
Theoretical Computer Science 328 (2004) 77–96
www.elsevier.com/locate/tcs

Introducing VAUCANSON

Sylvain Lombardya, Yann Régis-Gianasb, Jacques Sakarovitchc,∗
aLIAFA, Université Paris 7, 2 place Jussieu, F-75251 Paris, Cedex 05, France

bLRDE, EPITA, 14-16 rue Voltaire, F-94276 Le Kremlin-Bicêtre Cedex, France
cLTCI, UMR 5141, CNRS / ENST, 46 rue Barrault, F-75634 Paris, Cedex 13, France

Abstract

This paper reports on a new software platform calledVAUCANSONand dedicated to the computation
with automata and transducers. Its main feature is the capacity of dealing with automata whose labels
may belong to various algebraic structures.

The paper successively describes the main features of the VAUCANSON platform, including the
fact that the very rich data structure used to implement automata does not weigh too much on the
performance, shows how VAUCANSON allows to program algorithms on automata in a way which is
very close to the mathematical expression of the algorithm and finally explains the main choices of
the programming design that enable to achieve both genericity and efficiency.
© 2004 Elsevier B.V. All rights reserved.

Keywords:Automata implementation; Automata with multiplicity; Generic programming

0. Introduction

This paper reports on the VAUCANSON1 software platform dedicated to the computation
with automata and transducers.2

∗ Corresponding author.
E-mail addresses:lombardy@liafa.jussieu.fr(S. Lombardy),yann.regis-gianas@lrde.epita.fr

(Y. Régis-Gianas),sakarovitch@enst.fr(J. Sakarovitch).
1The VAUCANSON library can be downloaded from the URL:http://vaucanson.lrde.epita.fr .
2Two of the authors of the paper (S.L. and J.S.) have written a LATEX macro package[14] that had also been

coined VAUCANSON. This name has been changed into VAUCANSON–G in order to avoid confusion.

0304-3975/$ - see front matter © 2004 Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2004.07.007

http://www.elsevier.com/locate/tcs
mailto:lombardy@liafa.jussieu.fr
mailto:yann.regis-gianas@lrde.epita.fr
mailto:sakarovitch@enst.fr
http://vaucanson.lrde.epita.fr

78 S. Lombardy et al. / Theoretical Computer Science 328 (2004) 77–96

A striking feature of automata is the versatility of the concept—a labelled oriented
graph—and its ability to modelize so many different kinds of machines simply by varying
the domain where thelabelsare taken. In the most general setting, these labels arepoly-
nomials(or evenrational seriesindeed) over a monoidM with multiplicity in a semiring
K. “Classical” automata are obtained whenM is a free monoidA∗, when the multiplicity
semiring is the Boolean semiringB and when every label is a letter inA; transducers can
be seen as automata over a monoidA∗ × B∗ with multiplicity in B as well as automata
overA∗ with multiplicity in P(B∗); automata overA∗ with multiplicity in Q may compute
probability of occurrences of words, those with multiplicity in(N,min,+) have been used
in order to represent jobshop problems, etc.

Many systems already exist which manipulate automata and related structures (expres-
sions, grammars, …) but almost all deal with automata the labels of which are letters or
words—with the notable exception of FSM[18] which can compute with transducers and
automata with “numerical” multiplicity.3

The main idea in designing VAUCANSON has been to take advantage of the most recent
techniques in generic programming in order to deal with automata the labels of which may
be freely chosen in any algebraic structure, with the capacity of writing independently (as far
as they are independent) the algorithms on the automata on the one hand and the operations
in the structure on the other hand.

In the brief presentation that follows, we shall first describe some features of the
VAUCANSON platform, including the fact that the very rich data structure used to imple-
ment automata does not weigh too much on the performance. In the second part, we show
how the functions implemented in VAUCANSON make it possible to program algorithms on
automata in a way which is very close to the mathematical expression of the algorithm. The
third part explains the main choices of the programming design of the platform that enable
to achieve both genericity and efficiency.

1. Glimpses of the library

The purpose of this paper is not to be a user manual of VAUCANSON and even not to list
all its functionalities. We give here only few hints on what is to be found in the library and
on the way these functions have to be called in programmes. It will serve as an introduction
to the design of VAUCANSON.

1.1. Description of automata

An automaton4 is defined as a 5-uple〈Q,A, �, I, T 〉, whereQ is a finite set ofstates,A
a finite alphabet ofletters, I andT the sets of initial and final states and�:Q×A → P(Q)

the transition function.

3 The FSA system[22] may also compute with such objects but as it is based on Prolog, the description of
algorithms as well as the definition of automata is fairly different from the usage of the automata community.

4 The reader is assumed to be familiar with the basic concepts and notations of automata theory, for which we
essentially follow[10].

S. Lombardy et al. / Theoretical Computer Science 328 (2004) 77–96 79

Let us consider the following family of automataAn on the alphabetA = {a, b, c} :
An = 〈 {0,1, . . . , n − 1}, A, �, {0}, {0} 〉, where the transition function� is defined by

�(0, a) = {1}, �(0, b) = �(0, c) = ∅,

and, for everyi different from 0,

�(i, a) = {i + 1 modn}, �(i, b) = {i}, �(i, c) = {0, i}.

0

1

2

3n-3

n-2

n-1

a

aa

a

a, c

c

cc

c

a

c

b,c

b,c

b,cb,c

b,c

b,c

.

Fig.1gives a possible program for describingAn. Some knowledge about C++ is probably
useful for the understanding of the sequel of this paragraph.
• 1. 1: VAUCANSON provides a number ofclasses, that istypesandmethodsattached to

them, for dealing with objects involved in automata definition and computation. Every
type is designed by a word ending by_t , like automaton_t , hstate_t ,… These
names are actually shortcuts as the types depend on a number of parameters such as the
semiring of multiplicities. They are defined in files such asvaucanson_boolean_
automaton.hh where the types are defined for automata with multiplicity in the
Boolean semiring, that is the classical automata. We shall see in Section3 how a type is
defined in VAUCANSON.

• 1. 2: The functions of the VAUCANSON library are contained in distinct modules. The
usual_algorithms.hh header module allows to import many common functions
such asdeterminize .

• 1. 3: The VAUCANSON library is totally contained in the namespacevcsn . This allows
easier access to the functions of the library in the program.

• 1. 4: Indicates that the types that will be used are those that have been created by the
macros invaucanson_boolean_automaton.hh .

• 1. 10: The classalphabet_t is equipped with the methodinsert that allows to build
the alphabetalpha .

• 1. 12: The automatonan is created as an automaton over the alphabetalpha . At this
stage,an is “created” but is still empty.

• 1. 14: The classautomaton_t is equipped with the methodadd_state to define the
states, …

• 1. 18: …with the methodadd_letter_edge to define the transitions, …

80 S. Lombardy et al. / Theoretical Computer Science 328 (2004) 77–96

1 #include <vaucanson/vaucanson_boolean_automaton.hh>
2 #include <vaucanson/usual_algorithms.hh>
3 using namespace vcsn;
4 using namespace vcsn::boolean_automaton;
5 int main()
6 {
7 int n = 10;
8 /* Definition of the alphabet */
9 alphabet_t alpha;

10 alpha.insert(’a’); alpha.insert(’b’); alpha.insert(’c’);
11 /* Definition of the automaton */
12 automaton_t an= new_automaton(alpha);
13 hstate_t p,x,y;
14 p = an.add_state() ; x = p;
15 for(int i=1;i<n;i++)
16 {
17 y=an.add_state();
18 an.add_letter_edge(x, y, ’a’); an.add_letter_edge(y, y, ’b’);
19 an.add_letter_edge(y, y, ’c’); an.add_letter_edge(y, p, ’c’);
20 x=y;
21 }
22 an.add_letter_edge(x, p, ’a’);
23 an.set_initial(p); an.set_final(p);
24 automaton_t dn= determinize(an);
25 }

Fig. 1. Programming the automatonAn.

• 1. 23: …and with the methodsset_initial andset_final to define the initial
and final states.

• 1. 24: An example of a call of a VAUCANSONfunction over an automaton. The automaton
dn , of the same type asan , is created, and then the determinized automaton ofan is
computed.

1.2. Determinization for benchmarking

The determinization of automata (overA∗) is a basic algorithm found in every system.
It is known that this algorithm may imply a combinatorial explosion and this is the case
for the above example: the determinized automaton of (indeed the minimal deterministic
automaton equivalent to)An has 2n states. We have compared VAUCANSON with two other
systems: AMoRe[16] and FSM[18]. 5

5AMoRe is a software written in C, that allows to manipulate rational languages (given either through an
automaton or a rational expression); it computes, for instance, the syntactic monoid or the minimal automaton of
the language.
FSM is a C library that provides tools to manipulate (Boolean) automata as well as automata with multiplicity or
transducers; these tools are basic commands (minimization, determinization, etc.) that can communicate by files
or pipelines.

S. Lombardy et al. / Theoretical Computer Science 328 (2004) 77–96 81

n 5 7 9 11 13 15 17 19

AMoRE 0.02 0.03 0.13 0.55 2.62 12.0 57.4 ∗
Time(s) FSM 0.01 0.02 0.02 0.05 0.21 1.04 5.74 35.7

VAUCANSON 0.00 0.00 0.01 0.08 0.39 1.89 9.08 43.0

AMoRE 0.6 0.6 0.6 0.6 0.7 2.1 8.1 ∗
Space(MB) FSM 0.01 0.03 0.1 0.4 1.7 7.3 30.5 128

VAUCANSON 0.04 0.1 0.4 1.7 7 29 116 437

Fig. 2. Results for the determinization of theAn.

The determinization of theAn has been run on a Xeon 2.4 Ghz, 256 Ko cache memory,
1 Go RAM. The results of this test are shown in Fig.2.

1.3. A word on data structures and implementation

VAUCANSON default implementation for automata is a graph data structure. The design
mainly focuses on providing fast structural and search operations.

First, the graph data structure is composed of many links between edges and states. Every
state is a four-tuple of lists: two double-linked lists of states representing its successors and
its predecessors, and two double-linked lists of edges representing incoming and outgoing
edges. An edge is a triple formed by the source state, the destination state and a label. The
label can be of any type: letter, polynom, abstract syntax tree denoting rational expression or
user defined. This data structure is very redundant and this explains the quantity of memory
used.

Second, VAUCANSON makes use of the data structure implementations provided by the
C++ standard template library (STL). This allows to concentrate on the specific aspects
of dealing with automata and avoids the error prone work of reimplementing usual data
structures like double-linked lists, extensible arrays or balanced trees.

The efficiency—that is demonstrated in the above benchmark—is achieved not only by
the versatility of the structure but also by a tight control by the VAUCANSON routines of
the organization of this data structure in order to maximize the contiguity of the stored
data in the memory. Thus, states and edges are handled by small integers which are offsets
in one memory chunk. This yields fast graph operations and direct conversion to matrix
representation.

Finally, and thanks to genericity, user-defined data structures closer to the requirements
of a particular application can be transparently substituted.

1.4. Programming the algebraic structures

The definition of an automaton requires the definition of a semiring of multiplicities
(or weights) and a monoid of labels. VAUCANSON allows the definition of any of these
structures—and every generic algorithm can be applied on the resulting automata. A few

82 S. Lombardy et al. / Theoretical Computer Science 328 (2004) 77–96

of them are provided e.g. free monoids over any finite alphabet or product of monoids; this
gives access to transducers that can be considered as automata over a monoidA∗ × B∗.
Some semirings are pre-defined too: the Boolean semiring, the usual numerical semirings
(integers, floating numbers) and min-plus (or max-plus) semirings (for instance(N,min,+)

or (Z,max,+)).
The set of series over a monoid with multiplicity in a semiring is itself a semiring and

can be used as such. For instance,Rat(B∗) (the rational series overB∗ with Boolean
coefficients) is a semiring and automata overA∗ with multiplicity in this semiring are
another representation of transducers.

1.5. From automata to expressions and back

Almost all systems computing with automata implement Kleene’s Theorem, that is
compute a rational (regular) expression equivalent to a given automaton and conversely.
VAUCANSON library implements the so-calledstate elimination method. This method re-
lies (as the other methods indeed) on an ordering of the states of the automaton and the
expression obtained as the result depends on that ordering. A feature of the VAUCANSON

implementation is that the ordering is a parameter of the algorithm and can also be computed
via heuristics.

The transformation of an expression into an automaton has given rise to a very rich
literature.VAUCANSONimplements three methods: the Thompson construction, the standard
automaton of an expression (also calledposition automatonor Glushkov automaton) and
the automaton of derived terms of an expression (also calledpartial derivativesorAntimirov
automaton). For the latter, VAUCANSONimplements the algorithm due to Champarnaud and
Ziadi [4].

1.6. Minimization ofK-automata

In many semirings of multiplicities, it can be hard and sometimes even impossible to
find a smallest automaton that realizes a series.Yet, there exist some local conditions on the
states of an automaton that allow to merge some of them. The result of this process is an
equivalentK-automaton called the minimalK-covering (cf.[21]). This isnot a canonical
automaton of the series realized by theK-automaton. TwoK-automata are bisimulation
equivalent iff they have the same minimalK-covering. This is a generalization of the well-
known Nerode equivalence involved in the minimization of Boolean DFAs (e.g. see[10]).
VAUCANSON provides a generalized version of the Hopcroft algorithm that computes the
minimal K-covering of an automatonA with multiplicity in K.

1.7. Transducer computation

VAUCANSON implements the two central theorems: the evaluation theorem and the com-
position theorem, with algorithms that correspond to the two mains proof methods: the
morphism realization and the representation realization and that are used according to the
type of the transducers (normalized, letter-to-letter, real-time).

S. Lombardy et al. / Theoretical Computer Science 328 (2004) 77–96 83

2. Writing algorithms with VAUCANSON

Another characteristic feature of automata theory, when seen from a mathematical point
of view is that most statements areeffectiveand that proofs are indeedalgorithms—and
in many cases, “good” proofs yield algorithms of “optimal” complexity. An interesting
feature of VAUCANSON is the possibility of writing programs for algorithms on automata in
a language that is as close as possible to the mathematical description of the algorithm. We
illustrate this ability by an example that is not too simple and that we treat completely.

2.1. Construction of the universal automaton

The universal automatonUL of a rational (regular) languageL is an automaton canoni-
cally attached toL. It has been (implicitly) introduced by Conway in[5] in order to solve
some types of language equations. For sake of completeness, we give in Appendix A a brief
account on the definition and the properties ofUL.

The construction (implicitly) given by Conway takes place in the syntactic monoid of
the language. We give here another construction (cf.[12,21]) that does not require the
computation of the syntactic monoid and which is thus more efficient.

Let D = 〈Q,A, �, {i}, T 〉 be a deterministic automaton that acceptsL (for instance, the
minimal automaton ofL); sinceD is deterministic, for every statep and every lettera,
�(p, a) is either the empty set or a singleton. The construction ofUL then goes as follow.
• Compute the co-determinized6 automatonC of the automatonD. Let P be the set of

states ofC. Every element ofP is asubsetof Q.
• Compute the closure under intersection of the familyP . The result is a familyR: every

element ofR is a subset ofQ.
• The universal automaton isUL = 〈R,A, �, J, U〉, where:
J = {X ∈ R | i ∈ X}: X is initial iff it contains the initial state ofD;
U = {X ∈ R | X ⊆ T }: X is final iff every element ofX is final inD;
�(X, a) = {Y ∈ R | ∀p ∈ X, �(p, a)∩Y �= ∅}: there is a transition fromX toY labelled
by a iff for everyelement ofX, there is a transition labelled bya to some element ofY .
This definition of�(X, a) is equivalent to:

�(X, a) =
{ ∅ if ∃p ∈ X, �(p, a) = ∅,

{Y ∈ R | �(X, a) ⊆ Y } otherwise.

This algorithm is written in pseudo-language in Fig.3. It can be translated into aVAUCANSON

function (Fig.4), that is a C++ function written with primitives provided by theVAUCANSON

library. Notice that the variablesJ ,U and�, that represent initial states, final states and tran-
sitions in the pseudo-code, are useless in C++ because they are members of the automaton
object. Opposite to the theoretical definition, these sets are built (both in the pseudo-language
algorithm and in the VAUCANSON program) incrementally.

6An automaton is co-deterministic if its transposed automaton is deterministic; the co-determinized automaton
is obtained by a subset construction, like the determinized automaton.

84 S. Lombardy et al. / Theoretical Computer Science 328 (2004) 77–96

Universal (D = 〈Q,A, �, {i}, T 〉)
C := co-determinized(D)
P := states-of(C) (* ⊆ P(Q)*)
R := intersection-closure(P)
J := ∅ U := ∅
∀X ∈ R, ∀a ∈ A, �(X, a) := ∅

∀ X ∈ R (* ⇔ X state ofU *)
if (i ∈ X) thenJ := J ∪ {X}
if (X ⊆ T) thenU := U ∪ {X}
∀ a ∈ A

if (∀ p ∈ X, �(p, a) �= ∅) then
∀ Y ∈ R

if (�(X, a) ⊆ Y) then
�(X, a) := �(X, a) ∪ Y

returnU = 〈R,A, �, J, U〉

Fig. 3. Construction of the universal automaton: the algorithm.

2.2. Comments on the code

A good understanding of this paragraph may require some knowledge about C++.
• 1. 3: d is an automaton,d.initial() is the set of its initial states (which has one

element, becaused is deterministic).d.initial().begin() is a pointer on the
first element of this set. This pointer is dereferenced by the * and thusi is the initial
state ofd . The variablei is used at line 20 to decide whether a state of the automaton
u is initial.

• 1. 5: It holdsco-determinize(D)=transposed(determinize(transposed(D))).
• 1. 6: Every state ofC is a subset of states ofD. This relation must be made explicit:

this is done withsubset_c_state , which is a map from every state ofc to a sub-
set of states ofd . This map is an optional parameter ofdeterminize . Likewise,
subset_u_state (line 13) is a map from every state ofu to a subset of states ofd .

• 1. 7:pstate_t is a shortcut forstd::set<std::set<hstate_t>> ,c_states
andu_states are thus families of subsets of states ofd .

• 1. 10: Declaration of the variableu and creation of an automaton of the same type as
automatond , cf. Section 3.

• 1. 13: for_all_const is a macro with three parameters, the first one is a type, the
third one is a container of this type and the second one is an iterator that handles the
elements of that container.
This line is equivalent to:
for (pstate_t::const_iterato r s = u_states.begin();

s != u_states.end(); s++)
• 1. 14–17: For every element of the closureu_states , a state is created and the link

between the state and the corresponding subset is stored.
• 1. 18:for_each_state is a macro; the first parameterx is an iterator of states—and

thus a pointer—and the second one is an automaton. This line is equivalent to:
for (state_t::const_iterato r x = u.states().begin();

x != u.states().end(); x++)

S. Lombardy et al. / Theoretical Computer Science 328 (2004) 77–96 85

1 automaton_t universal(const automaton_t& d)
2 {
3 hstate_t i = * d.initial().begin();
4 map_t subset_c_state ;
5 automaton_t t = transpose(d);
6 automaton_t c = transpose(determinize(t , subset_c_state));
7 pstate_t c_states = image(subset_c_state);
8 pstate_t u_states = intersection_closure(c_states);
9

10 automaton_t u(d.set);
11 map_t subset_u_state ;
12
13 for_all_const(pstate_t, s , u_states)
14 {
15 hstate_t new_s = u.add_state();
16 subset_u_state [new_s] = * s ;
17 }
18 for_each_state(x , u)
19 {
20 if (is_element(i , subset_u_state [* x]))
21 u.set_initial(* x);
22 if (is_subset(subset_u_state [* x], d.final()))
23 u.set_final(* x);
24 for_each_letter(a, u.series().monoid().alphabet())
25 {
26 std::set <hstate_t > delta_ret ;
27 bool comp = delta_set(d, delta_ret , subset_u_state [* x], * a);
28 if (comp)
29 for_each_state(y , u)
30 if (is_subset(d_ret , subset_u_state [* y]))
31 u.add_letter_edge(* x , * y , * a);
32 }
33 }
34 return u;
35 }

Fig. 4. Construction of the universal automaton: the VAUCANSON code.

• 1. 20–23: For every state, the property of being initial or terminal is set.
• 1. 24: From the automatonu, one can access to the “series” ofu, and then, to the monoid

on which this series is build, and, at last, to the alphabet.
• 1. 27: The result ofdelta_set is true if and only if, for every elementp of
subset_u_state[* x] , there exists a transition labelled by* a. In this case, the set
of the aims of transitions labelled by* a whose origin is insubset_u_state[* x]
is stored indelta_ret .

• 1. 31: A transition from* x to * y is created, with label*a .

3. Design for genericity

The facilities exposed in the previous sections are not present in the standard C++. The
kernel of VAUCANSON is a software layer that yields an abstraction level powerful enough

86 S. Lombardy et al. / Theoretical Computer Science 328 (2004) 77–96

for genericity. Then polymorphism has been implemented in a way such that this abstraction
level does not spoil efficiency.

This section points out the design issues involved in the development of the VAUCANSON

library and its position confronted with the current known solutions of generic programming.
First, we describe what helps the writing of algorithms in the framework. Then, we explain
how we deal with the usual trade-off between genericity and efficiency.A new Design Pattern
for this purpose is presented and constitutes the contribution in the generic programming
field.

3.1. A unified generic framework

The VAUCANSON kernel consists in a typing system and a object-oriented layer. The
design arguments are given in Section3.2.

3.1.1. TheVAUCANSON typing system
A typing system is meant to forbid the programmer to do invalid operations between

incompatible values. In the object-oriented field, the point is to determine, if it exists,
the most precise method to call w.r.t the types of object instances that receive a particular
message[3]. Therefore, one of the goals of typing is to retrieve the most precise information
about the variables manipulated by the programmer.

The VAUCANSON type system has been designed to manage moreover structures whose
exact type depends on parameters that are known only at run-time. Let us consider for
instance the definition of the scalar product between twon-dimensional vectors. In a static
type system, if the dimension of the vectors is not known at compile-time, the programmer
is forced to relax the input specification using a less precise typevectordenoting any vector.
From then on, the dimension of the vector is implemented as adatanot as apart of the type.
If nothing is provided by the system, the type checking is done manually by the programmer
(or not done). Dependent type systems[23,2]are intended to overcome this defect and carry
dynamic information (i.e. values) into types. By that way, types may depend on computed
values. The VAUCANSON typing system is as an ad hoc implementation of a dependent type
system.

In VAUCANSON, there are three categories of entity: pre-types, types and elements. A
pre-typedenotes a static information, that is a property known at compile-time. Atype
is a pre-type completed with dynamic information, that is values known at run-time. An
elementis a variable whose type is a VAUCANSON type. For instance,vector of integersis a
pre-type,n-dimensional vector of integersis a type, an-tuple of integers is an element of
typen-dimensional vector of integers; free monoidis a pre-type,A∗ is a type (free monoid
over the alphabetA), a sequence of letters ofA is an element of typeA∗.

A very important feature of VAUCANSON typing system is that an element is not charac-
terized only by its VAUCANSON type but also by the way it is implemented.

Section3.1.2describes how these different entities are emulated in C++. Sections3.1.3
and3.2 show how to take benefit of this type system to enhance genericity and algorithm
input specification. Sections3.1.4and3.1.5discuss the implementation design.

S. Lombardy et al. / Theoretical Computer Science 328 (2004) 77–96 87

VAUCANSON C++ Examples

Pre-types Classes FreeMonoid, Matrix

Types Pre-types instances.
FreeMonoid Astar(A);
Matrix matrix2(2);

Elements (s, t),
Type : s
Value : t

Element<FreeMonoid, string> w(Astar);
Element<Matrix, int**> m(matrix2);

Fig. 5. The VAUCANSON type system.

3.1.2. Embedding in C++
As Pascal or C, C++ has a static type system. This means that types are not directly

accessible at run-time. The specification of types during evaluation is made possible by
using some C++-variables. VAUCANSON provides a specific hierarchy of C++-classes for
that purpose; these classes are the VAUCANSON pre-types. A C++-variable of such class
when instantiated at run-time by some dynamic information becomes a VAUCANSON type.
This is summarized in the first two lines of Fig.5.

The last line shows the two components that characterize a VAUCANSON elementx .
The C++-type ofx is an instance ofthe parametrized classElement ; the parameters
are the static information on the elementx , that is on one hand the VAUCANSON pre-type
and on the other hand the C++-type of its implementation. The instantiation ofx requires
as a constructor parameter the value of the C++-variable that represent the VAUCANSON

type of x .
Concretely, the programmer has to declare a C++ instance of a pre-type, to complete it

with a dynamic value if necessary so as to obtain a type. It is then possible to declare some
variables over this type. For instance, a natural declaration of two wordsw1 andw2 over
the alphabet{a, b} is:

“let A be the alphabet{a, b} and letw1, w2 be two elements of typeA� ”.
This statement becomes the following VAUCANSON program which defines two words of

the free monoid over the alphabet{a, b} implemented in two different ways:

// The variable ’A’ is a value denoting {a, b}.
alphabet_t A;
A.insert(’a’); A.insert(’b’);
// The variable Astar is a Vaucanson type denoting {a,b}*.
// FreeMonoid is a pre-type which must be
// completed by an alphabet value.
FreeMonoid Astar(A);
// The variables w_1 and w_2 are of Vaucanson type Astar.
// Their C++-type is the class Element instantiated with
// the FreeMonoid pre-type and two different implementations.
Element<FreeMonoid, std::string> w_1(Astar);
Element<FreeMonoid, const char*> w_2(Astar);

Once the variablesw_1 and w_2 are declared, they can take a value; it can be
noticed that there is an implicit conversion of a value of typeT into anElement whose

88 S. Lombardy et al. / Theoretical Computer Science 328 (2004) 77–96

implementation type isT .

w_1 = "aa"; w_2 = "ab";
// The two variables have the same type: they can be
// compared.
return w1 == w2;

3.1.3. Writing generic algorithms within this framework
Given a VAUCANSON types , an element of types has a well-defined interface whatever

its implementation: this is the basis of genericity. Therefore, an algorithm can mix elements
implemented by different ways transparently, just by specifying that the implementations
can be different. For instance, a generic algorithm which computes the product of two
automata could be prototyped by:

template <class T1, class T2>
Element<Automata, T1>
product(Element<Automata, T1>, Element<Automata, T2>);

Besides, the implementation parameter allows a choice between different algorithm versions
depending on the underlying data structure. For example, an element of series can be
implemented as a rational expression (i.e. a tree) or, if its support is finite, as a finite map.
The constant term is computed differently according to the chosen implementation. More
subtle specifications can be done and are described in Section3.2.2.

3.1.4. Implementation definition
The data structure benefits are application dependant (from a time or space complexity

point of view) and their choices should be done independantly from the algorithm that is
used. Even if some algorithms may bespecializedto take account of a particular feature of
a data structure (see Section3.2.2), general algorithms are written using general interfaces.
This policy of encapsulation induces the reusability of code.

In VAUCANSON, an implementation is adapted to the VAUCANSON type requirements
using binding operators. For example, the adaptation of the C++ integer type as an element
of the (Z,max,+) semiring consists in the definition of the binding operatorsop_add ,
op_mul , op_identity andop_zero . Most of the binding operators provide default
behaviour based on assumption about implementation. Then, sometimes, the adaptation of
an implementation can be done without any binding code, for instance, to define the semiring
(Z,+,×) implemented by C++ integers. Thanks to binding operators, implementation
are not necessarily C++ classes. They can be C++builtins or C structures from foreign
libraries.

3.1.5. Object oriented layer
The previous sections have described the kernel of VAUCANSON. To simplify the basic

usage of the library, a layer composed of shortcuts for object construction is provided.
Moreover, the richness of the object services is as important as the generality of the type

S. Lombardy et al. / Theoretical Computer Science 328 (2004) 77–96 89

system to make the writing of algorithm easier. We illustrate what we call a “rich” service
by describing how the� function is declared in VAUCANSON.

As emphasized in[11], the � function (the successor function) is a crucial primitive
because it is a general mechanism with a real algorithmic effect and which depends both on
the implementation and on the VAUCANSONtype. The� function must act as a glue between
algorithms and data structures conveying only necessary information. Indeed, too rich a�
can lead to inefficiency whereas too poor a� implies clumsy use. As a consequence, the
VAUCANSON library provides a large variety of� functions depending on algorithm needs.

First,� functions allow to handle either states (successors or predecessors) or transitions
(outgoing or incoming ones).
Second, it is possible to choose the way the result is stored: containers, output iterator or
read-only access begin/end iterator couple.
Finally, a criterion can be given to describe which outgoing (or incoming) transitions have
to be considered: for instance, every outgoing transition, transitions labelled by a given
letter, or any user condition.

// Store the output edges of ’s’ w.r.t the letter ’a’ in
// the list ’l’.
a.letter_deldac(l, s, ’a’, delta_kind::edges());
// Store the successors of ’s’ in the bitset ’b’.
a.deltac(b, s, delta_kind::states());
// Retrieve incoming transitions of ’s’ whose label is a
// monome.
// rdeltac is the reverse transition function.
a.rdeltac(l, s, is_a_monome, delta_kind::edges());

Extending VAUCANSON with a new automaton implementation does not necessarily im-
ply the definition of all of these� functions. Indeed, many default implementations are
automatically deduced from the others.

3.2. Polymorphism using C++ templates

Object-Oriented languages enable reusability based on contracts defined by abstract
classes. Indeed, abstract classes define abstract services that can be expected from con-
crete classes instance. The choice of the concrete classes to instantiate is done at run-time
and this implies that the abstract services calls are resolved at run-time too.

Yet, in practice, this late binding to abstract services is too expensive and leads too bad
performance for intensive computing mainly because it breaks a potential code inlining. The
generative power of C++ template allows the static resolution of abstract services by closing
the object recursivity w.r.t. the self type. This ability, illustrated by the STL, allows to write
high-level C++ programs whose speed is comparable to dedicated low-level C programs.

3.2.1. STL approach
As mentioned in[19], the writing of generic algorithms is made easier by using primitive

services common to all library data structures. For example, the iterator concept uses the
presence of abegin()/end() method couple in every container to abstract its traversal.

90 S. Lombardy et al. / Theoretical Computer Science 328 (2004) 77–96

An algorithm which is generic w.r.t. the container concept is parametrized by a free type
variableC. The code is written assuming that an instance ofCwill be a container.

Yet, parametrization à la STL does not provide any constraints to ensure that parameters
really fill the requirement. Moreover, this general typing leads to overloading problems, like
prototyping two algorithms with the same name and arity. As a consequence, fine grained
specialization is unavailable. Concretely, this means that writing a generic algorithm for a
particular class of automata is not allowed.

template <class BooleanAutomaton>
void minimization(const BooleanAutomaton& automaton);

template <class WeightedAutomaton>
void minimization(const WeightedAutomaton& automaton);

// BooleanAutomaton and WeightedAutomaton are mute variables,
// so the following function call is ambiguous:
automaton_t a;
minimization(a);

The main explanation is that STL lost the subclassing relation between objects because
of a non constrained universal type quantification. The VAUCANSON design solved this
problem by making a step further in generic programming that consists in implementing a
generic object framework with static dispatch using C++-templates[8,6]. These program-
ming methods entail a stronger typing, which enables a finer specialization power and solves
the overloading problem.

3.2.2. Beyond classical use of templates
One classical object hierarchy is not enough to obtain extensibility and specialization

power in our framework.The current section will describe a new design pattern we developed
to allow a higher genericity.

One more time, the main issue is to bound as precisely as possible the domain of an
algorithm. Using only one object hierarchy would yield a one dimensional discrimination.
Yet, a fine grained specialization would require the hierarchy to be a directed acyclic graph
(with multiple inheritance).

To simplify the object organization, we define two components to characterize an ob-
ject. We notice that abstraction and implementation are quite orthogonal for at least two
reasons. First, the writing of a general algorithm focusses on the mathematical concept
(the general interface of any VAUCANSON variable of a particular VAUCANSON type).
Implementation constraints are taken into account afterwards. Second, algorithm special-
ization should depend on implementation and on VAUCANSON type symmetrically.

Because of this orthogonality, it is easier to design the implementation and the concept
separately. Design patterns for this purpose are the classicalBRIDGE [9] or more recently
theGENERIC BRIDGE[7] (Figs. 6 and 7).

However, there remain two problems for us from a specialization point of view. First, these
design patterns are asymmetric, privileging concept upon implementation. Then, we cannot

S. Lombardy et al. / Theoretical Computer Science 328 (2004) 77–96 91

Set

...

Implementation

...

 �

Fig. 6. UML diagram of the Bridge design pattern.

Type

Implementation
�

Fig. 7. UML diagram of the Generic Bridge design pattern.

define an algorithm that only works for a particular set of implementations whatever the con-
cept. Moreover, a concept cannot be manipulated independantly from the implementation;
therefore it is difficult to compare two concepts simply for equality or for subsumption.

Second, it does not allow subclassing w.r.t the two parameters because template arguments
are invariant. In the following example, an element of series cannot be passed to the function
is_zero even if theSeries class inherits from theSemiring class.

template <class T>
bool is_zero(const Element<Semiring, T>& e)
{

return e.set().zero() == e;
}

// e must be a weight.
is_zero(e);

3.2.3. TheELEMENT/METAELEMENT design pattern
To solve all these problems, the VAUCANSON library uses a new design pattern which we

have called ELEMENT/METAELEMENT [20]. The main idea is to enable de-construction of
an object w.r.t its two components and to use them for typing purpose. For instance, the
VAUCANSON type of the object can be used as an argument to make the function signature
more precise, this feature can be applied in the previous example

// Specialization of type 4.
template <class S, class T>
bool is_zero(const Semiring& s, const Element<S, T>& e)
{

return e == s.zero();
}

// e can be a semiring weight but also a series.
is_zero(e.type(), e);

92 S. Lombardy et al. / Theoretical Computer Science 328 (2004) 77–96

6

4 1 2

5

3

Subclasses

i

c

of C

Subclasses of I

Concept

Implementation

Fig. 8. Different type boundings of algorithm input. (1)i, c are fixed; (2) all implementations andc is fixed; (3)
all concepts andi is fixed; (4) all sub-classes ofI andc is fixed; (5) all sub-classes ofC andi is fixed; (6) all
sub-classes ofC andI .

As another example, the following piece of code shows the procedure signature for the
determinization algorithm specialized to any table-based automaton implementation:

// Specialization of type 6.
template <class S, class T>
Element<S, T> determinize(const Automata& s,

const Table& i,
const Element<S, T>& a)

{
// ...

}

// The algorithm call takes the form:
determinize(a.type(), a.value(), a);

Fig. 8 sums up the different kinds of specialization that are useful in VAUCANSON. Each
specialization kind corresponds to a boundary of the input types into the type domain.

More generally, the specifications of Fig.8 are expressible:

// Type 1: the concept and value type are fixed.
void algorithm_impl(const S1& s, const T1& v,

const Element<S1, T1>& e);

// Type 2: concept fixed, generic implementation for any
// value type.
template <class T>

S. Lombardy et al. / Theoretical Computer Science 328 (2004) 77–96 93

ElementSet Implementation

MetaElement

Set
Implementation

Set
Implementation

Fig. 9. UML diagram of the ELEMENT/METAELEMENT design pattern.

void algorithm_impl(const S1& s, const T& v,
const Element<S1, T>& e);

// Type 3: value type fixed, generic implementation for any
// concept.
template <class S>
void algorithm_impl(const S& s, const T1& v,

const Element<S, T1>& e);

// Type 4: generic implementation for any sub-concept of S1.
template <class S, class T>
void algorithm_impl(const S1& s, const T& v,

const Element<S, T>& e);

// Type 5: generic implementation for any value sub-class
// of T1.
template <class S, class T>
void algorithm_impl(const S& s, const T1& v,

const Element<S, T>& e);

// Type 6: generic implementation for any sub-class
// of (S1,T1).
template <class S, class T>
void algorithm_impl(const S1& s, const T1& v,

const Element<S, T>& e);

Element is a generic class associating a VAUCANSON type and an implementation. The
role of MetaElement is to define the interaction between these two components that is,how
the data structure implements theVAUCANSON type. A kind of multi-methods with static
dispatch (the binding operators) is also used to allow default implementation and special-
ization of n-ary methods. The pattern is illustrated in Fig.9 using the Unified Modelling
Language. Its effective implementation involves some C++ meta-programming techniques
which will not be explicited in this paper. For further technical information, the interested
reader is referred to[20].

94 S. Lombardy et al. / Theoretical Computer Science 328 (2004) 77–96

1 3

2
a b

a

a, b

b

1, 2, 3 1, 3 3 1, 2 2

a, b
a, b a b

b
a a, b

a, b

Fig. 10. The minimal automatonA1 and the co-determinized automaton ofA1.

1, 2, 3

1, 3

3

1, 2

2

1

a, b
b

a

a

b

a
b

a

b

a, b

a, b

Fig. 11. The universal automaton ofL(A1). The dashed lines areε-transitions. The universal automatonU1 of
L(A1) is given by the forward closure of this automaton: there is a transition(p, a, q) in U1 if, on the figure, there
are a stater, a transition(p, a, r) and a path ofε-transitions fromr to q.

Appendix A. On the universal automaton of a language

The universal automatonUL of a rational (regular) languageL is an automaton canoni-
cally attached toL. One can consider that it is a slight transformation of the “factor matrix”
introduced by Conway in[5] in order to solve some types of language equations. This
automatonUL can also be used to find the smallest NFA that acceptsL (cf. [1,17]), or—as
was done by two of the authors—to study some properties ofL (e.g. star height[15,13]or
reversibility[12]) at least whenL belongs to some subfamilies of the rational languages.

The automatonUL is the smallest automaton such that there is amorphismfrom any
automaton that accepts the languageL into UL. This property characterizes it but is not
constructive.

The states of this automaton are the (maximal) factorizations of the language, i.e. the
maximal pairs(H,K) of languages such thatH.K is a subset ofL. A state(H,K) is initial
(resp. final) iff the empty word belongs toH (resp. toK). There is a transition labelled bya
from (H,K) to (H ′,K ′) iff H.a.K ′ is a subset ofL. These factorizations can be computed
in the syntactic monoid, hence the universal automaton of a rational language is finite and
effectively computable.

The automaton can be built without computing the syntactic monoid.Actually, every state
p of the minimal automatonA corresponds to a (non necessarily maximal) factorization
(Hp,Kp), whereHp is the set of words that label a path from the initial state ofA to p

S. Lombardy et al. / Theoretical Computer Science 328 (2004) 77–96 95

andKp is the set of words that label a path fromp to any terminal state ofA. It holds (cf.
[12,21]) that every maximal factorization is a combination of these basic factorizations;
more precisely, for every maximal factorization(H,K), there exists a subsetQ′ of states of
A such thatH = ⋃

p∈Q′ Hp andK = ⋂
p∈Q′ Kp. More, the subsetsQ′ that give exactly

all the maximal factorizations of the language are the intersections of the states of the co-
determinized automaton ofA. The initial and terminal states and the transitions are then
given by the following rules:
– P is initial if it contains the initial state of the minimal automatonA,
– P is terminal if it is a subset of the set of terminal states ofA,
– (P, a,Q) is a transition if, for everyp in P , there is a transition(p, a, q) in A such that
q is in Q.
The co-determinized automaton of the automatonA1 (Fig.10) is drawn on the same figure.
The states of the co-determinized automaton are∅, {2}, {3}, {1,3}, {1,2} and{1,2,3}. The
closure of this set under intersection contains one more set:{1}. Fig.11shows the resulting
universal automaton.

References

[1] A. Arnold, A. Dicky, M. Nivat, A note about minimal non-deterministic automata, Bull. EATCS 47 (1992)
166–169.

[2] L. Augustsson, Cayenne a language with dependent types, Internat. Conf. on Functional Programming, 1998.
[3] G. Castagna, Object-Oriented Programming: A Unified Foundation, Progress in Theoretical Computer

Science Series, Birkhauser, Basel, 1997.
[4] J.-M. Champarnaud, D. Ziadi, Canonical derivatives, partial derivatives and finite automaton constructions,

Theoret. Comput. Sci. 289 (1) (2002) 137–163.
[5] J.H. Conway, Regular Algebra and Finite Machines, Chapman and Hall, London, 1971.
[6] J. Darbon, T. Géraud, A. Duret-Lutz, Generic implementation of morphological image operators, Internat.

Symp. on Mathematical Morphology VI (ISMM’2002), April 2002, pp. 175–184.
[7] A. Duret-Lutz, T. Géraud, A. Demaille, Design patterns for generic programming in C++, Proc. Sixth

USENIX Conf. on Object-Oriented Technologies and Systems (COOTS’01), USENIX Association, 2001,
pp. 189–202.

[8] A. Fabri, G.-J. Giezeman, L. Kettner, S. Schirra, S. Schönherr, On the design of CGAL, the computational
geometry algorithms library, Technical Report 3407, INRIA, April 1998.

[9] E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design Patterns: Abstraction and Reuse of Object-Oriented
Design, Lecture Notes in Computer Science, Vol. 707, 1993, pp. 406–431.

[10] J. Hopcroft, J. Ullman, Introduction to Automata Theory, Languages and Computation, Addison-Wesley,
Reading, MA, 1979.

[11] V. Le Maout, Cursors, Proc. of CIAA 2000, Lecture Notes in Computer Science,Vol. 2088, 2001, pp. 195–207.
[12] S. Lombardy, On the construction of reversible automata for reversible languages, Proc. of ICALP’02,

Lecture Notes in Computer Science, Vol. 2380, 2002, pp. 170–182.
[13] S. Lombardy, J. Sakarovitch, Star height of reversible languages and universal automata, Proc. of LATIN’02,

Lecture Notes in Computer Science, Vol. 2286, 2002, pp. 76–89.
[14] S. Lombardy, J. Sakarovitch, Vaucanson–G, A package for drawing automata and graphs,

http://www.liafa.jussieu.fr/ ∼lombardy/Vaucanson-G/ , 2002.
[15] S. Lombardy, J. Sakarovitch, On the star height of rational languages, a new presentation for two old results,

in: M. Ito, T. Imaoka (Eds.), Proc. of Words, Languages & Combinatorics III, World Scientific, Singapore,
2003, pp. 266–285.

[16] O. Matz, A. Miller, A. Potthoff, W. Thomas, E. Valkema, The Program AMoRE,http://www-i7.
informatik.rwth-aachen.de/d/research/amore.html , RWTH Aachen, 1995.

http://www.liafa.jussieu.fr/lombardy/Vaucanson-G/
http://www-i7.informatik.rwth-aachen.de/d/research/amore.html
http://www-i7.informatik.rwth-aachen.de/d/research/amore.html

96 S. Lombardy et al. / Theoretical Computer Science 328 (2004) 77–96

[17] O. Matz, A. Potthoff, Computing small nondeterministic finite automata, Proc. of TACAS’95, BRICS
Notes Series, 1995, pp. 74–88.

[18] M. Mohri, F.C.N. Pereira, M. Riley, General-purpose Finite-State Machine Software Tools,
http://www.research.att.com/sw/tools/fsm/ , AT&T Labs—Research, 1997.

[19] D.R. Musser, A.A. Stepanov, Algorithm-oriented generic libraries, Software Pract. Exper. 24 (7) (1994)
623–642.

[20] Y. Régis-Gianas, R. Poss, On orthogonal specialization in C++: dealing with efficiency and algebraic
abstraction in Vaucanson, Proc. of POOSC’2003, Darmstadt, July 2003.

[21] J. Sakarovitch, Éléments de théorie des automates, Vuibert, 2003. English translation: Element of Automata
Theory, Cambridge University Press, to appear.

[22] G. van Noord, Finite StateAutomata Utilities,http://odur.let.rug.nl/ ∼vannoord/Fsa/ , 2000.
[23] H. Xi, F. Pfenning, Dependent types in practical programming, Proc. of POPL’1999, 1999, pp. 214–227.

http://www.research.att.com/sw/tools/fsm/
http://odur.let.rug.nl/vannoord/Fsa/

	Introducing VAUCANSON
	Introduction
	Glimpses of the library
	Description of automata
	Determinization for benchmarking
	A word on data structures and implementation
	Programming the algebraic structures
	From automata to expressions and back
	Minimization of KKKK -automata
	Transducer computation

	Writing algorithms with VAUCANSON
	Construction of the universal automaton
	Comments on the code

	Design for genericity
	A unified generic framework
	The VAUCANSON typing system
	Embedding in C++
	Writing generic algorithms within this framework
	Implementation definition
	Object oriented layer

	Polymorphism using C++ templates
	STL approach
	Beyond classical use of templates
	The ELEMENT/METAELEMENT design pattern

	On the universal automaton of a language
	References

