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Abstract. We generalize Antimirov’s notion of linear form of a regular
expression, to the Semi-Extended Regular Expressions typically used in
the Property Specification Language or SystemVerilog Assertions. Do-
ing so requires extending the construction to handle more operators,
and dealing with expressions over alphabets Σ = 2AP of valuations of
atomic propositions. Using linear forms to construct automata labeled
by Boolean expressions suggests heuristics that we evaluate. Finally, we
study a variant of this translation to automata with accepting transi-
tions: this construction is more natural and provides smaller automata.
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1 Introduction

In this paper we discuss and compare techniques for translating (extended) reg-
ular expressions over alphabets Σ = 2AP where letters describe valuations of
a set of atomic propositions AP . Such alphabets are typically used in formal
methods such as model checking [3], runtime verification [4] or synthesis [14]. In
our case, we are interested in supporting the regular expression operators of the
PSL and SVA standards.

Property Specification Language (PSL) [13] and SystemVerilog Assertions
(SVA) [1] are two industrial formal verification languages used in the field of
hardware design and verification. These two languages include features for de-
scribing linear-time temporal properties or reasoning with clocks, but we re-
strict ourselves to the (semi-extended) regular expression properties. Both offer
a nearly identical set of operators, albeit with different syntaxes.

For instance the expression, “btn : ((red[=2] && opn[->]) || rst[->])”
is a PSL expression matching any sequence that starts with the btn signal on,
and in which either the red signal is on exactly twice in the interval it takes for
the signal opn turn on, or in which the rst signal turns on. In SVA this expression
becomes “btn ##0 ((red[=2] intersect opn[->1]) or rst[->1])”.

Other logics such as Linear Dynamic Logic (LDL) [16] or Propositional Dy-
namic Logic (PDL) [15] also use regular expressions over atomic propositions,
so our work applies to them too, however, and unlike SVA or PSL these logics
are usually defined only with classical regular operators plus a φ? operator that
is absent from PSL and SVA, and that we do not consider.
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2 Definitions

In the entire paper, we assume an alphabet Σ = 2AP where letters describe
valuations of a set of atomic propositions AP . For instance, if AP = {a, b} then
we denote the valuations as Σ = {āb̄, āb, ab̄, ab}. We use Σ⋆ to denote the set of
finite sequences of valuations. For a sequence σ ∈ Σ⋆, we denote |σ| its length,
and we write σ(i) for the letter at position i ∈ {0, 1, . . . , |σ| − 1} in σ. Using “ ;”
as concatenation operator, we write σ = σ(0) ; σ(1) ; . . . ; σ(|σ| − 1). Finally, for
two integers i, j such that 0 ≤ i ≤ j < |σ|, we write σi..j the (possibly empty if
i = j) subsequence σ(i) ; σ(i + 1) ; . . . ; σ(j − 1). For convenience, we write σi..

instead of σi..|σ| and σ..j instead of σ0..j .

Definition 1 (Boolean expression). Any Boolean expression b is built using
the following grammar, where a ∈ AP can be any atomic proposition.

b ::= ⊥ | ⊤ | a | (b ∨ b) | (b ∧ b) | ¬b

For convenience, we omit unnecessary parentheses, and use operators → and ↔
as syntactic sugar with their obvious definitions.

Boolean expression are interpreted over a valuation v ∈ Σ in the obvious way.
We write v |= b when the valuation v satisfies b, and b ≡ b′ when two Boolean
expressions b and b′ are satisfied by the same valuations.3

We use B = {⊥,⊤} to denote the set of Boolean values, and B(AP) to denote
the set of Boolean expressions over AP.

Definition 2 (SERE). A Semi-Extended Regular Expression (SERE) r is built
using the following grammar:

r ::= b | ε | (r ; r) | (r : r) | r⋆ | (r ∨ r) | (r ∧ r) | fm(r)

The symbol “ ε” is called the empty word. Operators “∨” (choice), “ ;” (con-
catenation) and “ ⋆” (Kleene star) are traditional regular operators. SERE ex-
tends those with “∧” (intersection) “ :” (fusion), and “ fm” (SVA’s first-match).
In practice, we omit parentheses when they are not necessary.

The set of all SEREs is written SERE.
SEREs are interpreted over a finite sequence σ ∈ Σ⋆ of valuations defined

inductively as follows:

σ |= b iff |σ| = 1 ∧ σ(0) |= b

σ |= ε iff |σ| = 0

σ |= (r1 ; r2) iff ∃i ≥ 0, σ..i |= r1 ∧ σi.. |= r2

σ |= (r1 : r2) iff ∃i ≥ 0, σ..i+1 |= r1 ∧ σi.. |= r2

σ |= r⋆ iff either |σ| = 0 or ∃i > 0, σ..i |= r ∧ σi.. |= r⋆

σ |= (r1 ∨ r2) iff σ |= r1 ∨ σ |= r2

σ |= (r1 ∧ r2) iff σ |= r1 ∧ σ |= r2

σ |= fm(r) iff (σ |= r) ∧ (∀i < |σ|, σ..i ̸|= r)

3 Testing b ≡ b′ is straightforward if b and b′ are represented with BDDs [5].
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The language of a SERE r is the set L (r) = {σ ∈ Σ⋆ | σ |= r} of all
sequences satisfying r (or “matched” by r).

In the above definition, regular expressions have been extended with three oper-
ators: the conjunction “∧” has obvious meaning, the fusion operator “ :” ensures
that the last letter matching the left operand is also the first letter of matching
the right operand (this implies that a fusion can never match the empty word),
and finally fm, the first-match operator of SVA, retains only the shortest possible
match for a SERE r.

The PSL and SVA specifications defines other SERE operators (such as [=n]
or [->n]) that can be seen as syntactic sugar on the above. In our syntax, the
expression from the introduction becomes

φ = btn :
((
((¬red)⋆;red ; (¬red)⋆;red ; (¬red)⋆)∧ ((¬opn)⋆;opn)

)
∨
(
(¬rst)⋆;rst

))
Definition 3 (Constant Term). The constant term of an expression r, de-
noted λ(r) is defined inductively as follows for any Boolean formula b and any
SEREs r1, r2.

λ(b) = ⊥ λ(r1 ∨ r2) = λ(r1) ∨ λ(r2)

λ(ε) = ε λ(r1 ∧ r2) = λ(r1) ∧ λ(r2)

λ(r1 : r2) = ⊥ λ(r1 ; r2) = λ(r1) ; λ(r2)

λ(r⋆1) = ε λ(fm(r1)) = λ(r1)

Proposition 1. With the above notation, λ(r) = ε iff ε |= r.

Definition 4 (Syntactic equivalence). Given two SEREs r1 and r2, we say
that they are syntactically equivalent, denoted r1 ⊜ r2, if one can be rewritten into
the other using the following so called ACI-rules (associativity, commutativity,
and idempotence) and a few others:

(r1 ⊙ r2)⊙ r3 ⊜ r1 ⊙ (r2 ⊙ r3) ⊜ r1 ⊙ r2 ⊙ r3 for ⊙ ∈ {;, :,∨,∧} (A)

r1 ⊙ r2 ⊜ r2 ⊙ r1 for ⊙ ∈ {∨,∧} (C)

r1 ⊙ r1 ⊜ r1 for ⊙ ∈ {∨,∧} (I1)

r⋆⋆ ⊜ r⋆ fm(fm(r)) ⊜ fm(r) (I2)

r ∨ ⊥ ⊜ r r ∧ ⊤ ⊜ r r ; ε ⊜ ε ; r ⊜ r (Z)

r ∧ ⊥ ⊜ ⊥ r ;⊥ ⊜ ⊥ ; r ⊜ ⊥ (U1)

r ∨ ⊤ ⊜ ⊤ r :⊥ ⊜ ⊥ : r ⊜ ⊥ (U2)

r : ε ⊜ ε : r ⊜ ⊥ (U3)

fm(r) ⊜ ε if ε |= r (F)

Proposition 2. Two syntactically equivalent SEREs have the same language.
I.e., (r1 ⊜ r2) =⇒ (L (r1) = L (r2)). See Appendix B.
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From an implementation standpoint, it is straightforward to rewrite any
SERE r into a unique representative of its equivalence class [r]⊜ = {s ∈ SERE |
r ⊜ s}. This can be achieved by applying the above rewriting rules during the
construction of the syntax tree of r. In particular rule (A) can be implemented
by considering these operators as n-ary (rather than binary), and then rules
(C) and (I1) can be implemented by sorting operands and removing duplicates.
Rule (F) can be implemented at construction as well, by deciding ε |= r using
Proposition 1.

Definition 5 (NFA). A nondeterministic finite automaton is a tuple A =
⟨Q, δ, ι, F ⟩ where Q is a finite set of states, δ ⊆ Q × B(AP) × Q is the tran-
sition relation, ι ∈ Q is the initial state, and F ⊆ Q is the set of final states.

We write s
f−→ d when (s, f, d) ∈ δ.

A sequence of valuations σ ∈ Σn of size n is accepted by A if either n = 0

and ι ∈ F , or n > 0 and there exists a sequence of transitions ρ = s0
f0−→ s1

f1−→
· · · fn−1−−−→ sn such that s0 = ι, sn ∈ F , and for each i, σ(i) |= fi.

The language of A, denoted L (A) is the set of words accepted by A.
A Deterministic Finite Automaton (DFA) is an NFA where transitions leav-

ing each state have mutually exclusive Boolean expressions. Formally, an au-

tomaton is a DFA if for any two different transitions s
f−→ d and s

f ′

−→ d′ with
the same origin, we have f ∧ f ′ ≡ ⊥.

Such automata are sometimes called symbolic finite automata [9], however
in our case the alphabet is always finite, so they can be handled in a usual way.

3 Building Automata using Linear Forms

In 1964, Brzozowsky [6] introduced the notion of derivative of a regular expres-
sion, allowing the construction of an equivalent deterministic finite automaton.
This work was extended in 1995 by Antimirov [2], with a notion of partial deriva-
tives allowing the construction of a non-deterministic finite automaton. More
importantly, Antimirov introduced the concept of linear form of a regular ex-
pression as a more efficient way to compute the set of partial derivatives. An
extension of partial derivatives was proposed by Caron et al. [7] to handle inter-
section and complement. Here, we adapt the concept of linear form, to SERE
with an alphabet over 2AP and their specific operators. In particular, the fact
that our alphabet is exponential in the number of atomic propositions makes
linear forms much more attractive than partial derivatives, because using the
latter to build an automaton requires iterating over exponentially many letters.

3.1 Linear Forms

Definition 6 (Linear Form). A linear form for a SERE r is a finite set of
pairs {(p1, s1), (p2, s2), . . .} where pi ∈ B(AP), pi ̸≡ ⊥, si ∈ SERE and si ̸⊜ ⊥,
such that

⋃
i L (pi ; si) = L (r) \ {ε}.
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r

s1 s2 . . .
p1

p2
. . .

Fig. 1: Automaton view of a linear form {(p1, s1), (p2, s2), . . .} for a SERE r.

This definition differs from that of Antimirov [2] in that pi is a satisfiable Boolean
expression rather than a letter, and in that we explicitly forbid si ⊜ ⊥. To
simplify the upcoming notations we assume that any pair (pi, si) in a linear
form we construct is implicitly ignored when pi ≡ ⊥; for instance we shall write
{. . . , (pi ∧ ¬pj , si), . . .} with the implicit assumption that the pair (pi ∧ ¬pj , si)
must be omitted when pi ∧ ¬pj is not satisfiable.

As we saw in Proposition 1, an empty sequence may only be matched by a
SERE r if λ(r) = ε. If a non-empty sequence σ is matched by a SERE r, then
Definition 6 implies that a linear form for r will have at least one pair (pi, si)
such that σ(0) |= pi and σ1.. |= si. As a mental model for a linear form, it is
useful to interpret it as the partial automaton shown in Figure 1: the pis are
Boolean formulas evaluated against σ(0), and the pis tell what SERE should be
checked against the suffix σ1... The constraints, in Definition 6, that pi ̸≡ ⊥, and
si ̸⊜ ⊥, prevent the creation of paths that will not recognize any word.

A SERE may have multiple linear forms; some will be called deterministic.

Definition 7 (Deterministic Linear Form). A linear form {(p1, s1), (p2, s2),
. . .} is deterministic if for any i ̸= j, pi ∧ pj ≡ ⊥.

Here is a linear form for the formula φ of Section 2.

L1 =
{(

btn∧¬red∧¬opn, ((¬red)⋆; red ; (¬red)⋆; red ; (¬red)⋆) ∧ ((¬opn)⋆; opn)
)
,(

btn∧red∧¬opn, ((¬red)⋆; red ; (¬red)⋆) ∧ ((¬opn)⋆; opn)
)
,(

btn∧¬rst , (¬rst)⋆; rst
)
,(

btn∧rst , ε
)}

L1 is not deterministic because, for instance, btn∧red∧¬opn can hold to-
gether with btn∧rst . Here is a deterministic linear form for φ:

L2 =
{(

btn∧¬red∧¬opn∧¬rst ,
(((¬red)⋆; red ; (¬red)⋆; red ; (¬red)⋆) ∧ ((¬opn)⋆; opn)) ∨ ((¬rst)⋆; rst)

)
,(

btn∧¬red∧¬opn∧rst ,
(((¬red)⋆; red ; (¬red)⋆; red ; (¬red)⋆) ∧ ((¬opn)⋆; opn)) ∨ ε

)
,(

btn∧red∧¬opn∧¬rst ,
(((¬red)⋆; red ; (¬red)⋆) ∧ ((¬opn)⋆; opn)) ∨ ((¬rst)⋆; rst)

)
,(

btn∧red∧¬opn∧rst , (((¬red)⋆; red ; (¬red)⋆) ∧ ((¬opn)⋆; opn)) ∨ ε
)}
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Property 1 (determinization of a linear form). Any linear form {(p1, s1), (p2, s2),
. . .} for an expression r can be converted into a deterministic linear form for r.

The idea is that if p1 ∧ p2 ̸≡ ⊥, then {(p1 ∧ ¬p2, s1), (¬p1 ∧ p2, s2), (p1 ∧ p2, s1 ∨
s2), . . .} is also a linear form for r. This process can be repeated for any i ̸= j
such that pi ∧ pj ̸≡ ⊥. From now on, we assume the existence of a function det
that determinizes a linear form.See Appendix A.

3.2 Linearization of SEREs

We now discuss how to convert a SERE into a linear form. For now on, we assume
that equations (A)–(F) are always applied, i.e., that we are only working with
unique representatives of each equivalence classes of ⊜, as discussed in Section 2.

To simplify the notations, we extend the concatenation and fusion operators
to linear forms: given a linear form L = {(p1, s1), (p2, s2), . . . , (pn, sn)}, an op-
erator ⊙ ∈ { ; , : }, and a SERE r ̸= ⊥, we write L ⊙ r instead of {(p1, s1 ⊙
r), (p2, s2 ⊙ r), . . . , (pn, sn ⊙ r)}. Additionally, L ⊙ ⊥ = ∅. The notation works
similarly for r ⊙ L.

Definition 8 (Linearization of a SERE). The following LF function turns
a SERE into a linear form. It mostly extends the “lf ” function of Antimirov [2,
eq. (45)–(51)] to deal with SERE operators and Boolean formulas.

LF(⊥) = ∅
LF(ε) = ∅
LF(b) = {(b, ε)}

LF(r1 ∨ r2) = LF(r1) ∪ LF(r2)

LF(r⋆) = LF(r) ; r⋆

LF(r1 ; r2) = (LF(r1) ; r2) ∪ (λ(r1) ; LF(r2))

LF(r1 : r2) = (LF(r1) : r2) ∪

{
(pi ∧ pj , sj)

∣∣∣∣∣ (pi, si) ∈ LF(r1), λ(si) = ε,

(pj , sj) ∈ LF(r2)

}
LF(r1 ∧ r2) = {(pi ∧ pj , si ∧ sj) | (pi, si) ∈ LF(r1), (pj , sj) ∈ LF(r2)}
LF(fm(r)) = {(pi, fm(si)) | (pi, si) ∈ det(LF(r))}

As noted below Definition 6, we assume that when one of these equations
generates a pair (pi, si) with pi ≡ ⊥, it is implicitly removed. Since we assume
that rules (A)–(F) are always applied, these equations cannot produce a pair
(pi, si) such that si ⊜ ⊥, but it could nonetheless be the case that L (si) = ∅
(for instance if si = a ∧ ¬a).

To understand the definition for LF(fm(r)), it may be useful to give an in-
tuition of how fm(r) works. The SERE fm(r) may match σ if only if σ is the
shortest prefix of σ matching r. An easy way to construct an automaton for fm(r)
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is therefore to build a DFA for r, and then remove the outgoing edges of all ac-
cepting states of that DFA. This is actually what the above definition achieves.
The use of det(LF(r)) is making sure that the linear form is deterministic, and
the use of fm(si) serves two purposes: (1) it ensures that upcoming choices will
still be deterministic, and (2) more importantly, by applying rule (F), it cuts
the successors of si when ε |= si. For instance, LF(fm(a ; a⋆)) = {(a, ε)} because
fm(a⋆) gets reduced to ε by rule (F).

To use LF in an algorithm for building an automaton that recognizes L (r), we
need two theorems. First, LF(r) should be a linear form, i.e., it should preserve
the language of r, except for the empty word (Theorem 1 below). Then, the
number of new expressions that can be created by applying LF recursively has
to be finite (Theorem 2 below).

Theorem 1. LF(r) = {(p1, s1), (p2, s2), . . .} is a linear form for r ∈ SERE.

Proof (Sketch). The fact hat
⋃

i L (pi;si) = L (r)\{ε} can be shown by induction Details in App. C
on the structure of r using Definitions 2 and 8. ⊓⊔
Theorem 2 (Terms). For r ∈ SERE, let Terms(r) denote the smallest subset
of SERE such that r ∈ Terms(r) and for each ϕ ∈ Terms(r) and each (pi, si) ∈
LF(ϕ) we have si ∈ Terms(r). Then the set Terms(r) is finite.

Proof (Sketch). Our proof, which we omit for brevity, is inspired by a similar Details in App. D.
theorem by Antimirov [2, Theorem 3.4], however the results differ because of the
new operators we support. Specifically, Antimirov did not support operators ∧,
:, and fm. (Of these three, : is the least problematic.)

We start by addapting Antimirov’s notion of partial derivative [2, Definition
2.8] to our context. The partial derivative of r with respect to x is defined by:

∂xr = {s | (p, s) ∈ LF(r), x |= p}

We extend the notation to support derivation by a nonempty word w ∈ Σ+ with
∂wr = ∂w1..∂w(0)r. Furthermore, we write ∂Σ+r =

⋃
w∈Σ+ ∂wr for the set of all

partial derivatives one can obtain using nonempty words of any length. With
these conventions we have Terms(r) = ∂Σ+r ∪ {r}.

Working on the definition of LF and ∂xr, we then establish the following
inequalities for two SEREs r1 and r2:

|∂Σ+(r1 ∨ r2)| ≤ |∂Σ+r1|+ |∂Σ+r2|
|∂Σ+r⋆1 | ≤ |∂Σ+r1|

|∂Σ+(r1 ; r2)| ≤ |∂Σ+r1|+ |∂Σ+r2|
|∂Σ+(r1 : r2)| ≤ |∂Σ+r1|+ |∂Σ+r2|
|∂Σ+(r1 ∧ r2)| ≤ |∂Σ+r1| × |∂Σ+r2|
|∂Σ+ fm(r1)| ≤ 2|∂Σ+r1|

The finiteness of ∂Σ+r and therefore of Terms(r) follows from the above. ⊓⊔
From the inequalities in the above sketch of proof, one can observe that the
added operators do not have the same cost. In particular ∧ incurs a quadratic
cost, while fm leads to an exponential blow up.
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input : A SERE ϕ
output: An automaton A such that L (A) = L (ϕ)

Q, δ, F ← {ϕ},∅,∅;
todo.push(ϕ);
while todo ̸= ∅ do

f ← todo.pop();

foreach (p, s) ∈ LF(f) do

if s ̸∈ Q then
Q← Q ∪ {s};
todo.push (s);
if λ(s) = ε then

F ← F ∪ {s};
δ ← δ ∪ {f p−→ s};

return ⟨Q, δ, ϕ, F ⟩;
Algorithm 1: Translation of a SERE ϕ to a NFA. Remember that rules
(A)–(F) are always applied.

3.3 Automaton Construction

The traditional way to construct a finite automaton from such a linear form
is to associate its states to regular expressions. For a state r ∈ Terms(r), we

interpret the pairs (pi, si) in LF(r) as a transition r
pi−→ si. Algorithm 1 shows

a straightforward implementation of that construction. Final states are those
that correspond to expressions that accept the empty word. At the end of this
algorithm we naturally have Q = Terms(ϕ) by construction, which ensures ter-
mination. The fact that L (⟨Q, δ, ϕ, F ⟩) = L (ϕ) follows from Theorem 1.

Although Terms(ϕ) is defined as the smallest subset of SERE recursively
produced by LF, the resulting automaton is not necessarily minimal in terms of
number of states. Because we only use syntactic equivalence, the construction
can produce two states labeled by SEREs r1 ̸⊜ r2 such that L (r1) = L (r2).

This algorithm can be altered in several ways in attempt to simplify the
resulting automata. In Section 4 we present ways to simplify the linear forms

LF(f) before they get used in Algorithm 1. Then in Section 5 we propose larger

modifications of Algorithm 1 meant to fuse states with identical linear forms.

4 Linear Form Simplifications

When constructing an automaton from a linear form, it is possible to alter the
shape of the automaton constructed by transforming the linear forms it uses into
other, equivalent linear forms. In this section we present a few transformations
that aim at simplifying linear forms. By “simplifying” we mean to reduce the
number of pairs in the hope that this results in a smaller automaton. Simplifying
a finite automaton can of course be done after its construction using more tra-
ditional algorithms like bisimulation-based reductions [21], however it is always
good to look for cheap opportunities to keep the intermediate automaton small.
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Definition 9 (Unique Suffix and Unique Prefix simplifications). Let L
be a linear form, let MergePre(L, s) =

∨
(p,s)∈L p be the (Boolean) disjunction of

all prefixes sharing a given suffix s, and let MergeSuf(L, p) =
∨

(p,s)∈L s be the

(rational) disjunction of all suffixes sharing a given prefix p.
We define US (unique suffixes) and UP (unique prefixes) as follows:

US(L) = {(MergePre(L, s), s) | (p, s) ∈ L}
UP(L) = {(p,MergeSuf(L, p)) | (p, s) ∈ L}

Replacing LF(f) by US(LF(f)) in Algorithm 1 is equivalent to merging the
edges of the automaton that have the same source and same destination. For
instance US({(a, r), (b, r)}) = {(a ∨ b, r)}.

Replacing LF(f) by UP(LF(f)) in Algorithm 1 is merging outgoing edges that
share the same label. In Antimorov’s setup [2], where prefixes of linear forms are
letters, using UP would create a deterministic automaton. However, because in
our setup prefixes are Boolean formulas, this is not the case: UP can remove
some non-determinism, but the result will not necessarily be deterministic. For
instance the non-deterministic linear form {(a, q1), (a ∧ b, q2)} is unchanged by
UP. If we wish to construct a deterministic automaton, we can use det(LF(f)) (see
Proposition 1). Our intent with UP is therefore not to produce a deterministic
automaton, but to help reduce the size of a non-deterministic result.

We should point out that the equivalent of Theorem 2 still holds when
UP(LF(f)) is used because the terms created by this new variant are disjunctions
of terms created by the original construction.

Unfortunately, it is also possible that using UP will introduce new additional
states in the automaton. For instance UP({(a, q1), (a, q2), (b, q1), (¬b, q2)}) =
{(a, q1 ∨ q2), (b, q1), (¬b, q2)} would be introducing the state q1 ∨ q2 that was
not present initially.

Because US only merges edges, it sounds natural to use it together with UP.
However, while it is possible to find cases where replacing LF(f) by US(UP(LF(f)))
is better than replacing LF(f) by UP(US(LF(f))), the opposite also exists. See Appendix E

5 Signature and Transition-Based Variants

We now discuss variants of Algorithm 1, orthogonal to previous simplifications.
Consider the automaton of Figure 2, where the first two states are labeled

by formulas that have the same linear form, and so are the last two states. If
two expressions r1 and r2 have the same linear form LF(r1) = LF(r2), it implies
that L (r1) \ ε = L (r2) \ ε. Therefore, states that correspond to formulas with
the same linear form (i.e., states that have identical sets of outgoing transitions)
can be merged if they are both accepting, or both rejecting. Thus, the first two
states of Figure 2 could be merged.

We can obtain such a merge automatically if we modify our translation as in
Algorithm 2 to label each state by a pair (LF(φ), λ(φ)) that we call the signature
of φ. This gives the automaton of Figure 3.
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(a ; a⋆) : (ā⋆ ; a)⋆ a⋆ : (ā⋆ ; a)⋆ (ā⋆ ; a)⋆ (ā⋆ ; a) ; (ā⋆ ; a)⋆
a

a

a

a

a

ā

ā

a

Fig. 2: Automaton for φ = (a ;a⋆) : (ā⋆ ;a)⋆. We have LF(φ) = LF(a⋆ : (ā⋆ ;a)⋆) =
{(a, a⋆ : (ā⋆ ; a)⋆), (a, (ā⋆ ; a)⋆)}, and LF((ā⋆ ; a)⋆) = LF((ā⋆ ; a) ; (ā⋆ ; a)⋆) =
{(a, (ā⋆ ; a)⋆), (ā, (ā⋆ ; a) ; (ā⋆ ; a)⋆)}.

Currently, the last two states of Figure 3 may not be merged because one
is accepting while the other is not. We could however merge them by changing
our automaton formalism such that the notion of acceptance is carried by the
transitions instead of the states. Although finite automata are seldom used with
transition-based acceptance [24], ω-automata (i.e., automata over infinite words)
with transition-based acceptance have been used for a long time as they often
lead to simpler algorithms [22, 18, 19, 17, 23, to cite a few]. Let us define a
transition-based finite automaton:

Definition 10 (TFA). A transition-based finite automaton is a tuple A =
⟨Q, δ, ι, β⟩ where Q is a finite set of states, δ ⊆ Q × B(AP) × B × Q is the
transition relation, ι ∈ Q is the initial state, and β ∈ B is a Boolean indicating
whether ε should be accepted.

We write s
f,b−−→ d when (s, f, b, d) ∈ δ.

A sequence of valuations σ ∈ Σn of size n is accepted by A if either n = 0

and β = ⊤, or n > 0 and there exists a sequence of transitions ρ = s0
f0,b0−−−→

s1
f1,b1−−−→ · · · fn−1,bn−1−−−−−−−→ sn such that s0 = ι, bn−1 = ⊤, and for all i, σ(i) |= fi.
The language of A, denoted L (A) is the set of words accepted by A.

In other words, transitions of a TFA carry an extra Boolean that is used
to mark the transition as accepting, and a word is accepted if it is recognized
by a run whose last transition is accepting. Graphically, we represent accepting
transitions using arrows with double lines. The acceptance of the empty word
is indicated by a special Boolean β in the definition, and can be represented
graphically by using double lines on the arrow indicating the initial state.

TFA enjoy similar properties as traditional finite automata: they are as ex-
pressive as regular expressions, are closed under Boolean operations, etc. [24]
However they can be slightly smaller, as we shall see in our evaluation.

Using the above definition, Algorithm 3 generates the automaton of Figure 4.
In our case, we have additional motivation for using TFAs. The reason we

are working on translating SERE to automata is that SERE are part of the
PSL and SVA standards. However, the PSL/SVA standards assume a SERE
will always match a non-empty word. Therefore, the Boolean β that we added
to the definition of a TFA to allow it to recognize ε can simply be ignored.
Furthermore, as we translate a PSL formula into an ω-automaton, we build upon
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input : A SERE ϕ
output: An NFA A such that

L (A) = L (ϕ)

L, b← LF(ϕ), [λ(ϕ) = ε];
Q, δ, F ← {(L, b)},∅,∅;
todo.push((L, b));
if b then

F ← F ∪ {(L, b)};
while todo ̸= ∅ do

(L, b)← todo.pop();
foreach (p, s) ∈ L do

L′, b′ ← LF(s), [λ(s) = ε];
if (L′, b′) ̸∈ Q then

Q← Q ∪ {(L′, b′)};
todo.push ((L′, b′));
if b′ then

F ← F ∪ {(L′, b′)};
δ ← δ ∪ {(L, b) p−→ (L′, b′)};

return ⟨Q, δ, ϕ, F ⟩;
Algorithm 2: Translation that
identifies states with identical linear
form and identical ε acceptance.

input : A SERE ϕ
output: A TFA A such that

L (A) = L (ϕ)

L, b← LF(ϕ), [λ(ϕ) = ε];
Q, δ ← {L},∅;
todo.push(L);
while todo ̸= ∅ do

L← todo.pop();
foreach (p, s) ∈ L do

L′, b′ ← LF(s), [λ(s) = ε];
if L′ ̸∈ Q then

Q← Q ∪ {L′};
todo.push (L′);

δ ← δ ∪ {L p,b′−−→ L′};
return ⟨Q, δ, ϕ, b⟩;

Algorithm 3: Translation to
transition-based automata, iden-
tifying states with identical linear
form regardless of ε acceptance.

translation algorithms that naturally produce transition-based ω-automata [11].
In this context, it seems more natural to have SERE converted into TFA. The
fact that TFA are more succinct comes as a bonus.

6 Experimental Evaluation

Our algorithms have been implemented in a development version of Spot [12]. A See Appendix F.
reproducibility package, archived at https://doi.org/10.5281/zenodo.10799850,
contains our implementation, a Jupyter notebook to use it interactively, and
scripts to reproduce our experiments.

We are not aware of any existing benchmark of SEREs. Therefore, to evaluate
our work, we randomly generated a set of SEREs using Spot’s randltl tool,
with equal probability of occurrence for all SERE operators. We grouped the
random SEREs into groups of expressions with equal size (number of nodes in
their syntax tree) and equal number of unique atomic propositions, capping each
group to 50 expressions. The resulting set has 12500 unique SEREs with sizes See Appendix G
ranging from 1 to 35, and between 1 and 15 atomic propositions.

Benchmarks were run on an AMD Ryzen 5 3600 CPU, with 16GB of RAM,
and with core frequency capped at 2.2GHz to minimize the impact of throttling
on timing measurements. For each SERE we evaluated variants of the translation
by measuring the number of states of the produced automata, and the time

https://doi.org/10.5281/zenodo.10799850
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LF((a ; a⋆) : (ā⋆ ; a)⋆),⊥ LF((ā⋆ ; a)⋆),⊤ LF((ā⋆ ; a)⋆),⊥a

a a

ā

ā

a

Fig. 3: Automaton obtained by merging states labeled by formulas that have the
same linear form and the same acceptance of ε.

LF((a ; a⋆) : (ā⋆ ; a)⋆) LF((ā⋆ ; a)⋆)

a

ā
a

a

Fig. 4: Transition-based automaton obtained by merging states labeled by for-
mulas that have the same linear form, regardless of the acceptance of ε, since
the latter is decided on transitions.

Fig. 5: Effect of UP on Algorithm 1. Fig. 6: Time of Alg. 1–3.

needed to produce them. (We also measured the number of edges, but do not
report it here.)

Scatter plots that show number of states use a jitter of ±0.4 over their posi-
tion to distinguish points. The numbers in the top left and bottom right corners
of the plots count how many points are strictly above or below the diagonal.

We start by evaluating the impact of the simplification strategies of Section 4.
Figure 5 presents the impact of UP on the number of states and edges of automata
produced by Algorithm 1. As mentioned in Section 4, UP has mitigated results:
it improves the number of states of the automaton almost as often as it worsens
it. However the number of transitions is reduced in general.

Figure 7 shows that Algorithms 2–3 provide a more important reduction of
automata sizes compared to Algorithm 1. Impact on translation time, as seen on
Figure 6, is not significant (average speedup is -10%). Small automata have an
overhead because of the labeling of states by linear forms rather than formulas,
but the savings in size also yields savings in time for larger automata.

Figures 8 and 11 show that applying UP in Algorithm 3 has more effect than
it had on Algorithm 1 (compare with Figure 5 where the impact of UP on the
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Fig. 7: Comparisons of Algorithms 1, 2, and 3.

number of states was marginal). Figure 9 shows using UP ◦ US on Algorithm 3
does not yield significant changes in number of states, compared to only using
UP. However Figure 12 shows an impressive reduction in the number of edges.
Using US ◦ UP instead of UP would not change the number of states, as this is
only merging edges, so we do not compare it to UP. Figures 10 and 13 shows that
in practice, the impact of the order of application between UP and US discussed
in Section 4 is rather limited, producing automata with a different number of
states in only 21 cases out of our 12500 formulas.

7 Conclusion

We adapted Antimirov’s non-deterministic automata construction based on lin-
ear forms, to the semi-extended regular expressions used by the PSL and SVA
standards. As these SERE are defined on alphabet of the form 2AP , we intro-
duced some rewritings (UP, US) of these linear forms and evaluated their impact
on a large benchmark. We also introduced alternative translation algorithms that
use the linear form to simplify the automaton during its construction, or that
build a transition-based automaton.

Our evaluation reveals that using transition-based automata, labeling them
with linear forms, and simplifying those linear forms with UP are cheap and
effective ways of keeping the output small. A compact output matters in ap-
plications where the automaton is constructed on-the-fly or only partially, and
therefore cannot benefit from subsequent simplifications. (Satisfiability, which
cannot be decided syntactically because of the intersection operator, is one such
problem.)

Finally, we constructed a SERE benchmark dataset, which we hope can be
reused in future work to compare different SERE, PSL or SVA translators.
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time. J. Comput. Syst. Sci., 35(1):59–71, Aug. 1987. https://doi.org/10.1016/
0022-0000(87)90036-5.
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complementation. PhD thesis, University of Liverpool, Nov. 2014.

24. S. Xiao, J. Li, S. Zhu, Y. Shi, G. Pu, and M. Vardi. On-the-fly synthesis for
LTL over finite traces. In Proceedings of the 35th AAAI Conference on Artificial
Intelligence (AAAI’21), volume 35, pages 6530–6537, May 2021. https://doi.org/
10.1609/aaai.v35i7.16809. Technical Tracks 7.

https://doi.org/10.1007/978-3-319-94812-6_21
https://doi.org/10.1007/978-3-319-94812-6_21
https://doi.org/10.1007/978-3-319-94812-6_21
https://doi.org/10.1007/978-3-319-94812-6_21
https://doi.org/10.1007/3-540-12920-0_26
https://doi.org/10.1007/3-540-12920-0_26
https://doi.org/10.1609/aaai.v35i7.16809
https://doi.org/10.1609/aaai.v35i7.16809
https://doi.org/10.1609/aaai.v35i7.16809
https://doi.org/10.1609/aaai.v35i7.16809


Translation of Semi-Extended Regular Expressions using Derivatives 17

input : A linear form {(p1, s1), (p2, s2), . . . , (pn, sn)}
output: An equivalent deterministic linear form

let P ⊆ AP be the set of atomic propositions appearing in p1, p2, . . . , pn;
L← ∅;

foreach ℓ ∈ 2P do
S ←

∨
ℓ|=pi

si;

if S ̸= ⊥ then
L← L ∪ {(ℓ, S)};

return L;
Algorithm 4: Determinization of a linear form.

The following appendices are not part of the CIAA’24 proceedings because
of size restrictions.

A Determinization of a Linear Form

We considered several implementations for the determinization det(L) of a linear
form. The BDD representation of linear forms (see Section F) can be used to
determinize the successor function [11], however since our linear forms are small
in practice, we simply decided to work on the array representation using Algo-
rithm 4.

B Proof of proposition 2

Proof. The proof follows from the fact that rewritings (A)–(F) are language-
preserving. As most of these rules are either well known or obvious, we only
prove those involving fm. For I2 we have:

σ |= fm(fm(r)) ⇐⇒ (σ |= fm(r)) ∧ (∀i < |σ|, σ..i ̸|= fm(r))

⇐⇒ (σ |= r) ∧ (∀i < |σ|, σ..i ̸|= r) ∧ (∀i < |σ|, σ..i ̸|= fm(r))

⇐⇒ (σ |= r) ∧ (∀i < |σ|, ¬(σ..i |= r ∨ σ..i |= fm(r)︸ ︷︷ ︸
implies σ..i|=r by definition

)

⇐⇒ (σ |= r) ∧ (∀i < |σ|, σ..i ̸|= r)

⇐⇒ σ |= fm(r)

Therefore L (fm(fm(r))) = L (fm(r)). Similarly, for rule (F), we have

(σ |= fm(r)) ∧ (ε |= r) ⇐⇒ (σ |= r) ∧ (∀i < |σ|, σ..i ̸|= r) ∧ (ε |= r)︸ ︷︷ ︸
implies |σ|=0 otherwise σ..0=ε ̸|=r conflicts with ε|=r

⇐⇒ |σ| = 0 ⇐⇒ σ |= ε

Therefore when ε |= r, L (fm(r)) = L (ε). ⊓⊔
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C Proof of Theorem 1: LF builds linear forms

Proof. Let L (LF(r)) designate
⋃

i L (pi ; si). Using Definitions 2 and 8, we can
show by induction on the structure of r that L (LF(r)) = L (r) \ {ε}. For the
regular operators, it was already established by Antomirov [2, Prop. 2.5].

We show here the case of r1 : r2. For m ∈ {1, 2} assume that LF(rm) =
{(pm1 , sm1 ), (pm2 , sm2 ), . . .} is a linear form for rm, i.e., that

⋃
i L (pmi ; smi ) =

L (rm) \ {ε}. We would like to prove that L (LF(r1 : r2)) = L (r1 : r2) \ {ε}.
Since L (r1 : r2) may not contain ε by definition, we just have to prove that

for any sequence σ ∈ Σ∗ we have σ |= L (LF(r1 : r2)) ⇐⇒ σ |= L (r1 : r2).
(⇐=) Consider σ in L (r1 : r2). By Definition 2 there exists k ≥ 0 such that

σ..k+1 |= r1 and σk.. |= r2.
If k = 0, σ..1 |= r1 implies that there exists a pair (p1i , s

1
i ) in LF(r1) such

that σ(0) |= p1i and λ(s1i ) = ∅. Furthermore since σ |= r2, there exists a pair
(p2j , s

2
j ) in LF(r2) such that σ(0) |= p2j . We can see in Definition 8 that the pair

(p1i ∧ p2j , s
2
j ) exists in LF(r1 : r2), therefore σ ∈ L (LF(r1 : r2)).

If k > 0, σ..k+1 |= r1 implies that there exists a pair (p1i , s
1
i ) in LF(r1) such

that σ(0) |= p1i and σ1..k+1 |= s1i . Since we know that σk.. |= r2, it follows that
σ1.. |= s1i : r2. By definition (p1i , s

1
i : r2) belongs to LF(pi) : r2 which itself belongs

to LF(r1 : r2). Therefore σ ∈ L (LF(r1 : r2)).
(=⇒) Consider σ in L (LF(r1 : r2)). Looking at LF(r1 : r2) in Definition 8,

either σ is matched by the left part of the union, or by the right part.
If it is matched by the left part, there exists a pair (p1i , s

1
i : r2) such that

σ(0) |= p1i and σ1.. |= s1i : r2. The latter implies that there exists k ≥ 1 such that
σ1..k+1 |= s1i and σk.. |= r2. Therefore we have σ

0..k+1 |= r1 and σk.. |= r2, which
implies σ ∈ L (r1 : r2).

If it is matched by the right part, there exists a pair (p1i ∧p2j , s
2
j ) ∈ LF(r1 : r2)

such that σ(0) |= p1i , λ(s1i ) = ∅, σ(0) |= p2j , and σ1.. |= s2j . The first two

constraints imply that σ0..1 |= r1, and the latter two that σ1.. |= r2. It follows
that σ |= r1 : r2.

Other operators can be proven similarly.

D Proof of Theorem 2: Terms(r) is finite

Our proof is inspired by a similar theorem by Antimirov [2, Theorem 3.4], how-
ever the results differ because of the new operators we support. Specifically,
Antimirov did not support operators ∧, :, and fm. (Of these three, : is the least
problematic.)

Like Antimirov, we start by introducing a notion of partial derivative [2,
Definition 2.8] which we adapt to our SEREs, where the alphabet is Σ = 2AP .

Definition 11 (partial derivative). Given an expression r ∈ SERE and a
valuation x ∈ Σ = 2AP , we denote ∂xr the partial derivative of r with respect to
x defined by:

∂xr = {s | (p, s) ∈ LF(r), x |= p}
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We extend partial derivatives to the case ∂xR where R ⊆ SERE is a set of
expression, in a natural way: ∂xR = ∪r∈R∂xr. We also extend the notation to
support derivation by a nonempty word w ∈ Σ+ with ∂wr = ∂w1..∂w(0)r.

Furthermore, we write ∂Σ+r =
⋃

w∈Σ+ ∂wr for the set of all partial deriva-
tives one can obtain using nonempty words of any length.

Using the above notation, we have Terms(r) = ∂Σ+r ∪ {r}.

Let us extend our Definition 3 of the constant term λ to cover a set R ⊆ SERE
of expressions with λ(R) =

∨
r∈R λ(r).

For x ∈ Σ, the following equalities follow from the Definitions 8 and 11:

∂x⊥ = ∅ (1)

∂xε = ∅ (2)

∂xb =

{
{ε} if x |= b

∅ else
(3)

∂x(r1 ∨ r2) = ∂xr1 ∪ ∂xr2 (4)

∂xr
⋆ = (∂xr1) ; r

⋆ (5)

∂x(r1 ; r2) = ((∂xr1) ; r2) ∪ (λ(r1) ; ∂xr2) (6)

∂x(r1 : r2) = ((∂xr1) : r2) ∪ (λ(∂xr1) ; ∂xr2) (7)

∂x(r1 ∧ r2) = {p1 ∧ p2 | p1 ∈ ∂xr1, p2 ∈ ∂xr2} (8)

∂xfm(r) =

{ ∨
s∈∂xr

s

}
(9)

Definition 12 (Suffix set). Given a nonempty word w ∈ Σ+, let Sfx (w) de-
note the set {wi.. | 0 ≤ i < |w|} of nonempty suffixes of w.

Lemma 1. For w ∈ Σ+ the following (in)equalities follow from (1)–(9):

∂w(r1 ∨ r2) = (∂wr1) ∪ (∂wr2) (10)

∂wr
⋆ ⊆

⋃
v∈Sfx(w)

(∂vr) ; r
⋆ (11)

∂w(r1 ; r2) ⊆ ((∂wr1) ; r2) ∪
⋃

v∈Sfx(w)

∂vr2 (12)

∂w(r1 : r2) ⊆ ((∂wr1) : r2) ∪
⋃

v∈Sfx(w)

∂vr2 (13)

∂w(r1 ∧ r2) = {p1 ∧ p2 | p1 ∈ ∂wr1, p2 ∈ ∂wr2} (14)

∂wfm(r1) =

{ ∨
s∈∂wr

s

}
(15)

Proof. Equations (10)–(12) are already known results [2, Lemma 3.3].
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Let us prove (12) again, using our notations. Deriving r1 ; r2 using (6) and
words of increasing lengths, we have the following:

∂a(r1 ; r2) = ((∂ar1) ; r2) ∪ (λ(r1) ; (∂ar2)) for a ∈ Σ

∂ab(r1 ; r2) = ((∂abr1) ; r2) ∪ (λ(∂ar1) ; (∂br2)) ∪ (λ(r1) ; (∂abr2)) for ab ∈ Σ2

∂abc(r1 ; r2) = ((∂abcr1) ; r2) ∪ (λ(∂abr1) ; (∂cr2))

∪ (λ(∂ar1) ; (∂bcr2))

∪ (λ(r1) ; (∂abcr2))

for abc ∈ Σ3

Since those λ(∂ar1), λ(∂abr1), λ(∂abcr1)... are used to conditionally enable the
subsequent terms, it should be clear that for any word w ∈ Σ+, the set ∂w(r1 ;r2)
contains ((∂wr1) ; r2) and a subset of

⋃
v∈Sfx(w) ∂vr2, justifying equation (12).

Equation (13) is proven similarly, the difference is only in the constant terms:

∂a(r1 : r2) = ((∂ar1) : r2) ∪ (λ(∂ar1) ; (∂ar2)) for a ∈ Σ

∂ab(r1 : r2) = ((∂abr1) : r2) ∪ (λ(∂abr1) ; (∂br2))

∪ (λ(∂ar1) ; (∂abr2))

for ab ∈ Σ2

∂abc(r1 : r2) = ((∂abcr1) : r2) ∪ (λ(∂abcr1) ; (∂cr2))

∪ (λ(∂abr1) ; (∂bcr2))

∪ (λ(∂ar1) ; (∂abcr2))

for abc ∈ Σ3

Finally, equations (14)–(15) follow immediately from (8)–(9). ⊓⊔

Lemma 2. For two SEREs r1 and r2 we have:

|∂Σ+(r1 ∨ r2)| ≤ |∂Σ+r1|+ |∂Σ+r2|
|∂Σ+r⋆1 | ≤ |∂Σ+r1|

|∂Σ+(r1 ; r2)| ≤ |∂Σ+r1|+ |∂Σ+r2|
|∂Σ+(r1 : r2)| ≤ |∂Σ+r1|+ |∂Σ+r2|
|∂Σ+(r1 ∧ r2)| ≤ |∂Σ+r1| × |∂Σ+r2|
|∂Σ+ fm(r1)| ≤ 2|∂Σ+r1|

Proof. These inequalities are consequences of equations (10)–(15) and Defini-
tion 11.

|∂Σ+(r1 ∨ r2)| =

∣∣∣∣∣ ⋃
w∈Σ+

∂w(r1 ∨ r2)

∣∣∣∣∣ by Def. 11

=

∣∣∣∣∣ ⋃
w∈Σ+

(∂wr1) ∪ (∂wr2)

∣∣∣∣∣ by (10)

= |(∂Σ+r1) ∪ (∂Σ+r2)| by Def. 11

≤ |∂Σ+r1|+ |∂Σ+r2|
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|∂Σ+r⋆1 | =

∣∣∣∣∣ ⋃
w∈Σ+

∂wr
⋆
1

∣∣∣∣∣ by Def. 11

≤

∣∣∣∣∣∣
⋃

w∈Σ+

⋃
v∈Sfx(w)

(∂vr1) ; r
⋆
1

∣∣∣∣∣∣ by (11)

≤

∣∣∣∣∣ ⋃
w∈Σ+

(∂wr1) ; r
⋆
1

∣∣∣∣∣ Def. 11
= |(∂Σ+r1) ; r

⋆
1 | = |∂Σ+r1|

|∂Σ+(r1 ; r2)| =

∣∣∣∣∣ ⋃
w∈Σ+

∂w(r1 ; r2)

∣∣∣∣∣ by Def. 11

≤

∣∣∣∣∣∣
⋃

w∈Σ+

((∂wr1) ; r2) ∪
⋃

v∈Sfx(w)

∂vr2

∣∣∣∣∣∣ by (12)

=

∣∣∣∣∣
( ⋃

w∈Σ+

(∂wr1) ; r2

)
∪
⋃

w∈Σ+

∂wr2

∣∣∣∣∣
= |((∂Σ+r1) ; r2) ∪ (∂Σ+r2)| by Def. 11

≤ |∂Σ+r1|+ |∂Σ+r2|

The proof that |∂Σ+(r1 :r2)| ≤ |∂Σ+r1|+|∂Σ+r2| is exactly the same as above,
using (13) instead of (12).

|∂Σ+(r1 ∧ r2)| =

∣∣∣∣∣ ⋃
w∈Σ+

∂w(r1 ∧ r2)

∣∣∣∣∣ by Def. 11

=

∣∣∣∣∣ ⋃
w∈Σ+

{p1 ∧ p2 | p1 ∈ ∂wr1, p2 ∈ ∂wr2}

∣∣∣∣∣ by (14)

≤ |{p1 ∧ p2 | p1 ∈ ∂Σ+r1, p2 ∈ ∂Σ+r2}|
≤ |∂Σ+r1| × |∂Σ+r2|

|∂Σ+ fm(r1)| = |
⋃

w∈Σ+

∂wfm(r1)| by Def. 11

=

∣∣∣∣∣
{
fm
( ∨
p∈∂wr1

p
) ∣∣∣∣ w ∈ Σ+

}∣∣∣∣∣ by (15)

≤

∣∣∣∣∣
{
fm
(∨
p∈P

p
) ∣∣∣∣ P ∈ ∂Σ+r1

}∣∣∣∣∣ = 2|∂Σ+r1|

⊓⊔
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a ∨ α ε

α

a

b

b
b

b

with LF(f)

a ∨ α ε

ε ∨ α

a

b
b

with US(UP(LF(f)))

a ∨ α ε

α ε ∨ α

a ∨ b

b
b

b

with UP(US(LF(f)))

Fig. 14: Three equivalent automata built with variants of Algorithm 1 for the
formula a∨α where α abbreviates b⋆ : b. (Note that α is equivalent to b+ but the
algorithm does not know that.) We have LF(α) = {(b, ε), (b, α)} so it follows that
LF(a ∨ α) = {(a, ε), (b, ε), (b, α)}. Applying UP first on the initial formula does
not leave anything for US to simplify: US(UP(LF(a ∨ α))) = UP(LF(a ∨ α)) =
{(a, ε), (b, ε ∨ α)}. Conversely, applying US first makes UP useless in this case:
UP(US(LF(a ∨ α))) = US(LF(a ∨ α)) = {(a ∨ b, ε), (b, α)}.

Corollary 1. For any expression r, the set ∂Σ+r is finite.

Proof. Straightforward induction on the grammar of r, using Lemma 2. ⊓⊔

Since Terms(r) = ∂Σ+r ∪ {r}, this concludes the proof of Theorem 2.

Lemma 2 can actually be used to prove to some finer bounds on some subsets
of SEREs:

Corollary 2. For a SERE r, let ∥r∥ denote the number of occurrences of max-
imal Boolean subformulas in r (i.e., the number of times rule “ b” was used to
produce r with the grammar given in Definition 2).

1. If r does not use operators ∧ and fm, we have |∂Σ+r| ≤ ∥r∥.
(In other words, adding the “ :” operator to the set of classical regular oper-
ators preserves the bound established by Antimirov [2, Theorem 3.4].)

2. If r does not use operator fm, we have |∂Σ+r| ≤ 2∥r∥.

Proof. Straightforward induction on the grammar of r, using Lemma 2. ⊓⊔

E US ◦ UP vs. UP ◦ US

As mentioned in Section 4 it is not clear if one should use US before or af-
ter UP. Figure 14 shows one case where replacing LF(f) by US(UP(LF(f))) in
Algorithm 1 produces a smaller automaton than when using UP(US(LF(f))).
Figure 15 shows an opposite case, where using US(UP(LF(f))) results in a larger
automaton than with UP(US(LF(f))).
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β⋆ β ; β⋆

γ ; β⋆

b

b

b

bb ∧ c

with LF(f)

β⋆

(β ∨ γ) ; β⋆ β ; β⋆

b

b

b ∧ c

b

with US(UP(LF(f)))

β⋆

(β ∨ γ) ; β⋆

b

b

with US(UP(LF(f)))

Fig. 15: Three equivalent automata built with variants of Algorithm 1 for the
formula β⋆ where β = (b⋆∧(1∨(1;c))⋆). We also use γ = (b⋆∧(c ;((1∨(1;c))⋆))).
We have LF(β⋆) = {(b, β ; β⋆), (b, γ ; β⋆)}, LF(β ; β⋆) = LF(β⋆), and LF(γ ; β⋆) =
{(b∧c, β;β⋆)}. The order of US and UP does not change anything when processing
the initial state; we have US(UP(LF(β⋆))) = UP(US(LF(β⋆))) = {(b, (β∨γ);β⋆)}.
However it does have an influence when processing (β ∨ γ) ; β⋆. Let us call
L = LF((β ∨ γ) ; β⋆) = {(b, β ; β⋆), (b, γ ; β⋆), (b ∧ c, β ; β⋆)}. Then US(UP(L)) =
UP(L) = {(b, (β ∨ γ) ; β⋆), (b∧ c, β ; β⋆)} but US(L) = {(b, β ; β⋆), (b, γ ; β⋆)} and
therefore US(L) = {(b, (β ∨ γ) ; β⋆)}.

F Implementation Considerations

We now discuss several topics related to our implementation of linear forms in
Spot [12], and their use in Algorithm 1. We mention alternate implementations
we attempted, in hope that that can give new ideas to the reader.

Since all SEREs handled during translation are combinations of sub-formulas
of the original SERE, we represent all SEREs as a direct acyclic graph in which
each sub-formula has a unique representation. A node in this DAG stores an
operator and a list of pointers to the nodes of its operands. A global unique-
ness table allows to map a pair (operator, operands) to the unique node that
represents it if it exists in the graph. Additionally, we apply the rules (A)–(F)
(from page 3) during the construction of the node. In particular, for rule (A),
we handle associative operators as n-ary operators, and we inline their operands
when they have the same top-level operator. Rule (C) is achieved by sorting all
operands (for instance in their node creation order), and this then makes it easy
to locate duplicate elements for rule (I1).

Linear forms, as introduced in Definition 6 are sets of pairs (pi, si) where pi is
a Boolean formula which we represent as a BDD, and si is a SERE. Several data
structures could be used to represent a set of such pairs, and the choice of the
data structure could also depend on whether we later plan to use UP or US. For
instance if one plans to use UP, it is tempting to represent linear forms as hash
maps that map each pi to its si, so that the latter can be updated whenever a
new pair (pi, s

′
i) is introduced into the linear form. However, during development

we noticed that linear forms were usually very small (average 3.12, median 1),
making the construction of such mappings more expensive than simpler data
structures. As a consequence, we simply represent them as arrays of pairs. If UP
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or US needs to be applied, we first sort those pairs by prefixes or suffixes, and
then merge the relevant pairs.

In classical algorithms to translate LTL formulas into Büchi automata, it
is also common to rewrite any LTL formula φ into an equivalent form φ =∨

i pi ∧ X si where pi is a Boolean formula that has to be verified now, while
si is another LTL formula to be verified on the next step. This LTL rewriting,
which has been called “disjunctive normal form” by some [20] is just a linear
form in disguise. Couvreur’s algorithm [8], which is implemented in Spot, has
a convenient representation of these normal forms. It uses BDDs: since pi is a
Boolean formula, they are converted to BDDs in a straightforward way, and new
BDD variable are introduced to represent each subformula of the form Xsi . Once
a BDD has been constructed for the full formula, its pairs (pi, si) can be recovered
by computing prime implicants. The whole process has a few advantages: firstly
a BDD representation is unique for two equivalent formulas, so it can be used to
label states in an algorithm similar to Algorithm 3, secondly extracting prime
implicants will automatically remove some of the pairs (pi, si) that were already
covered by another one. As it was already used in Spot, we initially tried to
use this representation for linear forms, however, and probably because of the
average size of linear forms, we found that it was very slow compared to our
array-based representation of linear forms.

G Distributions of SERE In Our Dataset

In this appendix we detail how the SEREs of our benchmark were generated. As
mentioned in Section 6, we used Spot’s randltl --sere4 to generated random
SERE.

We used option --sere-prio=fstar=0,fstar b=0,star b=0,andnlm=0 to
disable some additional operators not discussed in this article. fstar is a refer-
ence to the “fusion star” operator introduced by Dax et al. [10] which is to “:”
what “⋆” is to “;”. The fstar b and star b are bounded variant of these two
star operators, where a minimum and maximum number of repetition is given.
The andnlm is a “non length-matching” intersection, present in both SVA and
PSL, but that can be defined as syntactic sugar. It should be pointed out that
Spot’s constructors for SEREs have more simplification rules than just (A)–(F).
For instance a ; a ; a⋆ will automatically be turned into a “bounded star” a⋆2..

that has to repeat at least twice. Although we did not mention those operators
in the paper, our implementation support those in the obvious way. A complete
list of reduction rules Spot systematically applies can be found in the “trivial
identities” sections of https://spot.lre.epita.fr/tl.pdf.

randltl is also passed argument --tree-size=20..40 25 to construct syn-
tactic trees with between 20 and 40 nodes (operators or atomic propositions),
using up to 25 distinct atomic propositions. Because nodes are counted during
random generation, before actually constructing the SERE with rules (A)–(F),

4 https://spot.lre.epita.fr/randltl.html

https://spot.lre.epita.fr/tl.pdf
https://spot.lre.epita.fr/randltl.html
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the resulting SERE may have a much smaller size. Eventually, we kept only
formulas that had a size up to 35 and at most 15 atomic propositions.

We let randltl generate an infinite amount of unique SEREs, and grouped
them according to their final size and count of unique atomic propositions, as
shown in Table 1. Each group was capped to 50 SEREs, and we stopped the
generation once we had 12500 formulas, as it became harder to stumble upon
formulas that would fill incomplete groups.

As an example, the set of 5 formulas contained in the group for |φ| = 2 and
|AP | = 1 is {¬a, a⋆, a⋆1.., a⋆2.., a⋆2..2}. These would correspond to the formulas
{¬a, a⋆, (a ; a⋆), (a ; a ; a⋆), (a ; a)} if we restrict ourselves to the notations of
Section 2.
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Table 1: Distribution of SEREs based on their size and count of distinct atomic
propositions

|φ| |AP |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 1
2 5
3 10 6
4 47 45 3
5 50 50 50 3
6 50 50 50 50 3
7 50 50 50 50 36 2
8 50 50 50 50 50 18
9 50 50 50 50 50 50 8

10 50 50 50 50 50 50 38 2
11 33 50 50 50 50 50 50 8
12 13 50 50 50 50 50 50 33 1
13 5 50 50 50 50 50 50 50 3
14 2 50 50 50 50 50 50 50 21
15 1 40 50 50 50 50 50 50 50 6
16 14 50 50 50 50 50 50 50 16 1
17 8 50 50 50 50 50 50 50 50 2
18 5 50 50 50 50 50 50 50 50 4
19 50 50 50 50 50 50 50 50 25 1
20 24 50 50 50 50 50 50 50 50 7
21 15 50 50 50 50 50 50 50 50 15
22 8 50 50 50 50 50 50 50 50 50 3
23 4 50 50 50 50 50 50 50 50 50 14
24 3 32 50 50 50 50 50 50 50 50 19
25 1 15 50 50 50 50 50 50 50 50 49 2
26 8 50 50 50 50 50 50 50 50 50 5 1
27 3 50 50 50 50 50 50 50 50 50 17
28 1 27 50 50 50 50 50 50 50 50 50 1
29 13 50 50 50 50 50 50 50 50 50 11
30 18 50 50 50 50 50 50 50 50 50 14
31 7 50 50 50 50 50 50 50 50 50 29
32 2 37 50 50 50 50 50 50 50 50 49
33 2 23 50 50 50 50 50 50 50 50 50
34 7 50 50 50 50 50 50 50 50 50
35 1 1 43 50 50 50 50 50 50 50 50
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