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Abstract. Spherical fluorescent particle are micrometer-scale spherical
beads used in various areas of physics, chemistry or biology as markers
associated with local physical media. They are useful for example in fluid
dynamics to characterize flows, diffusion coefficients, viscosity or temper-
ature; they are used in cells dynamics to estimate mechanical strain and
stress at the micrometer scale. In order to estimate these physical mea-
surements, tracking these particles is necessary. Numerous approaches
and existing packages, both open-source and proprietary are available to
achieve tracking with a high degree of precision in 2D. However, little
such software is available to achieve tracking in 3D. One major difficulty
is that 3D confocal microscopy acquisition is not typically fast enough
to assume that the beads are stationary during the whole 3D scan. As
a result, beads may move between planar scans. Classical approaches to
3D segmentation may yield objects are not spherical. In this article, we
propose a 3D bead segmentation that deals with this situation.
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1 Introduction

The use of fluorescent beads as physical markers is common in many research
problems and applications related to fluid mechanics [9], rheology [4], and cell
biology [12].

Spherical bead tracking in confocal microscopy is a classical and well-studied
problem in image analysis. Recently, an ISBI challenge was organized to compare
state-of-the-art bead segmentation and tracking methods [3]. However, this very
challenge has exhibited a number of shortcomings.

First among them is the common assumption that beads are very small, simi-
lar in diameter to the optical limit of resolution of the microscope, i.e. 0.2-0.4µm.
In reality, beads can be much larger than this. 1-2µm diameters are commonly
used. This is due to the fact that larger beads are less expensive, more visible
and better adapted to some problems, for example when the surface of the bead



needs to be activated. In particular, tracking of very small beads is difficult when
there are many beads. Due to their larger dimension, a more precise location of
their center is also possible, whereas smaller beads are typically only made of a
few pixels and so a precise location of their center is imprecise.

A second assumption is that since beads are expected to be very small, they
are located in a single plane and are so acquired in a single pass. Unfortunately,
larger beads span several planes and need to be acquired over several scans,
which takes time.

Thirdly, a common assumption is that scanning time is negligible compared
with the studied motion. This is often true in mechanical cell studies. However,
in fluid analysis, beads are subjected to Brownian motion [2] and can move
significantly even in the absence of flow. This is a problem even during a single
3D acquisition since a bead can visible move as the confocal scan is taking place.

In this article, we study and propose solutions for comparatively large bead
segmentation and tracking. Due to Brownian motion, tracking must take place
both at the intra and inter-volume level. We present an application where we
measure the diffusion coefficient of the Brownian motion. This is useful for mea-
suring viscosity or temperature in fluid media [10].

2 Particle tracking

Our objective is to track relatively large beads (0.8-2µm in diameter) in 3D
confocal microscopy. We do not assume that the diameter is known precisely.
Typically most bead production processes allow a standard deviation of ± 10%.
Traditional confocal microscopy proceeds by scanning a 3D volume slice-by-slice.
Scanning a small area of a single slice, such as the few lines that may include a
bead, is fast enough that the intersection of a scanning plane with any bead can
be assumed to be a disk. However, scanning a whole slice can be slow, and so
the particle may move slightly in between slice acquisition.

We do not assume that the particle forms a perfect sphere. We do assume
that deviations from the sphere are relatively small. We also assume that the
slice separation is small enough so that each bead is scanned multiple times.
This is typically an adjustable parameter of the microscope.

Fig 1 summarize the pipeline we developed. We named “2D” the slices as
shown in Fig. 2. These 5 slices composed the 3D volume for a fixed time.

2.1 2D segmentation

The first step of our pipeline is a 2D segmentation of the beads and uses both
standard and modern mathematical morphology techniques [8]. The objective is
to obtain a binary image of the beads suitable for masking and labelling. The
steps are the following:

1. Supression of small local minimas: this is performed using a closing by re-
construction with an initial dilation by a disk of radius 4. This yields image
g.
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Fig. 1. Flowchart of our pipeline

2. Calculation of the min-tree of g.
3. Filtering of nodes according to multiple criteria: size must be smaller than

500, the grey-level intensity must be lower than 100, and the contrast of the
component greater than 80. We keep the maximal components meeting all
these criteria.

4. Regularisation of the selected blobs: holes are filled, and the components are
dilated with a 4-connected structuring element and opened with a disk of
radius 5.

An example of results of this procedure is shown in Fig. 3

2.2 3D regularization

For each acquisition time, we stack the corresponding 2D segmented slices. As the
segmentation is performed in 2D, and the beads may move significantly between
slices, some irregularities may appear at the bead boundaries, especially near
the bead poles. The first step is hence a regularization in the z axis to reconnect
these incomplete beads by applying a 2D closing with a disk of radius 1 in all
the xz planes.

2.3 3D individualization

As some beads can touch, we separated them using a classical watershed pro-
cedure. After noise removal with an opening on the binary image, we extract



Fig. 2. Consecutive depth (z) slices corresponding to a single time.

(a) (b) (c)

Fig. 3. Illustration of the segmentation procedure: (a) initial image, (b) result of the
segmentation described in the text, (c) overlay of the segmentation on the initial image.



beads markers using the distance transform with a threshold and the back-
ground marker. A watershed is then applied. The result is cleaned by removing
small objects using a volume criterion. All the steps are illustrated in Fig. 4.
Morphological parameters were empirically optimized on a small subset of the
data.

(a) (b) (c)

(d) (e)

Fig. 4. Results of the successive steps: (a) initial image, (b) inital segmentation, (c) 3d
regularization, (d) bead separation, (e) individualization and labeling.

2.4 Temporal identification

To label the beads at time t, we propagate the labels of the beads at the previous
time t − 1 by finding the intersection between the beads at t and t − 1. These
intersections are the markers used for the reconstruction by dilation. We hence
obtain for time t labels for the beads also present at time t − 1. The remain-
ing unlabeled beads are given new labels. Overall, this procedure is simple but
effective, as we will see in the result section.



3 Position estimation

In the previous section, 2D bead segmentation is performed and label clustered
in 3D. We consequently assume that a uniquely labeled object in 3D constitutes
a single bead.

Estimating the 3D position of each bead from their 2D slice is a challenge.
We propose to estimate 2D positions first, and derive the 3D position from an
estimation of the radius of the bead.

3.1 Centroid estimation in 2D

Various methods can be used to estimate the centroid of a disk. A least-square
best-fit disk can for example be used [6,5]. However these methods are more
appropriate when only a subset of the disk contour is known. Since the beads
are small, we can assume that most of them do not lie near the border of the field
of view, and so are totally visible. In this case, a moments-based method seems
more appropriate [7]. Let Mpq be a moment of order p+ q defined as follows:

Mpq =
∑
x

∑
y

xpyqI(x, y), (1)

where I(x, y) is the intensity of the image at position x, y. If we restrict I(x, y)
to be equal to 1 for the segmented bead with label l and 0 elsewhere, then

x̄l = M10

M00
; ȳl = M01

M00
, (2)

yield the coordinates of the centroid of bead l. Moments of order 0 and 1 are not
affected by isotropic blur or partial volume effects and are relatively resistant to
noise, and so this estimation is rather robust, as we will see later in simulations.
Moreover, we can also estimate the radius via the second order centered moments

µ20 = M20 − x̄M10 ; µ02 = M02 − ȳM01, (3)

and then for a disk µ20 = µ02 = π
8 r

4, or more simply from the disk area equation
r =

√
M00/π.

3.2 Centroid estimation in 3D with known bead radius

If we know the radius R of a bead to a good precision, we can estimate the depth
pR by noting that

pR = ±
√
R2 − r2, (4)

with r the estimated radius of the disk, as seen on Fig. 5
Unfortunately there is a sign uncertainty with this estimation, so a correct

estimation must include information from the other slices associated with the
same bead. Fig. 6 illustrates what happens, in a 2D x + z simplified setting.



Fig. 5. Bead depth estimation: R is the real radius, r the observed radius, and p the
estimated depth.

Each intersection between the bead and a scanning plane yields a disk (a line
in the drawing), from which two depths can be estimated, only one of which
is correct. The beads is moving between acquisitions, so there are two depths
estimations per slice. We assume the correct ones are those that minimize the
overall distance between them.

1

2

3

Fig. 6. When estimating the depth of the bead centroid over multiple slice acquisition
(labeled 1, 2 and 3 in the drawing), as the bead is moving during the acquisition, the
centroid depth varies and can be one of two possibilities. We select the depth estima-
tions that minimizes the overall Euclidean distance between them (i.e. corresponding
to the perimeter of the yellow triangle).



More formally, for every slice s, for every bead with label l we estimate two
centroid positions

cl,0s = (x̄l, ȳl, d(s)− pR(s)) (5)
cl,1s = (x̄l, ȳl, d(s) + pR(s)), (6)

with d(s) the depth of slice s and p given by (4). For every slice s we have two
choices. If v ∈ {0, 1}ns is a binary vector of length ns, the total square distance
is

d2
v,R =

ns−1∑
s=0
‖cl,v[s]
s − cl,v[(s+1) mod ns]

s ‖2, (7)

where a mod b is the remainder of the integer division of a by b, and assuming
without loss of generality that slices are numbered 0 to ns − 1.

We propose to select the vector v corresponding to the combination that
minimizes dv. Consequently, if there are ns slices for a bead, we need to test 2ns

combinations. In our experiments, we have 3-6 slices for each bead, meaning up
to 64 tests per bead, which is manageable. If we had more slices, this could be
a problem. In this case, a simplification would be to select the middle slice, and
for both centroid estimations related to this slice, compute the distance to the
two centroid position estimations to every other slides. In other words we now
minimize d′2v,R defined as follows:

d′2v,R =
ns−1∑
s=0
‖cl,v[s]
s − cl,v[bns/2c]

s ‖2, (8)

where bac is the integer part of a. The difference here is that each term of this
sum can be minimized independently, and so there are only 4ns combinations
to test, which is beneficial as soon as ns ≥ 4.

3.3 Centroid estimation in 3D with imprecise bead radius

If the radius is not known precisely and varies from bead to bead, which is often
the case, the problem is more difficult. We assume that the bead radius for each
bead is a deviate from a known Gaussian distribution of mean R̄ and standard
deviation σR. Typically, σr ≈ 0.1R̄.

Rl ∼ G(R̄, σR) (9)

Given the known observations for each bead, we also know that rl is greater
than the largest measured radius rmax = max{rs, s ∈ J0..ns − 1K}. We solve the
following mixed problem:

R∗l , v
∗ = arg min

R,v
d2
v,R + 1

2λ‖R− R̄‖
2 (10)

s.t. R ≥ rmax., (11)



where λ is a Lagrangian parameter, and the second term of (10) is the log-
likelihood of a Gaussian distribution for R, thus we expect λ to be proportional
to σ2

R. The tighter the distribution, the more important this term becomes.
For a given v binary vector, (4) is convex due to the constraint (11), the

constraint itself is linear since rmax is an observation, but both (7) and (8)
are smooth differences of convex functions, so this problem cannot be solved
by standard constrained convex optimisation methods [1]. However, it can be
tackled by DC methods [11]. In addition, the problem remains combinatorial in
v, as seen above, so we need to run several such DC problems, up to 2ns or 4ns
depending on whether we choose to optimise (7) or (8).

Since DC method solvers are complex to handle, we propose to solve (10)
using gradient descent with the d′ measure of (8), but taking as reference the
slice with the largest measured radius rmax instead of the middle slice. We set
max{rmax, R̄} as the initialization for R and λ = σR. In practice, the true R∗ is
very close to the largest observed radius.

4 Results on simulations

To test our method, we simulate N discrete sphere beads at high resolution
with a random radius sampled from a Gaussian distribution as described in the
previous section. The beads are subjected to isotropic Brownian motion and
depth-ordered slice acquisition. We down-sample the result to ensure sub-pixel
accurate positions. We estimate the radius of the intersection disk between each
slice and the bead via the area method, and the x̄, ȳ position via moments.
The z position and the bead radius is estimated as described above using the d′
method.

Fig. 7. A single simulated bead acquired over several layers subjected to Brownian
motion.

For this simulation, we simulate high-resolution beads 80 pixels in radius, in
a 3503 cube, acquired through 7 layers and subjected to Brownian motion with
an isotropic diffusion coefficient of 0.1 relative to the size of the cube, or 35 pixels
at high resolution. Low resolution images were down-sampled by a factor of 10
with nearest-neighbor interpolation. The diffusion coefficient of the Brownian
motion can be interpreted as the standard deviation of the the components of
the position of the center of the bead from one slice to the next. With Brownian
motion, the average deviation is zero.

Figure 7 shows the intersection of a single bead through successive slices.
The Brownian motion influence is significant and clearly seen. We simulated 100



beads, which generated 540 slices. Via our optimisation procedure, each slice
provides a 3D center estimate from which various measurements can be derived.
In particular, we compare the estimation of the center position to the simulated
ground truth. The results are shown in Table 1

Table 1. Positional RMS relative error

x y z

Relative error 1.6 10−3 1.6 10−3 8.2 10−3

On this table, we see that the average Euclidean position error in x and y
is very low. Indeed, a pixel error in 350 (the high-resolution size of the cube)
would translate into 2.8 10−3. However, the z estimation error is 5× greater,
which is still sub-pixel accurate at the low sub-sampled resolution, and so still
quite acceptable. We note that these estimates are the same as our estimate of
the average Brownian deviation, which should be zero.
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Fig. 8. Convergence of the diffusion estimator to a stable value (a) and its standard
deviation as a function of the number of slices (b).

On Fig. 8, we show the estimation of the relative Brownian diffusion coeffi-
cient as a function of the sample size. We expect a relative coefficient of 10−1,
i.e. the one we simulated. The x and y are very close to this estimate, but the z
diffusion estimation appears biased with a value about 70% as much as it should
be. All three estimators converge quickly and can be deemed reliable from about
50 slices, i.e. 10 beads or so, with a standard deviation of the estimate of diffusion
coefficient close to 10−2, ie. 10% error. With 40 beads, or 200 slices, the standard
deviation of the diffusion coefficient drops down to 5 10−3 or 5% relative error.

Currently, this means that our optimisation method is indeed good enough
for positional estimation in 3D, but that for more subtle measurements, like



diffusion coefficient estimations, 2D measurements are sufficient. We note that
we are able to measure this diffusion coefficient from single 3D acquisition only.

5 Results on real data

We applied our method on a video of 3µm beads, with ∆t = 0.5s. Resolution
is 0.125µm per pixel in x and y, and only 0.5µm per slide in z. Comparison
with manual labelling results show that we manage to correctly detect and label
all beads, as well as track each bead individually with zero label error between
3D volumes. However, we overestimate beads presence in the z-axis due to the
point spread function (PSF) of the microscope. In practice this means that beads
faintly appear in slices above and below their true position. This overestimation
is depicted in Fig. 9(c). On slice 0, we tend to find beads that are not supposed to
be segmented (false positives), i.e.the central bead of the illustration. This “over-
segmentation” is nonetheless acceptable as it remains coherent in 3D and does
not imply bias in 2D. In 3D, this can cause the bead radius to be overestimated,
and will need to be corrected in future work.

(a) (b) (c)

Fig. 9. Comparison of segmentation results: (a) original frame, (b) results of the first
step of the 2D segmentation procedure before regularization, and (c) after 3D regu-
larization. Top images are the entire xy slices, and the bottom is a xz view along the
z-axis

On this sample, using our 2D method, we estimate an average diffusion co-
efficient of 4.3 10−2 relative to the beads average diameter. Currently we do not
have the ground truth for this measurement.

6 Conclusion

In this article we tacked the problem of tracking fluorescent beads in confocal mi-
croscopy, when we do not assume that beads are small enough to be assimilated



to point sources, but instead span several slices; when they move between slices
due to Brownian motion; and when their radius is not precisely known. Starting
from 2D-based segmentation and 3D clustering using shape-based mathematical
morphology, we have shown that estimating bead radius and true 3D positions
from a small number of 2D slices is a difficult, but tractable problem. We have
also shown that tracking these beads between 3D acquisitions is possible with
a high degree of accuracy. One benefit of our approach is that we can obtain
good estimates of the diffusion coefficient of Brownian motion from single 3D
acquisition, which is useful for various physical measurements.

In future work, we plan to improve the quality and speed of our optimisation
method, to make better use of prior knowledge in 3D particularly for initial
segmentation, and we will release our software as a free, open-source package.
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