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Abstract. Explainable AI seeks to unveil the intricacies of black
box models through post-hoc strategies or self-interpretable models.
In this paper, we tackle the problem of building layers that are in-
trinsically explainable through logic rules. In particular, we address
current state-of-the-art methods’ lack of fidelity and expressivity by
introducing a transparent explainable logic layer (TELL). We pro-
pose to constrain a feed-forward layer with positive weights, which,
combined with particular activation functions, offer the possibility
of a direct translation into logic rules. Additionally, this approach
overcomes the limitations of previous models, linked to their appli-
cability to binary data only, by proposing a new way to automati-
cally threshold real values and incorporate the obtained predicates
into logic rules. We show that, compared to state-of-the-art, TELL
achieves similar classification performances and, at the same time,
provides higher explanatory power, measured by the agreement be-
tween models’ outputs and the activation of the logic explanations.
In addition, TELL offers a broader spectrum of applications thanks
to the possibility of its use on real data.

1 Introduction
Explainable AI (XAI) is a branch of machine learning and deep
learning that focuses on providing explanations for black box mod-
els. XAI methods offer explanations in a variety of forms, such as
input attributions [19, 21] and counterfactuals [7, 22]. In this work,
we focus on providing global explanations in the form of logic rules
[8], by transforming the model’s reasoning process into a set of logic
conditions explaining its global behavior.

Classic tree-based algorithms [17] provide global rule-based ex-
planations. However, their rigid training procedures hinder integra-
tion with advanced models like convolutional neural networks and
transformers.

Logic-explained networks (LENs) [5], instead, are a family of neu-
ral networks that are designed to be interpreted through first-order
logic. The idea is that, assuming the input and the output are binary,
it is possible to construct truth tables to study these models and ex-
tract logical rules describing their decision processes. Nevertheless,
due to the post-hoc procedure based on truth tables, the logical ex-
planations are not guaranteed to be aligned with the model.

The intersection of learning systems with logical reasoning is also
explored in neuro-symbolic AI (NeSy). In particular, a subfield of
NeSy investigates rule induction [13, 28], which is the task of learn-
ing a set of independent logical rules in disjunctive normal form
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(DNF) to perform classification. The works in this area try to build
models with logic-inspired architectures by featuring particular lay-
ers that are constrained to behave like logical operators. Nonetheless,
the number of rules that can be extracted depends on such constraints,
which can impact the expressivity of the models.

In the present article, we introduce a novel logic-explainable archi-
tecture called transparent explainable logic layer (TELL) to ensure
high performances across diverse data types while providing faithful
explanations at the same time. In particular, we propose a constrained
feed-forward layer with non-negative weights. We show that this for-
mulation allows us to extract explanations that are perfectly aligned
with the model through an efficient enumeration strategy.

Alongside tabular data, we also investigate an application to
concept-bottleneck [9, 24] and prototype-based models [2, 14, 18,
25]. These architectures represent a common approach to building
deep neural networks that are explainable by design. While concept-
based models ground the input to binary concepts that are previ-
ously labeled, prototype-based models try to extract representative
instances (prototypes) in an unsupervised fashion. Both concept- and
prototype-based models consist of two parts: a representation learn-
ing module and a linear classification layer. Ciravegna et al. [5] show
that the latter can be replaced with LENs to provide logic explana-
tions. However, the binary constraint of LENs prevents their applica-
tion to prototype-based models, which use real values to present the
similarity between inputs and prototypes.

To address the limitation of binary input constraints, we also in-
troduce a preprocessing head to our layer, which allows us to make
TELL applicable to real-valued data and prototype-based models.
Figure 1 provides a practical example of TELL paired with concept-
and prototype-based models, showing the explanations for one of the
classes of the CUB dataset [23] (yellow-headed blackbird). The ex-
planations consist of logic rules over inequalities on input concept
activations or prototype similarities.

Overall, this work’s contributions are summarized in the following
key points:
• we propose a neural network layer explicitly designed to de-

liver logic explanations, conducting a comprehensive analysis and
benchmarking TELL against state-of-the-art methods in both clas-
sification and explanation;

• we expand the domain of applicability of LENs to accommodate
non-binary data values, broadening their application scope;

• we provide an open-source implementation, serving as a valuable
baseline for future work in the field.1

1 The code is available at the following link: github.com/KRLGroup/TELL

https://github.com/KRLGroup/TELL


Figure 1: Visualization of learned rules. We show an example of the rule for a class of the CUB dataset learned by our logic layer, starting
from the concepts and the prototypes’ activations, respectively. On the left, using a concept-bottleneck encoder, the rule is presented as the
conjunction of inequalities on the probability that a certain concept is present in the image. On the right, using PIP-Net [14], a prototype-based
network, as an encoder, the rule is described as a conjunction of inequalities on the maximum similarity between a set of prototypes and the
input image patches.

We structure our work as follows: Section 2 reviews relevant liter-
ature closely related to our research; Section 3 outlines the proposed
approach, including mathematical proofs and implementation strate-
gies; Section 4 presents a series of experiments conducted to validate
our proposal; in Section 5 we report two ablation studies to eval-
uate the efficacy of some implementation choices; and finally, Sec-
tion 6 concludes the paper by summarizing the results and discussing
the contributions, limitations, and potential future extensions of our
work.

2 Related Work
In this section, we review the relevant literature pertaining to our
work. We begin by introducing XAI, with a particular emphasis on
methods capable of providing logical explanations. Within the field
of XAI, we also discuss concept-based and prototype-based mod-
els, as outlined by Ciravegna et al. [5], which offer practical appli-
cations for our models. Finally, we explore NeSy, an emerging field
that combines symbolic reasoning with neural networks. This field
encompasses a broad scope of application, and from recent surveys
[13, 28], we find knowledge induction as particularly aligned with
our aim as it involves learning logical rules for classification tasks.

Explainable AI XAI constitutes a wide field, with extensive liter-
ature proposing diverse ways of explaining neural networks. Some
methods [12, 19, 21], for instance, try to identify relevant portions of
the inputs for the decision process, while others [7, 22] focus on pro-
viding data samples that can help understand the model’s behavior.
This study specifically concentrates on deriving explanations in the
form of logic formulas that describe the decision processes of neural
networks [8].

Our work is closely connected to that of Ciravegna et al. [5],
who put forth a family of neural models called logic-explained net-
works (LENs), tailored for categorical learning, seamlessly integrat-
ing aspects from both deep learning and logic. A LEN is a function
f : Ci → Co that maps an input concept space Ci = [0, 1]I to an
output concept space Co = [0, 1]O , where I and O denote the input
and output dimensions. Using this form, Ciravegna et al. [5] propose
to provide explanations in the form of first-order logic rules directly
distilled from f by building a truth table on inputs and outputs.

To enhance the interpretability of extracted logic rules, LENs in-
corporate regularization techniques to filter out non-relevant input
features, allowing the construction of logic rules dependent on a
concise set of features. For instance, ψ networks [3, 4] employ a

sigmoid activation function coupled with L1-regularization, which
shrinks less important weight values toward zero. Additionally, they
implement a pruning strategy that forces all neurons to utilize the
same number of inputs. In contrast, µ networks [5] eliminate the sig-
moid activation function and conduct pruning at the network level,
filtering out less crucial inputs. ReLU networks [5], instead, employ
rectified linear unit activation function across all layers and leverage
L1-regularization on network weights, with pruning applied exclu-
sively during explanation extraction. Ciravegna et al. [5] justify this
approach for enhancing the classification performance of ψ networks
without altering the network architecture, at the expense of obtaining
less faithful explanations. Finally, entropy-based LENs [1] present
a wholly distinct approach by replacing L1-regularization with an
entropy-based layer, which learns a mask over inputs for each class.

Although other machine learning models allow extracting logic
rules as explanations, such as DT [17] and Bayesian Rule Lists
(BRL) [27], they cannot be trained through backpropagation. This
aspect makes them unsuited for cases with complex data types that
involve neural networks. This is not the case for LEN, which can
instead be directly applied to neural networks. A notable applica-
tion domain for LENs involves self-explainable neural networks, a
category of neural models designed for a more interpretable infer-
ence process than black boxes. Concept- and prototype-based meth-
ods are popular self-explainable models that achieve interpretabil-
ity in different ways. Concept-based methods seek to streamline the
understanding of neural networks by bifurcating them into two dis-
tinct classifiers: a concept encoder responsible for predicting a set
of labels describing the input and an interpretable classifier, often a
linear layer, which takes the concept probabilities and predicts the
class. Concept-bottleneck models [9, 24] can enable interventions
at the concept level through human-model interaction, making them
particularly appealing for sensitive applications. However, obtain-
ing datasets labeled with concepts is not always feasible, prompt-
ing alternative solutions. In such cases, prototype-based methods
emerge as viable alternatives. Prototypes represent inputs or por-
tions thereof that function as references to make predictions. When
the model classifies an input, the inference involves comparing its
features with those of learned prototypes, offering insights into the
decision-making process. Most prototype-based models like ProtoP-
Net [2], TesNet [25], and PIP-Net [14] typically employ a two-part
architecture comprising a prototype extractor and an interpretable
linear layer. In this context, prototype activations do not generally
exist in binary space, posing a challenge for the application of LENs.



Figure 2: Example of TELL that takes five inputs and outputs three values. The output values can be directly associated with logic rules:
the subsets of inputs such that the sum of the weights is bigger than the opposite of the bias. The network links are colored in orange (the
thickness is proportional to the respective weight values). In the example, we show the case of an input where inputs 1, 3, and 4 are activated
(orange-colored input neurons). Consequently, outputs 1 and 2 are activated by the layer (orange-colored output neurons).

Neuro-symbolic AI While we focus on designing a model whose
reasoning process can be transformed into a set of rules, NeSy, on
the contrary, embeds symbolic reasoning into learning systems. This
field is composed of a spectrum of architectures and techniques that
aim at solving several tasks that span from constraining reasoning
with domain knowledge to knowledge graph completion and gener-
ative tasks [13, 28]. However, our work only intersects with a small
subfield of NeSy [13, 28], knowledge induction, that aims at identi-
fying logic rules in data that can be used for classification. DR-Net
[16] falls in our category and is an architecture composed of two
layers. The former is a linear layer constrained to extract conjunc-
tions between features that form rules. These rules are then passed
to an OR layer, aggregating them to form a final DNF condition. To
design this architecture, the authors exploit the assumption of hav-
ing binary inputs. This allows them to mimic the AND and the OR
operators through the dot product operation. This structure has a lim-
itation: the number of literals in the DNF corresponds to the hidden
size of the network. This means that, to shape the layer perfectly, the
user should be provided with previous domain knowledge. Relational
Rule Network (R2N) [10] is another module similar to DR-Net, with
a literal learning layer that comes before the AND and OR layers,
and it is used to transform the input features into literals used in the
final logic rule. Rule-based Representation Learner (RRL) [26] ex-
pands the structure of the network by combining a stack of logical
layers followed by a linear layer. The logic layers are particular ar-
chitectures composed of two submodules: the first is responsible for
conjunction, the latter for disjunction. The particularity of RRL is
that the model comes in two coexisting forms: discrete and continu-
ous. The former is used for inference, while the latter is used during
training. For this reason, the training involves a particular procedure
called gradient grafting [26]. RRL changes the rule presentation dif-
ferently from the other methods cited so far. In fact, instead of re-
turning a unique logic rule in the DNF form, in RRL, several rules
are returned paired with a score that indicates their importance.

All these methods focus on rule induction without emphasizing
explanations quality other than rule complexity. In the experimental
section, we will compare our proposal with DR-Net, the only method
disposing of official code that produces rules in the same form as the
other explainable methods in analysis.

3 Transparent Explainable Logic Layers
Our objective is to develop a model that can be easily interpreted
by inspecting its weights to extract logic rules. Differently from
LENs, where models consist of regularized multi-layer perceptron

explained through post-hoc truth tables, we aim to design a specific
layer whose weights are converted into rules. In this section, we show
that we can achieve such an aim by adding non-negativity constraints
on the weights of a feed-forward layer. We start by defining a layer
in the binary space and show how we can use backtracking to effi-
ciently enumerate logic rules from the weights. Finally, we extend
our proposal to real numbers by adding a preprocessing head that
learns thresholds over the feature values. Let us consider the follow-
ing architecture:

y = f(X) = σ(XWT
+ + b). (1)

Here, X ∈ Ci represents binary input features, y ∈ Co denotes
predicted output probabilities,W+ ∈ RO×I

≥0 , b ∈ RO are the weights
and bias, respectively, and σ is the sigmoid activation function:

σ(z) =
1

1 + e−τz
, (2)

where τ ∈ R>0 is a temperature hyperparameter that skews the lo-
gistic function to make it more steep. To determine the output value,
we binarize y using a threshold of 0.5. The k-th output value is de-
fined as:

ybin
k =

{
1 if yk > 0.5

0 otherwise
k ∈ [1, .., O]. (3)

Despite our proposal and LENs sharing the same input and output
spaces, the main difference lies in the explanation procedure. Indeed,
we demonstrate that we can transform our layer into a logic rule with-
out the need to build truth tables.

Proposition 1. Let f be a model in the form of Equation 1, and ybin
k

be the binarized form of the k-th output of f . We can express the
values of ybin

k as a logic rule in DNF of the inputs. The literals of the
DNF are all the minimum subsets of inputs where the corresponding
weights in the k-th row of W+ sum up to a value greater than bk, the
k-th element of b.

Proof. Since the output is binarized at a threshold of 0.5 and σ(z) >
0.5 ⇐⇒ z > 0, then we have:

ybin
k = 1 ⇐⇒ XWT

+k + bk > 0. (4)

Given that the input X is binary and belongs to the input space Ci =
[0, 1]I , we have:

XWT
+k =

I∑
i=1

XiW+ki =

I∑
i=1

1i∈XW+ki, (5)

where X = {i ∈ [1, ..., I] : Xi = 1}. Utilizing Equation 4 and
Equation 5, to find the explanation for ybin

k , we identify all combina-



tions of inputs such that ybin
k = 1. Therefore, we define the explana-

tion Ek of ybin
k as:

Ek = {ϵ ∈ P({1, ..., I}) :
I∑

i=1

1i∈ϵW+ki > −bk}, (6)

where P([1, ..., I]) is the power set of the indices between 1 and I .
The explanation Ek can be finally expressed in a DNF logic formula
as a disjunction of the conjunction of the sets of Ek:

logic(Ek) =
∨

ϵ∈Ek

(∧
e∈ϵ

e

)
. (7)

With Proposition 1, we can now convert a layer in the form of
Equation 1 into a logic formula by enumerating the minimal subsets
of features whose corresponding weights sum up to a value greater
than the negative of the bias. We represent an example of this proce-
dure in Figure 2: we show a layer with 5 inputs and 3 outputs. The
layer is pictured as a set of weights and biases (the integer nature of
the values is solely due to readiness purposes, the same reasoning
applies for real weight and bias values), and we show how we extract
minimal subsets and, finally, how they are converted into rules. This
result recalls the concept of abductive explanations [6], which aim at
identifying the smallest subsets of features responsible for a predic-
tion. The main difference is that the rule we obtain does not explain
a single prediction but the whole layer.

As this formulation only applies rules on positive input values, we
can account for the possibility of negative literals by duplicating the
input space as follows:

Ĩ = 2I, and X̃ =
(
X 1−X

)
∈ [0, 1]Ĩ . (8)

In the remainder of this section, we present how to practically imple-
ment a layer under the premises of Proposition 1, the training pro-
cedure we adopt, and an efficient way of extracting explanations.
Finally, we address the case of real-valued inputs by introducing a
preprocessing function that learns thresholds over the input data.

Layer definition The model specified in Equation 1 relies on uti-
lizing a W+ matrix with non-negative values. To enforce non-
negativity, the layer parameters can be transformed using a function
t : R → R≥0. A straightforward approach might involve apply-
ing the Rectified Linear Unit (ReLU) function on the weights, which
truncates negative values to 0. While simple, using the ReLU op-
erator may pose learning challenges, as negative parameters would
remain unaltered during gradient descent due to zero gradient. Alter-
natively, two other valid solutions can be derived using the logistic
(Equation 9) or the exponential (Equation 10) functions:

W+ = σ(W ), W ∈ RO×I ; (9)

W+ = exp(W ), W ∈ RO×I . (10)

In this study, we concentrate on an implementation that combines
both the logistic and the exponential functions (Equation 11). In this
configuration, the logistic operator serves as a gate, selecting cru-
cial inputs, while the exponential function scales the weights’ values,
which would otherwise lie in the range [0, 1].

W+ = σ(W1)⊙ exp(W2), W1 ∈ RO×I ,W2 ∈ RO. (11)

Here, ⊙ represents the Hadamard element-wise product with broad-
casting, hence W+ ∈ RO×I .

Training Procedure Given the utilization of the sigmoid activation
function, we employ a binary cross-entropy (BCE) loss function to
train our models. Furthermore, to promote sparsity and encourage

Algorithm 1 Subset Extraction Algorithm

Input: Matrix W of size O × I , Vector b of size O
Output: Vector S of size O, containing the list of subsets.
for k = 1 to O do
Wk ← k-th row of W
bk ← k-th element of b
Ik ← argsort(Wk)
Sk ← []
Call FINDSUBSETS(Wk, bk, {}, 0, Ik, Sk)
S[k] = Sk

end for

Algorithm 2 FindSubsets Function

Function FINDSUBSETS(Wk, bk, sk, sum, I, Sk)
Input: Vector Wk of size I , float bk, Set sk, float sum, List I,
List Sk

Output: In place modification of Sk.
if sum > −bk then

Add sk to Sk

else
for i in I do

FINDSUBSETS(Wk, bk, sk∪{Wk[i]}, sum+Wk[i], I−{i},
Sk)

end for
end if
End Function

the model to utilize the minimum required inputs, we incorporate L1-
regularization. The comprehensive learning objective involves mini-
mizing the following loss:

L = LBCE + λ|W+|. (12)

In the context of the implementation outlined in Equation 11, ap-
plying L1 regularization becomes straightforward, specifically on
the gating operator. For scenarios involving multi-class classifica-
tion tasks, the use of the sigmoid activation function proves subopti-
mal as it does not yield a probability distribution across all classes.
Conversely, switching to softmax compromises the interpretability
sought for our model, as it goes out of the premises in Proposition 1.
Therefore, we opt to train each class using a one-vs-the-rest (OvR)
strategy, maintaining the sigmoid and BCE as activation and loss
functions, respectively. To address non-normalized outputs, an ad-
ditional orthogonality loss is introduced, encouraging output proba-
bilities to resemble one-hot vectors:

LO = ||yyT − IO|| (13)

Here IO represents the identity matrix of size O × O, and || · ||
denotes the Frobenius matrix norm. Consequently, the aggregate loss
becomes: L = LBCE + λ(|σ(W1)|+ LO). (14)

Extracting explanations As illustrated in Proposition 1, extracting
explanations for the k-th output involves identifying the minimal
subsets of elements in W+k such that their sum exceeds −bk. To
expedite this process and generate a minimal DNF, we employ a re-
cursive search in the combination space using backtracking and re-
turning all relevant subsets. To enhance efficiency and achieve a min-
imal DNF, we conduct the search using sorted indices based on the
values in W+k. Pseudocode for this extraction process is provided
in Algorithm 1 and Algorithm 2. Subsequently, the explanations are
derived using Equation 7. The overall complexity of the procedure is
exponential in the worst-case scenario as it enumerates all the pos-



sible combinations, and the time required depends on the number of
output rules. However, we empirically observe that thanks to back-
tracking and regularization, we are able to extract explanations in a
feasible amount of time. Additionally, pruning techniques are applied
to reduce the search space dimension to address this challenge. Prun-
ing can take various forms, such as limiting the number of inputs to a
predefined value or, as implemented here, filtering out values ofW+k

up to a specified percentile. This technique proves beneficial, given
that the W+ki value correlates with the number of literals where i
appears. Discarding low-valued weights not only facilitates explana-
tion extraction, but also contributes to creating more general rules,
thus mitigating overfitting concerns. We apply pruning after a spe-
cific number of epochs, and after that, we continue training only the
non-pruned weights. The same procedure applies to multiple stacked
layers. The explanations of single layers can be merged by substitut-
ing the input of a layer with the output of the previous one.

Extension to real-valued inputs In many real-world scenarios, in-
put values typically extend beyond the binary space. Consequently,
we propose a method for applying this approach without necessitat-
ing manually set thresholds for the inputs. To achieve this, we intro-
duce a preprocessing head in the layer, defined as follows:

X̂ = σ(X ⊙ exp(Wi) + bi), Wi ∈ RI , bi ∈ RI (15)

Applying a similar rationale as in Proposition 1, we can demon-
strate that Equation 15 learns a threshold on X , generating values
X̂ ∈ [0, 1]I where:

X̂ > 0.5 ⇐⇒ X > − bi
exp(Wi)

. (16)

The output of σ is continuous between 0 and 1. Due to this char-
acteristic, achieving a perfect binarization of the input data is not
feasible, therefore falling out of the premises of Proposition 1. To
address this challenge, we propose incorporating a loss function that
encourages the outputs of the preprocessing head to be closer to 0 or
1, thus making them more akin to binary data. To accomplish this,
we employ the following entropy loss on X̂:

LE = −X̂log(X̂)− (1− X̂)log(1− X̂). (17)

4 Experiments
We start the experimental section by presenting a motivating exper-
iment for our proposal through a synthetic dataset to show the ca-
pacity of the models in the exam to identify logic rules. We continue
validating and comparing our approach with state-of-the-art methods
by analyzing the classification and explanation performances on four
real-world classification datasets taken from [5], which offer a spec-
trum of input data type including binary-valued features and image
concept activations. Successively, we compare the performances of
TELL with those of LENs on a classification task using prototypes
extracted by a self-explainable neural network, PIP-Net. For all the
experiments, we utilize the same dataset preparation and training pro-
cedures from [5], and we replicate each experiment 15 times for sta-

tistical significance. In all the experiments, we compare the models in
terms of accuracy to check their ability to perform the classification
task. At the same time, we aim to have models that produce expla-
nations aligned with their behavior. To this aim, we use the fidelity
score, defined as the F1-score between the models’ outputs and the
activation of the logic explanations. We detail all the hyperparame-
ters and implementation information in the supplementary material.

Learning Logic Rules In this section, we analyze a learning sce-
nario with real-valued data. We design a dataset with 5 features uni-
formly distributed in the range [0,1]. We then define the target class
using the following rule:
y = 1 ⇐⇒ (x1 > 0.5∧x2 > 0.2)∨(x1 > 0.5∧x3 > 0.7) (18)

We treat the problem as multi-class classification. Therefore, we set
the outputs of the models to 2. Table 1 reports the performances of
TELL, LENs, and DR-Net on this dataset. We observe that all the
models manage to produce high-quality predictions, almost perfectly
solving the task. This means that all the models are capable of learn-
ing the rule that determines the correct class. Focusing on the expla-
nations, instead, we observe that using the rules to perform the clas-
sification results in an accuracy decay for all the models, except for
TELL. This is because, among the methods, TELL is the only which
is directly convertible into a logic rule, thanks to Proposition 1. The
same result is observable when analyzing the fidelity of the models.
Finally, we also report the rule explaining the best model over the 15
runs: TELL is the only model that correctly identifies the classifica-
tion logic. This experiment showcases the need to define a model that
is capable of learning over logic rules and, at the same time, provides
explanations that are faithful with respect to the model’s behavior. In
the next section, instead, we analyze complex cases with real-world
datasets.

Classification Performances This section compares our model’s
performance against other LEN models, neuro-symbolic and inter-
pretable machine learning algorithms, including DR-Net, BRL and
DTs. For these experiments, we use four datasets from [5], using the
same preprocessing and training procedure:

Table 2: Datasets properties. For each dataset, we report the number
of features (input concepts), the number of classes, the feature space,
and how features are extracted. Finally, we also report the perfor-
mance of the feature extraction modules for MNIST E/O and CUB,
which are extracted using a CNN classifier.

MIMIC-II V-DEM MNIST E/O CUB

# Features 90 14 10 216
Feature Space Binary [0,1] [0,1] [0,1]
# Classes 2 2 2 200

Input type Raw Features Encoded
Concepts

Encoded
Image

Concepts

Encoded
Image

Concepts
Feature Extraction - Same Model CNN CNN

Concept Encoder
Accuracy - - 83.51% 99.57%

Table 1: Logic induction experiment. We test the ability of the models to learn a logic rule with real-valued data. We build a dataset where the
class is determined by the following rule: (x1 > 0.5 ∧ x2 > 0.2) ∨ (x1 > 0.5 ∧ x3 > 0.7). We report mean values with standard deviations
over 15 runs, and we highlight in bold the highest mean values and the ones within the standard error of the highest one.

Model Accuracy (%) Rules Accuracy (%) Fidelity (%) Complexity Best Model’s Rule

TELL 96.84 ± 0.07 95.70 ± 0.38 97.79 ± 0.39 3.40 ± 0.17 (x1 > 0.48 ∧ x2 > 0.20) ∨ (x1 > 0.48 ∧ x3 > 0.70)
ENTROPY 94.68 ± 0.33 59.48 ± 0.56 74.62 ± 8.25 1.00 ± 0.00 x1 > 0.50
ψ 89.98 ± 0.36 65.45 ± 0.60 64.74 ± 3.26 1.73 ± 0.13 x1 > 0.50
RELU 99.12 ± 1.00 93.12 ± 0.14 92.92 ± 0.29 1.00 ± 0.00 x1 > 0.50
µ 98.38 ± 0.41 92.49 ± 0.23 92.11 ± 0.34 2.93 ± 0.48 x1 > 0.50
DR-NET 96.72 ± 0.37 92.70 ± 0.35 90.85 ± 0.53 133.13 ± 2.07 Explanation too long



Multiparameter Intelligent Monitoring in Intensive Care II (MIMIC-
II) [20], a dataset containing clinical data of patients admitted in the
intensive care unit (ICU). The task is to classify between recover-
ing and dying patients, after 28 days from ICU admission. The input
features are already binary, hence they are directly used to train the
models.
Varieties of democracy (V-DEM) [15] is a dataset containing a col-
lection of indicators and indices describing the regimes of 202 coun-
tries from 1789 to 2020. In this case, we organize the models in two
submodules: (i) a model is used to predict 82 indices (e.g., freedom of
expression, freedom of association, equality before the law, etc) us-
ing 483 indicators of latent regime characteristics (e.g., media bias,
party ban, high-court independence, initiatives permitted, etc); (ii)
another model uses the prediction of the first one to predict five in-
dices describing democracy principles (electoral, liberal, participa-
tory, deliberative, and egalitarian). In the experiments, we measure
the quality of the rules extracted by the second model.
MNIST E/O [11], is a dataset that classifies digits in the even and odd
classes. For this dataset, we utilize a convolutional neural network
(CNN) as concept-bottleneck, that is trained to classify the 10 digits.
Finally, the logic classifiers are trained on the output probabilities of
the CNN.
Caltech-UCSD Birds-200-2011 (CUB) [23] is a dataset of 11,788
images representing 200 bird species. Each image comes with 312
lower-lever binary attributes that have been manually labeled. These
attributes represent visual characteristics (color, pattern, shape) of
specific parts of the birds (beak, wings, tail, etc.). Similarly to the
MNIST E/O dataset, we employ a CNN to predict such attributes,
and we use these predictions as input features for our model.

MIMIC-II represents a baseline dataset with already binary fea-
tures. Despite the apparent ease, MIMIC contains an elevate number
of features which could hinder the rule identification process. In V-
DEM, the models are first used to extract concepts and then to per-
form classification, showcasing the capability of models to perform
in multi-layer settings. Finally, MNIST E/O and CUB offer to ex-
periment with image data types. In both cases the input is real and
represents the output probability of the concept encoder. We summa-
rize the main properties of the datasets in Table 2, including the input
and output dimensionalities and whether inputs are obtained through
a concept-extraction neural network. In this case, we also indicate
the concept accuracy of the encoders. For the case of V-DEM, as the
encoder is different for each method, we report the encoder accuracy
scores in the appendix.

Table 3 reports the accuracy scores together with the model’s fi-
delity scores. The fidelity is defined as the F1-score between logic
rule activations and the model’s predictions. Generally, neural mod-
els exhibit superior accuracy compared to BRL and DT, although
they come with a marginal decrease in explanation fidelity. Regard-

ing classification performance, we find µ to be the model with the
highest accuracy scores. We address this result to the fact that this
model is less constrained than the others. At the same time, such
“freedom” carries a cost regarding alignment between the logic rules
and the real model behavior. Indeed, we observe that our approach
achieves the highest fidelity scores across all datasets among the neu-
ral models. Unlike LENs, our approach TELL employs a OvR train-
ing schema utilizing binary cross-entropy instead of the conventional
categorical cross-entropy combined with softmax. Consequently, the
individual outputs of our model are not normalized to form a prob-
ability distribution, contributing to a less-than-perfect fidelity score.
However, our model benefits from Proposition 1, resulting in trans-
parent predictions. If fidelity is calculated directly on the individual
outputs, a perfect 100% score is obtained for all datasets. Regard-
ing DR-Net, being only designed for binary classification, it is only
applicable to MIMIC-II and MNIST E/O, as in V-DEM, we use a
two-module architecture with the first module having multiple out-
puts, and in CUB, there are 200 classes.

Overall, our model’s constrained logic decision process allows for
a direct translation into logic rules. These rules are more faithful, de-
rived directly from the weights and not through a post-hoc truth-table
procedure. While other LEN models may achieve superior classifica-
tion performance in some cases due to their less constrained internal
architecture, they do not provide equally robust explanations.

Prototype-based classification In this section, we present an ap-
plication of TELL and LENs to a prototype-based self-explainable
neural network, PIP-Net [14]. For this experiment, we leverage the
pre-trained weights accessible on the official repository of PIP-Net
[14]2 to generate prototypical representations of CUB images. This
process yields a dataset with 768 features in the [0, 1] space, each
representing the activation level of a specific prototype. We use PIP-
Net because it uses prototype activations in the [0, 1] range com-
pared to other prototype-based architectures. In other cases, LENs
could not be applicable. We then train the models on this dataset and
present the outcomes in Table 6. Our observations reveal that LENs
achieve comparable accuracy with respect to the baseline model.
More specifically, µ LEN surpasses the baseline model’s perfor-
mance. Simultaneously, our proposed approach outperforms all mod-
els in generating accurate and faithful rules. We address this result
because, unlike LENs, our model can automatically learn a threshold
over the features. Additionally, we include the accuracy obtained by
applying individual logic rules for predicting classes using an OvR
evaluation. Remarkably, our model outperforms even the best LEN
model in this evaluation, showcasing the effectiveness of our pro-
posed methodology.

2 https://github.com/M-Nauta/PIPNet

Table 3: Classification performances. We compare the accuracy and fidelity scores of the models. We replicate each experiment 15 times for
statistical validity and report mean and standard error. We highlight in bold the highest mean values and the ones within the standard error of
the highest one.

Model Binary Datasets Concept-Bottleneck
MIMIC-II V-DEM MNIST E/O CUB

Accuracy (%) Fidelity (%) Accuracy (%) Fidelity (%) Accuracy (%) Fidelity (%) Accuracy (%) Fidelity

E
xp

la
in

ab
le

N
N TELL (ours) 79.28 ± 0.80 96.15 ± 0.62 92.50 ± 0.43 97.56 ± 0.45 99.85 ± 0.01 99.98 ± 0.00 92.39 ± 0.19 97.99 ± 0.09

ψ 76.57 ± 0.69 58.38 ± 3.60 91.11 ± 0.29 60.30 ± 5.10 99.84 ± 0.01 69.62 ± 2.84 92.22 ± 0.19 75.35 ± 0.92
RELU 79.06 ± 0.87 75.30 ± 2.57 92.85 ± 0.42 85.46 ± 3.77 99.85 ± 0.01 93.72 ± 3.88 92.43 ± 0.20 97.45 ± 0.07
µ 79.16 ± 0.82 91.15 ± 1.12 91.82 ± 0.42 97.49 ± 0.48 99.90 ± 0.01 99.90 ± 0.01 92.65 ± 0.18 94.80 ± 0.21
ENTROPY 78.89 ± 0.72 71.47 ± 2.49 90.28 ± 0.60 87.44 ± 5.40 99.84 ± 0.01 41.03 ± 8.24 92.57 ± 0.19 97.56 ± 0.08
DR-NET 74.16 ± 0.60 75.36 ± 1.72 N/A N/A 85.69 ± 0.06 85.52 ± 0.07 N/A N/A

M
L DT 76.52 ± 0.75 100.00 ± 0.00 84.91 ± 0.67 100.00 ± 0.00 99.89 ± 0.01 100.00 ± 0.00 80.59 ± 0.79 100.00 ± 0.00

BRL 77.20 ± 1.10 100.00 ± 0.00 77.20 ± 1.10 100.00 ± 0.00 99.84 ± 0.01 100.00 ± 0.00 91.15 ± 0.45 100.00 ± 0.00

https://github.com/M-Nauta/PIPNet


5 Ablation Study
In this section, we include two ablation studies to analyze the role of
the proposed activation and loss functions in influencing both classi-
fication performances and fidelity of the rules.

Activation Functions Here, we investigate variations among the so-
lutions proposed in Equations 9, 10 and 11, for implementing our
proposed approach. Specifically, we present the outcomes of these
diverse implementations on the datasets in Table 4. Generally, the
form using both exponential and logistic activations consistently out-
performs alternative solutions in both classification accuracy and ex-
planation fidelity. However, it is noteworthy that in some instances,
the two alternative methods achieve higher fidelity values at the ex-
pense of a significant decrease in accuracy. Additionally, the results
validate our initial hypothesis, identifying weights activated through
the logistic function as gates for features and those activated via the
exponential function as scalers. For the model relying solely on the
logistic function, having weights confined to the [0, 1] interval proves
suboptimal when handling non-binary input data with real-valued in-
puts. This is evident from the notable drops in accuracy and fidelity,
particularly observed in MNIST E/O, CUB, and V-DEM datasets.
Conversely, employing only the exponential activation function re-
sults in a system that struggles to filter out non-important features.
This is highlighted in CUB and V-DEM, where the pruning of fea-
tures significantly impacts the learning process, yielding models in-
capable of making accurate predictions.

Table 6: Prototype-based classification. We report the performances
of TELL and LENs trained on the prototypes learned by a PIP-
Net Model. We use the pre-trained model from [14] and extract the
learned prototypes. We report the accuracy of the models, the fidelity
of the extracted rules, the accuracy we would obtain applying the sin-
gle rules, and the explanation time. We replicate each experiment 15
times for statistical validity and report mean and standard error. We
highlight in bold the highest mean values and the ones within the std
of the highest one.

Model Accuracy (%) Rules Accuracy (%) Fidelity (%) Expl. Time (s)

PIP-Net 84.78 - - -
TELL (ours) 82.26 ± 0.10 90.56 ± 0.08 95.22 ± 0.09 59.09 ± 0.23
ψ 83.04 ± 0.07 82.53 ± 0.44 86.17 ± 0.52 15.24 ± 5.76
RELU 83.98 ± 0.07 63.07 ± 2.62 63.77 ± 2.78 152.91 ± 21.72
µ 84.84 ± 0.03 74.39 ± 0.07 75.58 ± 0.08 15.47 ± 5.91
ENTROPY 82.81 ± 0.19 89.45 ± 0.07 92.06 ± 0.05 36.23 ± 1.66

Loss Functions Here, we analyze the influence of the loss functions
LO (Equation 13) and LE (Equation 17) on the accuracy and fidelity
of TELL. We replicate the experiment in Section 4 using combi-
nations of the losses. Table 5 reports the models’ accuracy, the fi-
delity, the extracted rules’ accuracy, complexity, and the best model’s
learned rule. We observe that the combination of the two losses pro-
vides the best results in terms of accuracy and fidelity. This is due to
the fact thatLO guides training to encourage the model to return “one
hot” vectors in a multi-class setting. Therefore, when evaluating the
fidelity as the F1-score between the models’ outputs and rules activa-
tions, the models trained with this loss return better results. Similarly,
as LE influences the threshold of real values by encouraging the pre-
processing head to return values that are closer to 0 or 1, it impacts
classification and explanations.

6 Conclusions
In this study, we addressed the challenge of training a classifier capa-
ble of offering explanations through logic rules. In particular, we in-
troduced a novel layer that is explicitly designed to incorporate logic
constraints. In contrast to previous methods, which typically employ
post-hoc strategies for rule extraction, our formulation ensures that
rules can be discerned by examining the model weights. Our results
demonstrated that our proposed approach achieves comparable clas-
sification performance compared to state-of-the-art methods and en-
hances the model’s explanation capabilities. Simultaneously, we ex-
panded the applicability of LENs beyond concept-based models to
encompass other self-explanatory networks, allowing its application
also to prototype-based models without any structural modification.
Limitations of our approach lie in the explanation extraction proce-
dure, which, in the case of highly complex datasets, could result in
multiple rules and long explanation times. Future work could instead
focus on the application of TELL’s reasoning to more complex lay-
ers, such as attention and convolutional layers.
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Table 4: Activation function ablation study. We compare three different variations of our proposed approach. The models are obtained by
changing the activation function of the weights of the layers: TELL is our proposed solution that uses two weight matrices activated with
the sigmoid and the exponential function, respectively; TELLσ employs a single weight matrix that uses the logistic activation function;
TELLe uses a single weight matrix that is activated with the exponential function. We calculate the accuracy and fidelity scores of the models’
predictions. We replicate each experiment 15 times for statistical validity and report mean and standard error. We highlight in bold the highest
mean values and the ones within the standard error of the highest one.

Model MIMIC-II V-DEM MNIST E/O CUB
Accuracy (%) Fidelity (%) Accuracy (%) Fidelity (%) Accuracy (%) Fidelity (%) Accuracy (%) Fidelity (%)

TELL 79.28 ± 0.80 96.15 ± 0.62 92.50 ± 0.43 97.56 ± 0.45 99.85 ± 0.01 99.98 ± 0.00 92.39 ± 0.19 97.99 ± 0.09
TELLσ 79.05 ± 0.34 94.36 ± 1.06 92.03 ± 0.48 96.75 ± 0.49 99.85 ± 0.01 83.35 ± 5.24 92.18 ± 0.18 92.34 ± 0.24
TELLe 72.02 ± 1.00 98.33 ± 0.01 53.15 ± 0.50 34.11 ± 1.07 99.84 ± 0.01 96.81 ± 2.01 0.51 ± 0.00 99.09 ± 0.07

Table 5: Loss function ablation study. We evaluate the efficiency of the loss functions LO (Equation 13) and LE (Equation 17). We calculate
the accuracy and fidelity scores of the models’ predictions on the dataset from Section 4. We replicate each experiment 15 times for statistical
validity and report mean and standard error. We highlight in bold the highest mean values and the ones within the standard error of the highest
one.

Model Accuracy (%) Rules Accuracy (%) Fidelity (%) Complexity Best Model’s Rule

TELL 96.84 ± 0.07 95.70 ± 0.38 97.79 ± 0.39 3.40 ± 0.17 (x1 > 0.48 ∧ x2 > 0.20) ∨ (x1 > 0.48 ∧ x3 > 0.70)
TELL (no LO) 96.38 ± 0.07 91.88 ± 0.49 93.86 ± 2.40 3.00 ± 0.21 (x1 > 0.49 ∧ x2 > 0.21) ∨ (x1 > 0.49 ∧ x3 > 0.72)
TELL (no LE ) 93.44 ± 0.07 93.01 ± 1.73 95.06 ± 1.36 3.43 ± 0.43 (x1 > 0.48 ∧ x2 > 0.21) ∨ (x1 > 0.48 ∧ x3 > 0.70)
TELL (no LE no LO) 94.70 ± 0.07 93.42 ± 0.94 95.96 ± 1.15 3.47 ± 0.44 (x1 > 0.48 ∧ x2 > 0.21) ∨ (x1 > 0.48 ∧ x3 > 0.71)
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