
New Algorithms For Multivalued Component Trees

Nicolas Passat1 Romain Perrin2 Jimmy Francky Randrianasoa2,3 Camille Kurtz4 Benoît Naegel2

1 Université de Reims Champagne Ardenne, CRESTIC, Reims, France
2 Université de Strasbourg, CNRS, ICube, Strasbourg, France

3 EPITA Research Laboratory (LRE), Paris, France
4 Université Paris Cité, LIPADE, Paris, France

nicolas.passat@univ-reims.fr

Résumé
Les structures arborescentes peuvent modéliser les
images—et plus généralement les graphes valués—à des
fins de traitement et d’analyse. Dans ce cadre, l’arbre des
coupes a été nativement proposé pour les images en ni-
veaux de gris et, plus généralement, pour les graphes va-
lués totalement ordonnés. Il y a dix ans, la notion d’arbre
des coupes multivalués a été introduite pour assouplir cette
contrainte de niveaux de gris / ordre total. Dans cet ar-
ticle algorithmique, nous fournissons de nouveaux outils
pour traiter les arbres des coupes multivalués. Nos contri-
butions sont doubles : (1) nous proposons un nouvel algo-
rithme pour la construction de l’arbre des coupes multiva-
lués ; (2) nous proposons deux stratégies pour construire
des ordres hiérarchiques sur des ensembles de valeurs, né-
cessaires pour construire les arbres des coupes multivalués
d’images / de graphes reposant sur de tels ensembles de va-
leurs.

Mots Clef
Algorithmique, images / graphes valués, arbres des coupes
multivalués, ordres hiérarchiques, opérateurs connexes,
morphologie mathématique.

Abstract
Tree-based structures can model images—and more gene-
rally valued graphs—for processing and analysis purpose.
In this framework, the component tree was natively desi-
gned for grey-level images—and more generally totally or-
dered valued graphs. Ten years ago, the notion of a mul-
tivalued component tree was introduced to relax this grey-
level / total order constraint. In this algorithmic paper, we
provide new tools to handle multivalued component trees.
Our contributions are twofold : (1) we propose a new al-
gorithm for the construction of the multivalued component
tree ; (2) we propose two strategies for building hierarchi-
cal orders on value sets, required to further build the multi-
valued component trees of images / graphs relying on such
value sets. Code available at : https://github.com/
bnaegel/multivalued_component_tree.

Keywords
Algorithmics, images / valued graphs, multivalued com-
ponent trees, hierarchical ordering, connected operators,
mathematical morphology.

1 Introduction
Building trees for modeling images is a historical research
topic which was mainly investigated in field of mathema-
tical morphology. The trees developed in this framework
model in a compact way the space of the possible partitions
of an image induced by its mixed spatial-spectral compo-
sition. These so-called morphological trees can be subdi-
vided into two families, which build upon either total or
partial partitions. The archetype of the first family is the
binary partition tree [22] while the archetype of the second
is the component tree [23].
Based on these trees, various image processing and ana-
lysis methods were developed, gathered under the name
of connected operators [24, 25]. The success of morpho-
logical trees and connected operators relies on their low
cost in terms of construction and handling. Regarding their
construction, they can be built in quasi-linear time [22, 3].
Regarding their involvement in image processing / analy-
sis tasks, the two main paradigms of attribute-based node
selection [2, 8] and optimal cut computation [6, 9] can be
carried out in linear time.
Over the last years, efforts were geared towards enriching
the framework of morphological hierarchies with new
structures that generalize classical ones. In this context, the
notion of multivalued component tree [11, 10] was propo-
sed ten years ago as a subfamily of the component graphs
[16] which generalize the classical component tree [23].
This new paradigm of multivalued component tree had
been designed in order to build a component tree on images
where values are organised with respect to a (partial) hie-
rarchical order relation, whereas the standard component
tree requires a total order.
This is an algorithmic article. It provides new tools man-
datory for handling the multivalued component tree. First,
we propose a new approach for building the multivalued

https://github.com/bnaegel/multivalued_component_tree
https://github.com/bnaegel/multivalued_component_tree

component tree (Sect. 4). By contrast with an initial al-
gorithm proposed in [10] (which required some pre- and
post-processings to rewrite multivalued component tree
construction as component tree construction), we now pro-
vide a standalone algorithm that directly builds a multiva-
lued component tree from its multivalued image. Second,
we provide two strategies for endowing a set of values with
hierarchical order relations, adapted to the further construc-
tion of multivalued component trees (Sect. 5). Both stra-
tegies rely on the construction of morphological trees—
component trees or binary partition trees—on/from a set
of values considered itself as an image—or a valued graph.
The other parts of this article are organized as follows.
In Sect. 2, we recall related works on the morphological
trees. In Sect. 3, we provide the required definitions and
notions related to the (multivalued) component tree. Sect. 6
concludes the article.

2 Related works
A morphological tree models an image defined as a func-
tion F : Ω → V that associates to each point x of its sup-
port Ω a value F (x) within the set of values V. In general,
Ω is endowed with an adjacency relation ⌢. In other words,
(Ω,⌢) is a non-directed graph. By side effect, a morpholo-
gical tree can model valued graphs, and not only images.
Morphological trees are partition trees. Indeed, they are
created by stacking a finite sequence of partitions of Ω.
Each partition is composed of subsets X ⊆ Ω that consti-
tute the nodes (root, internal nodes, leaves) of the tree, and
a tree models the inclusion relation between them. Such
trees can be classified in two main families : those origina-
ted either from (1) total partitions or (2) partial partitions
of Ω.
The archetype of the total partition trees is the binary par-
tition tree [22] (also declined under variants : α-tree [26],
watershed tree [13], etc.). Except the leaves, each node is
a connected subset X ⊆ Ω which has two children nodes
X1 and X2 that form a partition of X, leading to a top-down
binary decomposition of the root Ω of the tree into subsets
of decreasing size. The construction of such trees is guided
by one or many [19] criteria which determine the merging
order of the smallest subsets provided by an initial partition
of Ω, that defines the leaves of the tree.
The archetype of the partial partition trees is the component
tree [23] (also declined under variants : hyperconnection
tree [18], tree of shapes [12], topological tree of shapes
[15], etc.). The component tree is built from successive
threshold sets, at each value of V of the image F . The
component tree models the inclusion relation between the
connected components of these threshold sets. Each node
is a subset X ⊆ Ω corresponding to a connected component
at a given value v ∈ V. If X is not a flat zone of the image,
it has k ≥ 1 children nodes Xi (1 ≤ i ≤ k) that form a parti-
tion of a strict subset Y ⊂ X, which corresponds to the part
of X where the values of F are strictly greater than v.
Many efforts were dedicated to the efficient construction of

morphological trees, and especially the component tree. An
overview of the classical algorithms, based e.g. on flooding
or union-find paradigms, can be found in [3]. A recent trend
is also to develop parallel algorithms, based on distributed
paradigms [5, 4] or GPU-based approaches [1].

3 Multivalued component tree
Let Ω be a finite set and ⌢ an adjacency (irreflexive,
symmetric) relation on Ω that induces the (equivalence)
connectedness relation by reflexive-transitive closure of ⌢.
The couple G = (Ω,⌢) is a non-directed graph. For any
subset X ⊆ Ω, we note C[X] the set of the connected com-
ponents (i.e. the maximal connected sets) of the subgraph
(X,⌢) of G induced by X. We assume that G is connected,
i.e. C[Ω] = {Ω}. See Fig. 1(b).
Let V be a finite set and ⩽ a hierarchical order on V, i.e. an
order (1) which admits a minimum (resp. a maximum) and
(2) such that for any v ∈ V, the subset of the elements lower
(resp. greater) than v is totally ordered by ⩽. See Fig. 1(a).
A total order is a hierarchical order. Thus, all the defini-
tions given below for the multivalued component tree [10]
generalize those of the classical component tree [23].
Let us consider an image F defined as a function F : Ω→
V. See Fig. 1(b). The threshold set of F at value v ∈ V is
defined by

Λv(F) = {x ∈ Ω | v ⩽ F (x)} (1)

See Fig. 2(a). We set

Θ =
⋃
v∈V

C[Λv(F)] (2)

which gathers the connected components at each threshold
set Λv(F) (v ∈ V). The elements of Θ are called the nodes
of the multivalued component tree.
A node may be generated at many threshold values (see the
“T-shaped” connected component in Fig. 2(a)). In particu-
lar, for any X ∈ Θ, we set

I(X) = {v ∈ V | X ∈ C[Λv(F)]} (3)

and we define the remanence τ(X) of X as the number of
threshold sets to which X belongs, i.e. as

τ(X) = |I(X)| (4)

We also set ω(X) as the maximal value of threshold sets to
which X belongs, i.e. as

ω(X) =
⩽∨
I(X) (5)

For instance, for the “T-shaped” connected component X
in Fig. 2, which belongs to Λc(F), Λg(F) and Λh(F), we
have I(X) = {c,g,h}, the remanence of X is τ(X) = 3 and we
have have ω(X) = h, since c ⩽ g ⩽ h.
The inclusion relation ⊆ is a hierarchical order on Θ. We
note ◁ the reflexive-transitive reduction of ⊆ with respect

a

b c

d e f g

h i

(a) (V,⩽) (b) F : Ω→ V

Figure 1 – (a) A set of values V = {a,b,c,d,e,f,g,h,i}, en-
dowed with a hierarchical order ⩽ such that the minimum
is a and the maximal elements are d, e, f, h, i. This orde-
red set is depicted here as its Hasse diagram, which is—by
definition—a tree. (b) A multivalued image F : Ω → V
built on the support Ω = [[0, 5]]2 (squares) endowed with
the adjacency ⌢ (segments), and taking its values in V (a).
The colour of each square is associated to the value of the
corresponding point.

to Θ. The couple T = (Θ,◁), i.e. the Hasse diagram of
(Θ,⊆), is a tree called the multivalued component tree. See
Fig. 2(b).
For any node X ∈ Θ, we define the proper part ρ(X) ⊆ Ω of
X as

ρ(X) = X \
⋃
Y◁X

Y = {x ∈ Ω | F (x) = ω(X)} (6)

The multivalued component treeT is an image model of the
image F . Indeed, we can reconstruct F from T as follows

∀x ∈ Ω,F (x) =
⩽∨

X∈Θ

1(X,ω(X))(x) (7)

where 1(A,u) : Ω → V is the cylinder function defined by
1(A,u)(x) = u if x ∈ A ⊆ Ω and

∧⩽ V (the minimum of
(V,⩽)) otherwise.
These definitions given for the multivalued component tree
are similar to those of the standard component tree. The
only differences are the following :

— ⩽ is a hierarchical order whereas it is a total order
for the component tree ;

— it may happen that ρ(X) = ∅ whereas we have
ρ(X) , ∅ for the component tree.

4 Building the multivalued com-
ponent tree

4.1 Reminders of the previous algorithm
In [10], a first strategy had been proposed for building the
multivalued component tree. The main idea was to rewrite
the image F : Ω → V as an image F̂ : Ω̂ → V̂ where
Ω̂ ⊇ Ω and V̂ = [[0, p]] ⊂ N with p ≤ |V|. The set V̂
was endowed with the total order ≤ on N such that there
is a homomorphism from (V,⩽) to (V̂,≤) induced by the

(a) Λv(F) for v ∈ V (b) T = (Θ,◁)

Figure 2 – (a) The nine threshold sets Λv(F) for the image
F of Fig. 1(b). The squares depicted in color (resp. white)
belong (resp. do not belong) toΛv(F). Note thatΛf(F) = ∅
since the image F has no point of value f. Also note that
Λg(F) , ∅ whereas F has no point of value g. This is jus-
tified by the fact that Λg(F) is partitioned by Λh(F) and
Λi(F). A connected component (“T-shaped”, in the upper-
left part of the image) is common to the threshold sets
Λc(F),Λg(F) andΛh(F). (b) The multivalued component-
trees T = (Θ,◁) of the image F of Fig. 1(b). Each disk /
hexagon corresponds to a node X ⊆ Ω of Θ (the unique
hexagonal node X corresponds to the three occurrences of
the “T-shaped” connected component). The color of the
disk / hexagon corresponds to the value ω(X) of the node.

equivalence relation on V that gathers the values of equal
distance with respect to the minimum

∧⩽ V in the Hasse
diagram of (V,⩽). The set Ω̂ was endowed with an adja-
cency ⌢

Ω̂
such that there is an increasing homeomorphism

from the graph (Ω,⌢) to the graph (Ω̂,⌢
Ω̂

). The latter can
be defined by adding a new vertex ε{x,y} in Ω̂, and replacing
the adjacency link x ⌢ y by the two links x ⌢ ε{x,y} and
ε{x,y} ⌢ y, whenever the two vertices x, y ∈ Ω are such that
x ⌢ y while F (x) and F (y) are non-comparable with res-
pect to ⩽. It was proved that the component tree T̂ of F̂ is
isomorphic with the multivalued component tree T of F .
This was then possible to build a multivalued component
tree by using any algorithm dedicated to the construction
of the component tree, at the cost of (1) the preprocessing
that builds F̂ from F , and (2) a post-processing that re-
trieves T = (Θ,◁) from T̂ = (Θ̂, ◁̂) by removing from the
proper part ρ(X) of each node X ∈ Θ̂ the elements of X \Ω
and by substituting the values of V to those of V̂ in the
definition of ω(X).

4.2 A new algorithm
We now present a new alternative algorithm that no lon-
ger requires such pre-conditioning of the image F . The
construction scheme is detailed in Alg. 1 and Func. Flood.
The proposed strategy is derived from the component tree
construction presented by Salembier et al. in [23]. It also
finds inspiration in the mask-based algorithm developed by
Ouzounis et al. in [14].
The proposed algorithm relies on the following data struc-

Algorithme 1 : Build the multivalued component tree
Input : (Ω,⌢), (V,⩽),F : Ω→ V
Output : T = (Θ,◁)

1 Build nodes
2 Build points
3 Build status
4 Build nb_nodes
5 Build index
6 Build progress
7 vmin :=

∧⩽ V
8 Choose xmin ∈ Ω such that F (xmin) = vmin
9 points[vmin].add(xmin)

10 progress[vmin] := true
11 Flood(vmin)

tures :
— nodes : a 2D array which stores the nodes of the

multivalued component tree. The first dimension is
indexed by the values of V. The second dimension
is indexed by the identifiers of the nodes. In other
words, nodes encodes Θ ; nodes[v] encodes the
nodes of Θ at value v ; and nodes[v][i] encodes
the ith node of Θ at value v ;

— points : a 2D array which stores the processed
points of the image. The first dimension is indexed
by the values of V. In other words, points[v] en-
codes all the points x ∈ Ω currently processed “at
value v” ;

— status : a 1D array which stores the status of each
point of the image. For any point x ∈ Ω, we have
status[x] = −1 if x is unprocessed ; status[x]
= 0 if x belongs to points ; and status[x] = i >
0 if x belongs to the proper part ρ(X) of the node X
stored in nodes[F (x)][i] ;

— nb_nodes and index : two 1D arrays which store
the number of nodes already fully built and the in-
dex of the node currently built at each value of V,
respectively ;

— progress : a 1D array which indicates if there
exists a node at value v, currently under construc-
tion or to be built, which is an ancestor of the node
at value u currently being defined.

By comparison with the component tree construction de-
tailed in [23], the one proposed here for multivalued com-
ponent tree construction differs with regard to Flood as fol-
lows :

— In [23], we have x ∈ nodes[F (x)]. Here (Lines 7–
11), we may have x ∈ nodes[u] with u , F (x).
This happens when x is stored in nodes as the
neighbour of another point with a non-comparable
value. In such case, the chosen value u is the infi-
mum of these two non-comparable values, and we
have in particular u < F (x) ;

— For two adjacent points x ⌢ y, it may occur that
F (x) and F (y) be non-comparable. In particular,

Fonction Flood
Input : u ∈ V : current level
Output : w ∈ V : value of the parent node of the root

of the built (partial) multivalued component
tree at value u (or ε if the node has no parent)

1 while !(points[u].empty()) do
2 x := points[u].remove()
3 if index[u] > nb_nodes[u] then
4 nb_nodes[u] := index[u]
5 X := create_node() // new node in Θ
6 nodes[u].insert(X)

7 if F (x) , u then
8 w := F (x)
9 points[w].add(x)

10 progress[w] := true
11 while u < w do w := Flood(w)
12 else
13 status[x] := index[u]
14 nodes[u][index[u]].add_to_proper_part(x)

15 foreach y ⌢ x do
16 w := F (y)
17 if status[y] = −1 then
18 if u ⩽ w then ŵ := w
19 else ŵ :=

∧⩽{u,w}
20 points[ŵ].add(y)
21 status[y] := 0
22 progress[ŵ] := true
23 while u < ŵ do ŵ := Flood(ŵ)

24 if u = vmin then
25 w := ε
26 else
27 w :=

∨⩽{w′ ∈ V | w′ < u}
28 while progress[w] = f alse do

w :=
∨⩽{w′ ∈ V | w′ < w}

29 create_edge(nodes[u][index[u]],nodes[w][index[w]])
// new edge in ◁

30 progress[u] = f alse
31 index[u]++
32 return w

the “else” case at Line 19 means that either u > w
or u and w are non-comparable. In the first case, ŵ
is set to w. In the second case, ŵ is the infimum of
u and w, distinct from them. In this last case, the
point y of value w is added to nodes[ŵ] and not to
nodes[w]. This will further result in the scenario
discussed above (Lines 7–11).

Note that nodes, points, status, nb_nodes, index,
progress, are handled as global variables. In practice,
Flood is then called for an input value v, with a given confi-
guration of these variables and modifies them.
An example of the behaviour of the algorithm is provi-

5

4

3

2

1

0
0 1 2 3 4 5

36

35

29

26

10

1

34

28

12

11

3

2

33

32

27

25

9

4

23

22

30

13

6

5

21

19

17

16

8

7

24

20

18

31

15

14

Figure 3 – An image F : Ω → V, following the same
conventions as in Fig. 1. The order of processing of the
points of Ω by Alg. 1, from the first processed point (labe-
led as “1”) to the last processed point (labeled as “36”). At
Line 14 of Alg. 1, the points y adjacent to x are considered
in the clockwise order, starting from the point on the right
of x.

ded in Figs. 3–4. The processing order of the points of
F : Ω → V is given in Fig. 3 from the first (1) to the
last one (36). Fig. 4 shows the progress of the construction
of the multivalued component tree of F with respect to the
processed points.

4.3 Complexity analysis
In this analysis, we assume that |⌢| = O(|Ω|), which is the
case in digital images. We note κ(V) the time cost required
to compare two elements ofV or to compute their infimum.
Depending on the way (V,⩽) is modeled, κ(V) may vary
from O(1) (with a space cost of O(|V|2)) to O(log |V|) or
O(|V|) (depending on the equilibrium of the Hasse diagram,
with a space cost of O(|V|)). We note h(V) ∈ N the height
of the Hasse diagram of (V,⩽).
Regarding the data structures :

— The size of nodes is O(|Ω|). It is initialized with a
time cost O(1). When accessing nodes[v] for rea-
ding or writing, the induced time cost isO(log(|Ω|)).

— The size of points is O(|Ω|). It is initialized with
a time cost O(|Ω| · κ(|V|)). When accessing a set
points[v] for reading or writing, the induced time
cost is O(1).

— The size of status is O(|Ω|). It is initialized with a
time cost O(|Ω|). Accessing it for reading or writing
has a time cost O(1).

— The size of nb_nodes and index is O(|Ω|). They
are initialized with a time cost O(1). Acces-
sing them for reading or writing has a time cost
O(log(|Ω|)).

— The size of progress is O(h(V)). It is initialized
with a time cost O(1). Accessing it for reading or
writing has a time cost O(log(h(V))).

Based on these considerations, the time cost for Alg. 1 (ex-
cept Line 11) is O(|Ω| · κ(|V|)).

The time cost of Flood depends on :
— the size of Θ. In particular, for each node of Θ,

Flood is called once, with an induced time cost
O(log(|Ω|) + log(h(V))) related to Lines 1 and 30–
31 ;

— the size of ◁. In particular, for each edge of ◁,
Flood is called once, with an induced time cost
O(τ(X) · (log(h(V))) + κ(|V|)) related to Lines 24–
29 (where X is the node associated to the processed
edge (X,Y)) ;

— the number of points of Ω. In particular, for each
point x ∈ Ω, the while loop of Flood (Lines 2–
23) is run once or twice, with an induced time cost
O(log(|Ω|) + log(h(V)) + κ(V)).

It follows that the overall time cost of the construction pro-
cess (Alg. 1 and Func. Flood) is

T = O
(
|Ω| ·
(

log(|Ω|)+h(V) · log(h(V))+h(V) ·κ(|V|)
))

(8)

If the Hasse diagram of (V,⩽) is well balanced, the time
cost becomes

T = O
(
|Ω| ·
(
log(|Ω|) + (log(|V|))2

))
(9)

5 Hierarchical order construction
Building the multivalued component tree of an image F :
Ω→ V requires a hierarchical order on the set of values V.
In this section, we discuss the ways to endow V with such
hierarchical orders (or, more generally, preorders) ⩽. Two
strategies are proposed :

— building a preorder ⩽ on the only values of V
(Sect. 5.1) ;

— enriching V with additional values leading to a lar-
ger set W and defining an order ⩽ on W so that
the values of V are the maximal elements of (W,⩽)
(Sect. 5.2).

5.1 (Pre)ordering the value set
We first aim to build a hierarchical preorder ⩽V onV. Equi-
valently, we must set :

— an equivalence relation ∼ on V that gathers values
which are mutually and symmetrically comparable,
leading to a quotient set V/∼, noted K ;

— a hierarchical order ⩽K on K.
This preorder ⩽V is then defined, for all u, v ∈ V, by

(u ⩽V v)⇐⇒ ([u]∼ ⩽K [v]∼) (10)

Let us come back to the notion of a component tree (see
Sect. 3 by assuming that ⩽ is a total order). We consider
a graph G∆ = (∆,⌢∆) where ∆ is a finite set and ⌢∆ is an
adjacency on∆, and a function δ : ∆→ N (withN endowed
with the usual ≤ relation). Following Sect. 3, one can build
the component tree T∆ = (Θ∆,◁∆) of (G∆, δ).
The setΘ∆ is a cover of ∆. More precisely, we have

⋃
Θ∆ =

∆ and ∀A ∈ Θ∆, A , ∅. However, two distinct elements
A, B ∈ ∆ may have a non-empty intersection. Indeed, for

(a) 1 (b) 2–3 (c) 4 (d) 5–6 (e) 7–8 (f) 9

(g) 10 (h) 11 (i) – (j) 12 (k) – (l) 13–16

(m) 17–18 (n) – (o) 19–21 (p) – (q) 22–23 (r) 24

(s) 25–32 (t) 33 (u) 34 (v) – (w) 35–36 (x) –

Figure 4 – Construction of the multivalued component-tree of the image F : Ω → V of Fig. 3. The number(s) in the
subfigure captions (a–x) correspond to the points x ∈ Ω processed by Alg. 1 at the current stage, as depicted in Fig. 3. At a
current stage : a plain coloured node is fully built ; a contour-colored node is under construction ; a non-colored node has not
been considered yet ; a black edge is built ; a light gray edge is not built.

all A, B ∈ ∆ we have A∩B , ∅ ⇒ A ⊆ B∨B ⊆ A. This last
point may prohibit Θ∆ to be a partition of ∆. Nonetheless,
we can define the set ∆⋆ from ∆ composed of the (non-
empty) proper parts of the nodes of Θ∆. Given a node A ∈
Θ∆, the subset A⋆ = ρ(A) ⊆ A is defined as in Eq. (6). The
set Θ⋆

∆
is then defined as

Θ⋆∆ = {A
⋆ | A ∈ Θ} (11)

In particular, the application that maps Θ∆ onto Θ⋆
∆

is a bi-
jection, andΘ⋆

∆
is a partition of ∆. It follows thatΘ∆ defines

an equivalence relation ∼∆ on ∆.
The component tree (Θ∆,◁∆) is the Hasse diagram of the
ordered set (Θ∆,⊆). Since Θ∆ and Θ⋆

∆
are in bijection, we

can derive the order ⊆⋆ on Θ⋆
∆

by(
A⋆ ⊆⋆ B⋆

)
⇐⇒ (A ⊆ B) (12)

The Hasse diagram (Θ⋆
∆
,◁⋆
∆

) of (Θ⋆
∆
,⊆⋆) is then isomor-

phic to the Hasse diagram (Θ∆,◁∆), i.e. the component tree
of (G∆, δ).
Following the notations given at the beginning of this sec-
tion, and setting ∆ = V, ∼∆ = ∼, K = Θ⋆

∆
and ⊆⋆ = ⩽K,

we can define a hierarchical preorder ⩽V on V from a com-
ponent tree. In particular, it is only required that V be en-
dowed with the two elements necessary for building this
component tree, namely :

— an adjacency relation ⌢V, allowing to map a graph
structure on V ;

— a function δV : V → N, allowing to associate to
each element ofV a value within the totally ordered
set (N,≤).

Example Let us consider a colour image F : Ω → V
where the colour values are encoded in the 8-bit per band
RGB space V = [[0, 255]]3. We model V as the RGB cube,
where each colour v = (r, g, b) ∈ [[0, 255]]3 corresponds to
a point in the Cartesian space. We endow V with the stan-
dard 6-adjacency ⌢V defined in digital topology [21], that
models the 1-distance between two colours with respect to
the ℓ1 norm. We set G∆ = (V,⌢V). Let us define δV as the
histogram of the image F . In other words, for any colour
v ∈ V, we set δV(v) = |{x ∈ Ω | F (x) = v}|. Based on the
above discussion, the component tree T∆ = (Θ∆,◁∆) built
from (G∆, δV) defines the Hasse diagram of a hierarchical
preorder ⩽V on V. This example is illustrated in a simpli-
fied version in Fig. 5. From F and ⩽V, it is then possible to
build the multivalued component tree of F induced by its
histogram.

5.2 Ordering the enriched value set
We now aim to build a hierarchical (pre)order ⩽W on a su-
perset W of V so that V = ▽⩽WW, i.e. the elements of V
are the maximal elements with respect to ⩽W.

(a) (b) (c)

Figure 5 – Illustration of the construction of a hierarchical preorder on a value set (see Sect. 5.1). (a) Top : an image
F : Ω → V. The set Ω is equal to [[0, 4]]2 and is endowed with an adjacency relation ⌢ corresponding to the 4-adjacency.
Bottom : the set V composed of 9 values. (b) Top : the histogram of the image F , used as function δV : V→ N. Bottom : the
set V is endowed with an adjacency ⌢V. (c) The component-tree of δV seen as an image from the set of values V to N where
V is endowed with ⌢V. This component-tree defines a hierarchical preorder ⩽, where the red value is the minimum, the dark
blue, yellow and grey values are the maximal elements, and where the three values light blue, green and fushia are mutually
greater and lower. Once V is endowed with ⩽, it becomes possible to compute the multivalued component-tree of the image
F : Ω→ V of (a) with respect to ⩽.

The smallest set W that can be proposed is W = V ∪ {⊥}
where ⊥ < V is a unique element added to V that acts
as minimum for ⩽W (such paradigm was investigated in
[20]). The induced hierarchical preorder (which is indeed
an order) is the relation ⩽W defined as {(⊥, v) | v ∈ V} with
⊥ =

∧⩽WW and V = ▽⩽WW. It is possible to build larger
supersetsW and to endow them with hierarchical preorders
⩽W that also fulfill the above assumption. Such setsW can
be of arbitrary size.
We first observe that defining a preorder instead of an or-
der is not relevant (by contrast with Sect. 5.1). LetW be a
set and ⩽W a hierarchical preorder on W. We assume that
▽⩽WW = V and

∧⩽WW = ⊥, with ⊥ ∈ W \ V. For any
w ∈ W, we set Vw = {v ∈ V | w ⩽W v} (note that Vw , ∅).
Let w1,w2 ∈W. For any w1,w2 ∈W, we have

(w1 ⩽W w2 ∧ w2 ⩽W w1) =⇒
(
Vw2 = Vw1

)
(13)

The image F can also be seen as a function F : Ω → W.
For any w ∈W, we have (see Eq. (1))

Λw(F) = {x ∈ Ω | w ⩽W F (x)} = {x ∈ Ω | F (x) ∈ Vw}

(14)
Now, let us consider two distinct values w1,w2 ∈ W such
that w1 ⩽W w2 and w2 ⩽W w1. From Eqs. (13–14) it follows
that C[Λw1 (F)] = C[Λw2 (F)]. In other words, relaxing the
antisymmetry property to define a preorder instead of an or-
der is useless, since it leads to define many times the same
nodes which are modeled once in Θ (see Eq. (2)). We can
then assume without loss of generality that ⩽W is a hierar-
chical order.
AlthoughW may be of arbitrary size, we now observe that
it is sufficient to define some setsW that may not be larger

than twice the size of V. Let us set VW = {Vw | w ∈ W} ⊆
2V. We define the equivalence relation ≡ onW by

(w1 ≡ w2)⇐⇒
(
Vw1 = Vw2

)
(15)

Let w ∈ W. The equivalence class [w]≡ is totally ordered
by ⩽W. We set ŵ =

∨⩽W [w]≡. We note Ŵ = {ŵ | w ∈ W}.
Let w1,w2 ∈W. We have

(w1 ⩽W w2) =⇒
(
ŵ1 ⩽W ŵ2

)
(16)

In other words, there is a homomorphism from (W,⩽W) to
(Ŵ,⩽Ŵ) where ⩽Ŵ is the restriction of ⩽W to Ŵ.
By construction, the set Ŵ is in bijection with VW. Since
V = ▽⩽WW, we also have V ⊆ Ŵ. Following Eq. (2), we
setΘW =

⋃
w∈W C[Λw(F)] andΘŴ =

⋃
w∈Ŵ C[Λw(F)]. We

have (ΘW,⊆) = (ΘŴ,⊆). It follows that the two associated
multivalued component trees are equal. As a conclusion,
instead of using a setW arbitrarily large and potentially in-
finite, a same multivalued component tree is obtained by
considering the set Ŵ, which is finite. Indeed, from the de-
finition of ≡, Ŵ is in bijection withVW ⊆ 2V. We even have
a stronger result, since the bijection between Ŵ and VW in-
duces an isomorphism between (Ŵ,⩽Ŵ) and (VW,⊆).
Let us now focus on the nature of the Hasse diagram of
(VW,⊆). The inclusion ⊆ onVW is a hierarchical order. The
Hasse diagram (VW,◁) is, in particular, a partition tree. The
fact that V = ▽⩽WW implies that {{v} | v ∈ V} = △⊆VW. It
follows that (VW,◁) is a total partition tree. A corollary of
this property is that |VW| < 2 · |V|.
To conclude on this analysis, it appears that for building
a hierarchical order ⩽W on a superset W of V so that

(a) (b) (c)

Figure 6 – Illustration of the construction of an order on a value set (see Sect. 5.2). (a) Top : an image F : Ω → V. The
set Ω is equal to [[0, 4]]2 and is endowed with an adjacency relation ⌢ corresponding to the 4-adjacency. Bottom : the set V
composed of 9 values, without initial ordering. (b) Top : the co-occurence matrix of the image F , used as a priority function
δ⌢V : ⌢V → N. Bottom : the set V is endowed with an adjacency ⌢V. (c) The binary partition tree of (V,⌢V) induced by δ⌢V .
This binary partition tree defines a hierarchical order ⩽ on an enriched set of valuesW where the values of V are the maximal
elements.

the elements of V be the maximal elements of ⩽W, i.e.
V = ▽⩽WW, the most simple, yet general solution is to
build a total partition tree from the initial, finest partition
of V, namely {{v} | v ∈ V}. This can be done by building a
(binary) partition tree, following the standard construction
algorithms proposed in [22]. To this end, it is only required
that V be endowed with :

— an adjacency relation ⌢V, allowing to map a graph
structure on V ;

— a priority function δ⌢V : ⌢V→ N, allowing to deter-
mine the couples of nodes to be merged in priority.

Example Let us consider an image F : Ω → V. The
support Ω is endowed with an adjacency relation ⌢. The
value space V is endowed with the adjacency relation ⌢V
so that G∆ = (V,⌢V) is an irreflexive complete graph (i.e.
∀u, v ∈ V, u , v ⇔ u ⌢V v). We define the co-occurrence
matrix [7] of the image F . This matrix M = (mu,v)u,v∈V

is of dimension |V| × |V|. For each couple (u, v) ∈ V ×
V, it is defined by mu,v = |{(x, y) ∈ Ω × Ω | x ⌢ y ∧
F (x) = u∧F (y) = v}|. We define the priority function δ⌢V :
⌢V → N so that for any (u, v) ∈ ⌢V, i.e. for any u ⌢V v,
we have δ⌢V ((u, v)) = mu,v. Based on the above discussion,
the partition-tree T∆ = (Θ∆,◁∆) built [22] from (G∆, δ⌢V)
defines the Hasse diagram of a hierarchical order ⩽V on V.
This example is illustrated in a simplified version in Fig. 6.
From F and ⩽V, it is then possible to build the multivalued
component tree of F induced by its co-occurrence matrix.

6 Conclusion
In this article, we have provided new algorithmic tools for
building the multivalued component tree, but also for desi-
gning hierarchical orders on sets of values, which is a re-
quired condition of images to be modeled via multivalued

component trees. In previous works [10], it had already
been observed that the multivalued component tree could
be efficiently involved for processing label images, espe-
cially on the context of hierarchical classification. Recent
advances in the study of component trees have shed light
on their links with persistent homology [15], and more ge-
nerally their ability to model high-level topological infor-
mation. In this context, component trees are being increa-
singly considered as relevant topological descriptors to be
embedded in deep-learning frameworks, e.g. for the design
of loss functions [17] or to model the image structure infor-
mation in self-supervised learning [27]. The contributions
proposed in this article allow to efficiently handle com-
ponent trees not only on grey-level images, but more ge-
nerally on any multivalued images endowed with a hierar-
chical order. This paves the way to the involvement of the
multivalued component trees in computer vision tasks (in
particular based on deep-learning) especially in the context
of multivalued data, for instance in semantic segmentation.

Acknowledgements
This work was supported by the French Agence Natio-
nale de la Recherche (grants ANR-20-THIA-0006, ANR-
20-CE45-0011, ANR-22-CE45-0034 and ANR-23-CE45-
0015).

Références
[1] N. Blin, E. Carlinet, F. Lemaitre, L. Lacassagne, and

T. Géraud. Max-tree computation on GPUs. IEEE
Transactions on Parallel and Distributed Systems,
33 :3520–3531, 2022.

[2] E. J. Breen and R. Jones. Attribute openings, thin-
nings, and granulometries. Computer Vision and
Image Understanding, 64 :377–389, 1996.

[3] E. Carlinet and T. Géraud. A comparative review of
component tree computation algorithms. IEEE Tran-
sactions on Image Processing, 23 :3885–3895, 2014.

[4] S. Gazagnes and M. H. F. Wilkinson. Distributed
connected component filtering and analysis in 2D and
3D tera-scale data sets. IEEE Transactions on Image
Processing, 30 :3664–3675, 2021.

[5] M. Götz, G. Cavallaro, T. Géraud, M. Book, and
M. Riedel. Parallel computation of component trees
on distributed memory machines. IEEE Transactions
on Parallel and Distributed Systems, 29 :2582–2598,
2018.

[6] L. Guigues, J.-P. Cocquerez, and H. Le Men. Scale-
sets image analysis. International Journal of Compu-
ter Vision, 68 :289–317, 2006.

[7] R. M. Haralick, K. S. Shanmugam, and I. Dinstein.
Textural features for image classification. IEEE Tran-
sactions on Systems, Man, and Cybernetics, 3 :610–
621, 1973.

[8] R. Jones. Connected filtering and segmentation using
component trees. Computer Vision and Image Un-
derstanding, 75 :215–228, 1999.

[9] B. R. Kiran and J. Serra. Global-local optimizations
by hierarchical cuts and climbing energies. Pattern
Recognition, 47 :12–24, 2014.

[10] C. Kurtz, B. Naegel, and N. Passat. Connected fil-
tering based on multivalued component-trees. IEEE
Transactions on Image Processing, 23 :5152–5164,
2014.

[11] C. Kurtz, Benoît Naegel, and Nicolas Passat. Mul-
tivalued component-tree filtering. In ICPR, Procs.,
pages 1008–1013, 2014.

[12] P. Monasse and F. Guichard. Scale-space from a le-
vel lines tree. Journal of Visual Communication and
Image Representation, 11 :224–236, 2000.

[13] L. Najman and M. Schmitt. Geodesic saliency of wa-
tershed contours and hierarchical segmentation. IEEE
Transactions on Pattern Analysis and Machine Intel-
ligence, 18 :1163–1173, 1996.

[14] G. K. Ouzounis and M. H. F. Wilkinson. Mask-based
second-generation connectivity and attribute filters.
IEEE Transactions on Pattern Analysis and Machine
Intelligence, 29 :990–1004, 2007.

[15] N. Passat, J. Mendes Forte, and Y. Kenmochi. Mor-
phological hierarchies : A unifying framework with
new trees. Journal of Mathematical Imaging and Vi-
sion, 65 :718–753, 2023.

[16] N. Passat and N. Naegel. Component-trees and multi-
valued images : Structural properties. Journal of Ma-
thematical Imaging and Vision, 49 :37–50, 2014.

[17] B. Perret and J. Cousty. Component tree loss func-
tion : Definition and optimization. In Discrete Geo-
metry and Mathematical Morphology (DGMM), Pro-
ceedings, volume 13493 of Lecture Notes in Compu-
ter Science, pages 248–260. Springer, 2022.

[18] B. Perret, S. Lefèvre, C. Collet, and É Slezak. Hy-
perconnections and hierarchical representations for
grayscale and multiband image processing. IEEE
Transactions on Image Processing, 21 :14–27, 2012.

[19] J. F. Randrianasoa, C. Kurtz, E. Desjardin, and
N. Passat. Binary partition tree construction from
multiple features for image segmentation. Pattern Re-
cognition, 84 :237–250, 2018.

[20] C. Ronse and V. Agnus. Morphology on label
images : Flat-type operators and connections. Journal
of Mathematical Imaging and Vision, 22 :283–307,
2005.

[21] A. Rosenfeld. Digital topology. The American Ma-
thematical Monthly, 86 :621–630, 1979.

[22] P. Salembier and L. Garrido. Binary partition tree as
an efficient representation for image processing, seg-
mentation, and information retrieval. IEEE Transac-
tions on Image Processing, 9 :561–576, 2000.

[23] P. Salembier, A. Oliveras, and L. Garrido. Anti-
extensive connected operators for image and se-
quence processing. IEEE Transactions on Image Pro-
cessing, 7 :555–570, 1998.

[24] P. Salembier and J. Serra. Flat zones filtering, connec-
ted operators, and filters by reconstruction. IEEE
Transactions on Image Processing, 4 :1153–1160,
1995.

[25] P. Salembier and M. H. F. Wilkinson. Connected ope-
rators. IEEE Signal Processing Magazine, 26 :136–
157, 2009.

[26] P. Soille. Constrained connectivity for hierarchical
image decomposition and simplification. IEEE Tran-
sactions on Pattern Analysis and Machine Intelli-
gence, 30 :1132–1145, 2008.

[27] Q. Tang, B. Du, and Y. Xu. Self-supervised learning
based on max-tree representation for medical image
segmentation. In IJCNN, Procs., pages 1–6, 2022.

	Introduction
	Related works
	Multivalued component tree
	Building the multivalued component tree
	Reminders of the previous algorithm
	A new algorithm
	Complexity analysis

	Hierarchical order construction
	(Pre)ordering the value set
	Ordering the enriched value set

	Conclusion

