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a b s t r a c t

AGAT is a Java library dedicated to the construction, handling and evaluation of binary partition trees,
a hierarchical data structure providing multiscale partitioning of images and, more generally, of valued
graphs. On the one hand, this library offers functionalities to build binary partition trees in the usual
way, but also to define multifeature trees, a novel and richer paradigm of binary partition trees built
from multiple images and/or several criteria. On the other hand, it also allows one to manipulate
the binary partition trees, for instance by defining/computing tree cuts that can be interpreted in
particular as segmentations when dealing with image modeling. In addition, some evaluation tools are
also provided, which allow one to evaluate the quality of different binary partition trees for such
segmentation tasks. AGAT can be easily handled by various kinds of users (students, researchers,
practitioners). It can be used as is for experimental purposes, but can also form a basis for the
development of new methods and paradigms for construction, use and intensive evaluation of binary
partition trees. Beyond the usual imaging applications, its underlying structure also allows for more
general developments in graph-based analysis, leading to a wide range of potential applications in
computer vision, image/data analysis and machine learning.

© 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Code metadata

Current code version v2.0
Permanent link to code/repository used for this code version https://github.com/ElsevierSoftwareX/SOFTX-D-21-00135
Code Ocean compute capsule NA
Legal Code License Cecill-B
Code versioning system used git
Software code languages Java SE 8
Compilation requirements, operating environments & dependencies JDK 1.8 (for Eclipse developers, .project files are also provided)
If available Link to developer documentation/manual https://github.com/yonmi/AGAT2.0
Support email for questions agat@univ-reims.fr

1. Introduction

Due to the rapid progress in the development of imaging
ensors, the produced images are becoming increasingly complex,
oth in size and in semantics. This is the case for example in med-
cal and biological imaging, remote sensing, material sciences, and
ore generally, in computer vision applications. In such domains,

he data that are now handled require to be processed at various

∗ Corresponding author.
E-mail address: nicolas.passat@univ-reims.fr (Nicolas Passat).

levels of detail, i.e. at various scales, in particular with the purpose
of tackling computational and semantic analysis issues.

For tackling these issues, two main paradigms have been in-
vestigated over the last decades. On the one hand, the paradigm
of multiscale analysis, that intrinsically relies on the underlying
notion of scale space [1], consists in observing an image at ‘‘dif-
ferent distances’’, then focusing on the details available at each
distance. This led to various multiscale analysis approaches for
image description (e.g. SIFT, pyramids [2]). On the other hand,
the paradigm of image partitioning popularized under the ter-

minology of ‘‘superpixels’’ consists in creating connected clusters
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352-7110/© 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
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Fig. 1. (a, d) Two VHSR satellite images (2 000 × 2 000 pixels) at a spatial resolution of 60 cm sensed by the Pléiades satellite and covering different areas. (b, e)
artitioning results from traditional binary partition trees computed from (a) and (d), respectively (23500 and 5000 regions, respectively), using one criterion: Ccolor .
c, f). Partitioning results from multifeature binary partition trees computed from (a) and (d), respectively (23500 and 5000 regions, respectively), using 4 criteria:
color , Celong , Cndvi , Cndwi .

f homogeneous pixels of certain size within an image, in or-
er to reduce its space complexity without altering the carried
isual information. Superpixels were then developed in many
ariants, mainly for pre-segmentation purposes (e.g. SLIC [3],
aterpixels [4]).
At the convergence of these two paradigms, the notion of

ierarchical image model was developed, in particular in the field
f mathematical morphology, leading to a rich family of graph-
ased data structures, generally defined as trees (i.e. connected,
cyclic graphs), designed for modeling images as hierarchies of
artitions. Non-exhaustively, the most frequently used trees are
he component-tree [5] (which models a gray-level image as the
asse diagram of the binary connected components of all the
hreshold sets, with respect to the inclusion relation) and its
ultivalued variant [6]; the tree of shapes [7] (which is a self-dual
ariant of the component-tree, that gathers information obtained
y thresholding the image in both top-down and bottom-up
ays) and its multivalued variant [8]; the watershed tree [9] (that
erives from hierarchical watersheds [10], and allows to model in
hierarchical way the saliency maps derived from the gradient
f an image), the binary partition tree [11] (that we consider
n this article), and some variants such as the α-tree [12] (that
erives from the concept of constrained connectivity [13]). Many
ther hierarchical models (including not only trees but also more
omplex directed acyclic graph structures, e.g. asymmetric hier-
rchies, braids of partitions, component-graphs or component-
ypertrees [14–17] that generalize/extend the tree structures
eyond their usual topological and/or spectral hypotheses of def-
nition) were provided. A whole discussion is beyond the scope
f this article; the interested reader can refer to [18] for a recent
urvey.
The construction of the trees mentioned above is generally

xpressed as a graph partitioning problem. More generally, the
nduced methods lie in the same family as optimization methods

on graphs, which are often involved in imaging problems, but can
also tackle a wider family of problems, if the data to be processed
are discrete and can be structured via a binary relation (e.g., in
mesh-based applications, structured data processing, etc.). In par-
ticular, strong links exist between the concepts of hierarchical
models, saliency maps and spanning trees in graphs [19].

Most of the hierarchical models (e.g. the component-tree or
the tree of shapes) can be built from an image, without consider-
ing any additional information. Such trees can be seen as pure
image modeling data structures, that embed an image into an
alternative space, where it can be handled and modified thanks
to image processing paradigms. By contrast, the binary parti-
tion tree (BPT, for brief) [11], is built from two kinds of infor-
mation: (1) the intrinsic information carried by the input im-
age (or, more generally, the input valued graph), and (2) an
extrinsic—generally user-defined/application-based—information
that determines which criteria should be considered for describ-
ing the input data in a multiscale way. This expert/domain-based
information is crucial in certain application fields. In other words,
the binary partition tree is not only an image-oriented but also
a knowledge-based data structure. As a consequence, it can be
relevantly involved in image analysis tasks that require the em-
bedding of expert-defined priors and knowledge. For instance, the
binary partition tree is quite popular in remote sensing applica-
tions [20–26], where the way to decompose an image depends
on its content (e.g. an urban area vs. a wild forest zone) but also
on the purpose of the analysis (e.g. classifying the buildings vs.
observing pollution effects).

Various software programs and libraries are available for hier-
archical image model handling. GraphBPT1 [27] is especially de-
signed for building and using binary partition trees. More general-
purposed libraries, for instance scikit-image2, Higra [28] or the

1 https://github.com/ash-aldujaili/GraphBPT.
2 https://scikit-image.org.
2
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rees-lib library3 deal with wider issues. In particular the last
wo mentioned allow for the construction of binary partition
rees or α-trees, that can be seen as a variant of binary par-
ition trees. Other libraries, namely Olena4 or LibTIM5 (used
.g. in [29]) are mainly geared towards the construction of the
o-called component-trees and/or trees of shapes, but could prob-
bly support further extensions for handling binary partition
rees.

In this article, we introduce AGAT, a Java library specifically
edicated to the binary partition tree. Similarly to previous li-
raries (e.g. GraphBPT) it proposes a construction framework of
raditional binary partition trees. In addition, it also proposes a
ay of building a more general family of binary partition trees,
he so-called multifeature binary partition trees [30]. From a
tructural point of view, these binary partition trees do not differ
rom the classical ones. They differ actually in the way they are
uilt. Indeed, by contrast to the usual construction algorithm
hat relies on a single clustering criterion and a single image,
he construction of the multifeature binary partition trees relies
n the collaboration between various clustering criteria and/or
llows to handle many images of a same scene.
Another contribution of AGAT compared to the already avail-

ble libraries is the proposal of various tools for evaluating the
uality of a binary partition tree (or equivalently, the quality
f the meta-parametrization of its construction) with respect to
bject segmentation purposes. Indeed, evaluating the quality of
hierarchical image model is an important—but infrequently

onsidered—topic as a prerequisite to its actual involvement for
eal applications [31–33].

. Software description

In this section, we describe the structure of the AGAT library
nd the major functionalities implemented.

.1. Software architecture

AGAT is composed of three modules (Image, BinaryPar-
itionTree, TreeEvaluation) required for the construction

of binary partition trees from images, their handling and their
evaluation. The three modules are coded in pure Java 8, taking
advantage of the latest language innovations. They also contain
some external Java libraries, encapsulated in the projects in the
form of .jar files (mainly for input/output).

The Image module is independent. It contains basic tools
for manipulating and processing raster images (e.g. equalization,
conversion, channel management, inputs/outputs). Images are
classically encoded via the BufferedImage class which is part of
he Abstract Window Toolkit (AWT), a graphics library commonly
sed by the Java community.
The BinaryPartitionTreemodule is dependent on the Im-

gemodule. It contains various functionalities for building binary
artition trees in a usual way, but also to define multifeature
rees from consensus of multiple images and/or multiple criteria.
his module also allows to handle the trees, for instance by
efining/computing tree cuts that can be interpreted in particular
s segmentations when dealing with images. In AGAT, binary
artition trees are modeled and analyzed through their hierar-
hical representations. They are encoded as trees, where each
ode is a region of the image support. The main data struc-
ures of the library are thus a graph class, implemented as an
djacency list (required for the construction step of the binary

3 https://github.com/pbosilj/trees-lib.
4 https://www.lrde.epita.fr/wiki/Olena.
5 https://github.com/bnaegel/libtim.

partition trees relying on a region adjacency graph), and a tree
class, classically implemented with inheritance relationships. To
enable the multiple images and/or multiple criteria paradigm,
data structures based on ordered lists of valued edges have been
also implemented. These data structures are a bit specific be-
cause they should allow to choose efficiently the next edges to
be selected during the construction of the trees. Multiple index
systems and optimized iterators have thus been implemented to
make it possible to speed up their scans. In addition, when the
number of criteria to be considered is important, the lists are kept
sorted sporadically, after a fixed number of modifications, which
approximates the expected solution but enables better scaling.

The TreeEvaluation module is dependent on the Binary-
PartitionTree module. It provides various classes related to
the quantitative evaluation of the quality of a binary partition tree
(or its meta-parametrization) with respect to object segmentation
purposes. Both intrinsic and extrinsic analyses can be carried
out. For a given binary partition tree (an object built from the
BinaryPartitionTreemodule), the user can provide examples
of ground-truth (defined as binary regions of interest in the image
support) and quality metrics. The main data structures of this
module make it possible to manage both information on the
ground-truth segments provided by the user (e.g. coordinates of
the bounding box, semantic labels, etc.) but also sub-trees of
interest on which the analysis is carried out (to make processing
faster by restricting it spatially and hierarchically).

2.2. Software functionalities

AGAT proposes a large amount of algorithms for the con-
struction, the handling and the evaluation of binary partition
trees (complementary technical details regarding the main data
structure architecture can be found in [35, Appendix B]):

• BPT construction:

– mono-image/mono-criterion [11]: tree construction
from pixels or flat zones or a given partition, various
generic (e.g. color: RGB, LAB, geometric: elongation,
smoothness) and thematic (e.g. NDVI, NDWI) criteria
are available;

– multi-image/multi-criteria [30]: efficient process to es-
tablish different kinds of consensus among the ad-
jacency lists (e.g. majority vote, most frequent, etc.),
visualization of the conflict between metrics.

The construction criteria and the consensus policy are pro-
vided by the user as parameters of the (multifeature) bi-
nary partition tree construction process (an example can be
found in the code snippet of Listing 1).

• BPT handling:

– definition of tree cuts from partition cardinality: flat or
fitting with an input mask of an object of interest;

– backup and restore trees from .h5 files, which is a Hi-
erarchical Data Format (HDF) designed to store and or-
ganize large amounts of data and ensures compatibility
with external tools;

– export trees to .xml and .dot files, which allows visu-
alization with external tools.

• BPT quality evaluation:

– management of multiple ground-truth examples per
image with potentially different semantic labels;

– extraction of sub-trees of interest to speed up the

analysis by restricting it spatially and hierarchically;

3
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Fig. 2. Horizontal cuts of different binary partition trees on an image from the Grabcut dataset. First line: initial image, ground-truth and initial superpixel partition.
irst column: binary partition tree built with WSDM criterion. Second column: binary partition tree built with Min–Max criterion. Third column: binary partition
ree built with MSE criterion. From second to fifth rows: horizontal cuts with 40, 50, 60, and 70 nodes. Each node is represented with a false color, for the sake of
isualization.

– intrinsic analysis: combinatorial, quantitative, node as-
sessment from the notion of pure and impure nodes
matching with ground-truth examples [32,33];

– extrinsic analysis: home-made evaluation framework
[31,33], implementation of other existing frameworks
from the literature [34,36], evaluation metrics:
F-measure/Dice, Jaccard index.

. Illustrative examples

In this section, we present two illustrative examples of AGAT
sage and performances. In the first example (Section 3.1), we
how how AGAT can be used for building both traditional and
ultifeature binary partition trees, that can then be used for

mage partitioning. In the second example (Section 3.2), we show
ow AGAT can be employed for comparing the performances of
arious binary partition trees, in particular in the context of object
egmentation. These illustrations were designed from the source
odes and some codes snippets available in the provided GitHub
epository.

.1. Building a (traditional or multifeature) binary partition tree

The binary partition tree, such as defined in the pioneering
rticle [11], was designed for hierarchically modeling one image

with respect to one given criterion. Later on, the notion of mul-
tifeature binary partition tree, developed in [30], extended this
initial paradigm, by allowing one to build a binary partition tree
from one or many image(s) of the same scene with respect to one
or many given criteria. The implementation of binary partition
trees proposed in AGAT follows the latter paradigm of [30], and
allows a fortiori to build traditional binary partition trees as
defined in [11].

In this first illustrative example, we consider images in the
context of remote sensing, and more precisely the analysis of very
high spatial resolution (VHSR) satellite images, a domain where
the concept of binary partition tree has been quite frequently and
successfully involved over the last two decades.

The used dataset (courtesy LIVE, UMR CNRS 7263) was sensed
over the town of Strasbourg (France) by the Pléiades satellite, in
2012. From this dataset, we sampled two VHSR images (2 000 ×

2 000 pixels) representing:

• a complex high-density urban area (Fig. 1(a)) composed
of different urban objects (e.g. individual houses, industrial
buildings, parking lots, roads, shadows, water canals);

• a typical low-density urban area (Fig. 1(d)) composed of
different geographical objects (e.g. crop fields, forests, bare
soils, rivers).

These multispectral images are at a spatial resolution of 60 cm
with 4 spectral bands (red, green, blue, near infrared).
4
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isting 1: Code snippet for building a binary partition tree using AGAT.

mport java.awt.image.BufferedImage;
mport java.util.Map.Entry;
mport datastructure;
mport metric.bricks.Metric.TypeOfMetric;
mport multi.sequential.MBPT;
mport multi.strategy.consensus.bricks.Consensus.ConsensusStrategy;
mport ui.ImFrame;
mport utils;
**
* Example to create a multi-feature binary partition tree using four criteria
*/
ublic class ExampleCreateAndCutMbpt {
public static void main(String[] args) {

BufferedImage image = ImTool.read("./dataset/VHSR-sample1.png");

Tree tree = new MBPT(); //Create an empty tree
((MBPT)tree).registerImage(image); //Register the image(s)

/* Choosing the consensus strategy to use */
int consensusRange = 5; /* % defining the interval of the list to consider */
int progressive = 1; /* interval defined proportionally to remaining number of adjacency links */
((MBPT) tree).setConsensusStrategy(ConsensusStrategy.SCORE_OF_RANK, consensusRange, progressive);

/* Linking metrics to the image: four criteria are considered */
((MBPT)tree).linkMetricToAnImage(image, TypeOfMetric.RADIOMETRIC_MIN_MAX);
((MBPT)tree).linkMetricToAnImage(image, TypeOfMetric.NDVI);
((MBPT)tree).linkMetricToAnImage(image, TypeOfMetric.NDWI);
((MBPT)tree).linkMetricToAnImage(image, TypeOfMetric.SIMPLE_ELONGATION);

tree.grow(); //Build the BPT

/* Cutting */
if(tree.hasEnded()) {

int starting = 25, ending = 0, step = 5;
CutResult cutResult = CutBPT.execute(tree, starting, ending, step);

for(Entry<Integer, BufferedImage> entry: cutResult.regionImages.entrySet()) {
int numberOfRegions = entry.getKey();
BufferedImage partition = entry.getValue();
ImTool.show(partition, ImFrame.IMAGE_DEFAULT_SIZE, numberOfRegions);

}
}

}

We considered four criteria for building the binary partition
rees, each one modeling either radiometric or geometrical infor-
ation:

• Ccolor , defined as the increase of the range of the pixel
intensity values for each radiometric band, induced by the
putative fusion of incident regions;

• Cndvi, that quantifies the difference of NDVI (Normalized
Difference Vegetation Index, a standard indicator for the
presence of green vegetation) between two adjacent re-
gions;

• Cndwi, that quantifies the difference of NDWI (Normalized
Difference Water Index, a standard indicator for the pres-
ence of water) between two adjacent regions;

• Celong , defined as the change of geometrical elongation, po-
tentially induced by the fusion of two regions.

ig. 1(b, e), illustrates the results of partitionings (induced by
ree-cuts) obtained from traditional binary partition trees built by
onsidering individually the first criterion. Fig. 1(c, f), illustrates
he results of partitionings (induced by tree-cuts) obtained from
ultifeature binary partition trees built by considering collec-

ively these four criteria.
A Java code snippet, presented in Listing 1, exemplifies how

o obtain such results within AGAT. More extensive experiments
elated to the construction of various (multifeature) binary par-
ition trees and the impact of these various kinds of trees in the
ontext of remote sensing can be found in [30,32].

3.2. Assessing/comparing the quality of various binary partition trees

A wide literature has been devoted to segmentation based on
binary partition trees. In this context, various criteria were in-
vestigated. The design of these criteria strongly influences the re-
sulting trees and, equivalently, the research space for further seg-
mentation, and thus the quality of the subsequent segmentation
results. The literature dedicated to the evaluation of the quality
of binary partition trees is not abundant. AGAT proposes (variants
of) some of the most relevant approaches of the literature:

• an intrinsic quality analysis [33], that evaluates the rele-
vance of a binary partition tree based on the combinatorial
analysis of its nodes and their relationships with a binary
ground-truth associated to the input image;

• an extrinsic quality analysis [33], that evaluates the ability
of a binary partition tree to provide a cut that minimizes at
best a given quality metric provided as hyperparameter with
respect to the ground-truth associated to the input image;

• a framework adapted from [34] that provides the F-measure
of the segmented object vs. the associated ground-truth,
with respect to the size of inside/outside markers generated
from the ground-truth associated to the input image;

• a framework adapted from [36] that aims at computing the
best cuts composed of k nodes for each k in [0, p] (p > 0),
allowing to reconstruct the targeted segmentation.

In [33], extensive experiments were carried out with three
commonly used datasets: Grabcut [37], Weizman [38] and VOC
5
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p

Fig. 3. F-measure of the segmentations obtained from various kinds of binary
artition trees in the evaluation framework [34], with respect to the size 2k+1

of the structuring elements used for erosion (background and foreground) of the
ground-truth. Top: Grabcut. Middle: Weizmann. Bottom: VOC. Considering S as
the segmentation result and G as the ground-truth, the F-measure/Dice score is
defined as 2tp/(2tp+ fp+ fn) with tp = |S ∩ G|, fp = |S \ G| and fn = |G \ S|. (In
this experiment, we kept the terminology of F-measure as used in the seminal
paper [34].) The F-measure is related to the ratio of overlapping between two
objects. It lies in [0, 1]; the closer to 1, the better the overlapping.

[39]. Examples of partitioning of an image from the Grabcut
dataset are illustrated in Fig. 2. These partitions are obtained from
three different binary partition trees, each one built with a given
criterion, noted WSDM, Min–Max and MSE, respectively (see [33]
for their formal definition).

Figs. 3–5 exemplify some metrics that can be computed from
the various implemented evaluation frameworks, thus allowing
to compare the relevance of distinct binary partition trees with
respect to the considered data/ground-truth, here in the case
of object segmentation. The results depicted in these figures
quantitatively emphasize the superiority of one the three tested
binary partition trees (namely the one built with WSDM criterion)
over the other two ones. This is characterized by the fact that,
in the three different experiments, WSDM leads to better values
for the considered measures (the higher these values, the better
the results). These results are qualitatively confirmed by the
segmentations illustrated in Fig. 2.

A Java code snippet, presented in Listing 2, illustrates how
to obtain such results within AGAT. The interested readers can
find in [33] more extensive experiments related to the binary
partition tree evaluation framework proposed in AGAT, applied
in the context of natural images (Grabcut, VOC and Weizmann
datasets).

Fig. 4. Normalized (mean) value of the TPFP measure for the optimal cuts
of a given size from various kinds of binary partition trees in the evaluation
framework [36] Top: Grabcut. Middle: Weizmann. Bottom: VOC. Considering S
as the segmentation result and G as the ground-truth, the (normalized) TPFP
score is defined as tp−fp

|G|
, with tp = |S ∩ G|, fp = |S \ G|. The TPFP quantifies the

trade-off between true and false positives. It lies in (−∞, 1]; a 0 value means
that there are as many true and false positives; the closer to 1, the better the
result.

4. Impact

There already exist libraries dedicated to hierarchical image
models in general, and the binary partition trees in particular.
However, AGAT is the first library that integrates the construction
algorithms for traditional binary partition trees, but also for the
recently introduced multifeature binary partition trees. This pro-
vides potential users with a unique opportunity to design and to
experiment new and richer ways of building hierarchical models
from complex/large (sets of) images. The success of the binary
partition trees in the field of remote sensing over the last years
is the proof of the relevance of this hierarchical model in the
case of large and/or semantically complex images. Many domains
involving such kinds of images (e.g. biological and (bio)medical
imaging) could benefit from the opportunities offered by the
binary partition trees, and then from the functionalities offered
by AGAT.

Additionally, AGAT also embeds various tools for assessing
the quality of binary partition trees. This quantitative evalua-
tion framework can be very useful, for instance in the field of
computer vision, where the partitioning of large/complex images
is generally a prerequisite for high-level scene analysis tasks
(e.g. object detection and recognition). In this regard, providing

tools that can be involved in selection/learning of appropriate

6
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isting 2: Code snippet for evaluating a binary partition tree using AGAT.

mport java.awt.image.BufferedImage;
mport java.io.PrintWriter;
mport java.util;
mport evaluation;
mport standard.sequential.BPT;
mport ui.ImFrame;
mport utils.ImTool;
**
* Example to evaluate the quality of a BPT with intrinsic analysis
*/
ublic class ExampleBptIntrinsicAnalysis {
public static void main(String[] args) {

/* Create a tree */
BufferedImage image = ImTool.read("./dataset/test_img.png");
BufferedImage presegImg = ImTool.read("./dataset/test_img_slic.tif");
BPT tree = new BPT(image);
tree.setPreSegImage(presegImg);
tree.grow();

/* Extract the segments of reference from a ground truth image */
String gtImgPath = "./dataset/test_img-gt.png";
double alpha = 0.0;
TreeMap<Integer, SegReference> segReferences = SegReference.extractSegmentsOfReference(gtImgPath, alpha, true);

/* Visualizing the segments if wanted */
SegReference.showBoundingBoxes(segReferences, image, ImFrame.IMAGE_STD_SIZE, "BB");

/* Extract sub trees */
STree extractedSubTrees[] = new STree[segReferences.size()];
int gti = 0;
for(Entry<Integer, SegReference> entry: segReferences.entrySet()){

SegReference gt = entry.getValue(); // each segment of reference
STree st = new STree(gti, tree, gt); st.index = gti++; // Create the subtree
extractedSubTrees[st.index] = st;

}

/* Evaluate the sub trees */
ArrayList<Eval> evalRes = new ArrayList<Eval>();
for(int i = 0; i < extractedSubTrees.length; ++i) {

STree st = extractedSubTrees[i];
evalRes.add(st.eval(EvalType.INTRINSIC));

}

/* Print the intrinsic evaluations results */
System.out.println("Intrinsic evaluation results: ");
for(Eval res: evalRes) {

res.printResults();
}

}

ontext-dependent meta-parameters for image decomposition is
f great interest for the community. In particular, such frame-
orks proposed in combination with the binary partition tree
onstruction algorithms could lead to consider the induced im-
ge partitioning results as a relevant alternative to the usual,
on-hierarchical, image decompositions proposed by super-pixel
aradigms.
Finally, it is worth mentioning that the binary partition trees,

eyond their usefulness for image analysis task, are first of all
way of building partitions of graph-based structures, indepen-
ently of their associated semantics. Based on this fact, AGAT
ay then be used for solving any graph partitioning problem
rovided that such partitionings are guided by one/many prior
nowledge. This opens the way of the use of AGAT in a wide
ange of machine learning domains where the data are organized
s graphs, i.e. with respect to usual binary relations.

. Conclusions

We presented AGAT, a library dedicated to the construction,
he handling and the evaluation of binary partition trees, which
re tree data structures providing hierarchical partitioning of
mages and, more generally, valued graphs. AGAT contains also
any standard and state-of-the-art algorithms in this domain.

AGAT is the first library allowing for the construction of multi-
feature binary partition trees, and it also gathers a large set of
evaluation tools for traditional binary partition trees. From this
point of view, it constitutes, to our knowledge, the most complete
and up-to-date library dedicated to binary partition trees. It is
composed of three self-contained Java modules. Code sources
are available via GitHub and natively compatible for Linux, Mac,
and Windows systems. They can be downloaded with a simple
command: git clone https://github.com/yonmi/AGAT2.0.git.
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Fig. 5. Normalized (mean) value of the Dice measure for the (near-)optimal cuts
f a given size from various kinds of binary partition trees. Top: Grabcut. Middle:
eizmann. Bottom: VOC. Considering S as the segmentation result and G as the

ground-truth, the Dice score is defined as 2tp/(2tp + fp + fn) with tp = |S ∩ G|,
fp = |S \ G| and fn = |G \ S|. The Dice score is related to the ratio of overlapping
between two objects. It lies in [0, 1]; the closer to 1, the better the overlapping.
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