithms with data structures.
The first step towards this evolution is probably to identify data
structure properties related to parallel processing capabilities,
such as splittable data containers.
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6.3.4 Impact on Image Processing

The purpose of this thesis is mainly related to research in software
design for IP and scientific applications general, as it can be seen
from the conclusions of the previous paragraphs. However, the
work presented here also open perspectives in the field of IP as
well.

Firstly, the notion of algorithm canvas (or algorithm pattern)
is a powerful paradigm to create meta-algorithms. Generic algo-
rithms ensure a reusability of methods across data types. Can-
vases however, which are encouraged by GP, are much more
powerful. They express a whole class of algorithms sharing a
common structure. For instance, many mathematical morphology
operators share a common pattern based on the traversal of an
image combined with the browsing of a sliding window (struc-
turing element) and can be implemented as a canvas. Benefits
include easier experimentation and addition of new algorithms
featuring a similar structure as well as factored optimization
efforts.

Secondly, the IP abstractions proposed in this thesis in order to
formalize entities of the domain have been defined in an empirical
fashion. We should refine this proposal to define these entities
more formally, by identifying their properties carefully. This
typology would primarily benefit the framework we propose,
but also other software projects interested in a formal design of
image-related concepts.

We are also interested in the production of a catalog of IP data
types and algorithms, in the context of an improved algorithmic
study disconnected from any implementation framework. Such
a work is often remotely related to implementation concerns, as
data structures and algorithms are expressed in different ways:
in the former case, a general description is expected, while in the
later situation, software and hardware constraints usually dictate
the form of the expression. In GP however, the representation of
algorithms, and to lesser extent, of data types, is close to abstract
definitions found in textbooks or catalogs.

Our final point of view pertains to transverse explorations
made possible by a generic design. We believe that our approach
simplifies the transposition of a technique initially proposed in a
given context to another situation, such as another application
domain or other data types. Highlighting relevant examples of
such transpositions from and for real applications would add
value to the reusable software strategy.
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