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Abstract— It is now possible to collect hyperspectral video
sequences at a near real-time frame rate. The wealth of spectral,
spatial, and temporal information of those sequences is appealing
for various applications, but classical video processing techniques
must be adapted to handle the high dimensionality and huge
size of the data to process. In this paper, we introduce a novel
method based on the hierarchical analysis of hyperspectral video
sequences to perform object tracking. This latter operation is
tackled as a sequential object detection process, conducted on
the hierarchical representation of the hyperspectral video frames.
We apply the proposed methodology to the chemical gas plume
tracking scenario and compare its performances with state-of-
the-art methods, for two real hyperspectral video sequences, and
show that the proposed approach performs at least equally well.

Index Terms— Binary partition tree, gas plume tracking,
hyperspectral video sequence, object detection.

I. INTRODUCTION

HYPERSPECTRAL imaging (also called imaging spec-
troscopy) is the process of dividing the electromagnetic

spectrum into several narrow and contiguous wavelengths,
and simultaneously acquiring an image for each wavelength.
All those single-band images are then stacked in a 3-D
(Nx × Ny × Nλ) data cube to produce the resulting hyperspec-
tral image (HSI), where Nx and Ny correspond to the number
of rows and columns of the single-band images, respectively,
and Nλ is the number of wavelengths (also called spectral
bands). To each pixel of the image is, therefore, associated
an Nλ−dimensional vector (or spectrum), which depicts the
way the pixel site has interacted with the incident light and
can be viewed as a function of the spectral wavelength λ.
This spectrum depends on the materials composing the pixels,
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since each physical material can be uniquely defined by its
spectral signature [1]. When analyzing a scene in the visible
and near-infrared domain, this signature is called reflectance
and corresponds to the light that was reflected by the scene.
When working in the longwave infrared (LWIR) domain,
the signature is expressed in terms of emissivity, being the ratio
of the energy emitted by the scene with respect to the incident
energy. Hyperspectral imagery, by acquiring detailed spectral
properties of the scene, finds an always-increasing number of
real-life applications in various remote sensing fields, such
as vegetation mapping [2], geological [3], and hydrological
sciences [4], as well as food quality inspection [5], [6] and
medical imagery [7], [8], among others. However, this wealth
of spectral information comes with several drawbacks, such as
the high-dimensional nature of the data to be handled or the
computational burden due to the large amount of data to
process, making hyperspectral imagery a very dynamic and
quickly evolving field of research [9].

Thanks to the fast development of imaging sensors, it is
now possible to acquire sequences of HSIs at near real-time
rates. The combination of the high spectral resolution proper to
HSIs with the ability of video sequences to record phenomena
evolving with time is appealing for the time monitoring of
objects based on their spatial and spectral properties. However,
some additional efforts are required to extend traditional video
processing techniques (such as block noise reduction, motion
compensation, or object tracking) to the high-dimensional
space structured by hyperspectral data. In addition, available
benchmark hyperspectral video data sets are scarce, and the
lack of ground-truth data makes the quantitative evaluation of
any novel method very challenging.

In particular, we focus, in this paper, on object tracking in
hyperspectral video sequences. Object tracking can be defined
as the process of following the motion of points or regions
of interest as they evolve with time within a video sequence.
Object tracking finds numerous applications in everyday life,
such as automated surveillance, motion-based recognition,
visual servoing, or traffic monitoring, and has been widely
studied in the area of computer vision [10], [11] within the
framework of traditional video sequences. However, most
existing algorithms poorly adapt to the high dimensionality
inherent to hyperspectral data. To the best of our knowl-
edge, the only existing tracking method specifically designed
and evaluated on real-time hyperspectral video sequences is
the one introduced in [12] and [13]. It makes use of the
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TABLE I

SUMMARY OF EXISTING WORKS RELATED TO THE TRACKING OF CHEMICAL PLUMES IN LWIR HYPERSPECTRAL SEQUENCES

mean shift tracker algorithm [14], and the tracked object is
represented as a fixed primitive geometric shape and does
not adapt well to applications where either the tracked object
is nonrigid or where the precise shape of the object is
required. The development of new algorithms able to face
these challenges is necessary. Chemical gas plume tracking is
a typical application that would surely benefit from the design
of such new hyperspectral object tracking methods. As a
matter of fact, such application is of great interest for several
domains. In the environmental protection field, for example,
gas plume tracking could be exploited to monitor pollutant gas
clouds emitted by industrial sources [15], in order to minimize
their impact on the environment and the potential harm they
could cause on human population living nearby. In the defense
and security area, a possible usage of such tracking method
could be to detect the use of chemical gas weapons [16].
Most gases do not respond in the visible spectrum range, but
only in a restrained portion of the LWIR domain, hence the
need of a fine sampling of the electromagnetic spectrum and
the incapacity of classical video techniques to detect (and,
a fortiori, to track) them. In addition, a gas plume is a nonrigid
object whose shape evolves unpredictably with time. The
necessity of a fine spectral description of the scene over time
makes hyperspectral video sequences the most suited tool for
such detection and tracking application.

In the following, we propose a novel algorithm for hyper-
spectral object tracking. Our method, based on a hierarchical
analysis of the frames of the hyperspectral sequence, is able to
track a region of interest whose shape may evolve with time,
without any prior knowledge about the materials constituting
the region. The proposed work, sketched in [17], is based on
a general assumption about the hyperspectral video sequence,
namely, that only the object of interest is in motion with
respect to a fixed background in the hyperspectral video
sequence. It then uses the spectral, spatial, and temporal
information derived from the sequence to perform a sequential
object detection process over the hierarchical decomposition
of each frame, finally producing the shape and extent of the
tracked object without any prior knowledge on its shape or its
spectral signature. We apply it to the chemical gas plume
tracking challenge and compare its quantitative and qualitative
performances against different state-of-the-art methods for two
data sets.

The remainder of this paper is organized as follows.
Section II presents the state of the art related to the tracking
of chemical gas plume in LWIR sequences. Section III intro-
duces some background notions, namely, the notations used

throughout this paper as well as the binary partition tree (BPT)
used to perform the hierarchical representation of the hyper-
spectral frames. Section IV presents the proposed hyperspec-
tral object tracking algorithm from a methodological point
of view. Its adaptation to the gas plume tracking is con-
ducted in Section V. Results are presented and discussed in
Section VI. Conclusion and future research avenues are drawn
in Section VII.

II. STATE OF THE ART

The detection of gas plumes has been already largely
addressed in the literature [18], where most techniques can be
categorized either as anomaly/target detectors or as clustering-
based methods, as summarized in Table I. The most popular
and natural approach is to consider the gas plume as anom-
alous with respect to the background, and thus make use
of conventional anomaly and target detectors. The hypothe-
ses made on the structure of the background clutter model,
the nature, and the variability of the anomalous signature
lead to different detectors, such as the adaptive matched
filter (AMF) operated in [19], the adaptive matched subspace
detector (AMSD) investigated in [20]–[22], the clutter matched
filter (CMF) in [16] and [23], the adaptive cosine/coherence
estimator (ACE), and the orthogonal subspace projection
in [24]. Performance comparison of AMF and ACE detectors
for gas plume detection can be found in [25]. For further
details about previous anomaly detectors, the reader is referred
to [26]–[28]. The major drawback of these methods is that
they cannot be operated without a reference target spectrum,
often estimated using spectral libraries [29], [30]. Moreover,
they do not use any temporal information, since the target
detection process is applied on each frame, independently of
the previous results. Those methods nevertheless allow for
frame-by-frame tracking, since the frames in the sequence
are processed directly after their release. Moreover, the target
detection process is often merely implemented as a statistical
test, and is, in practice, computationally fast enough to be
real time (we consider here a technique to be real time if the
processing of a frame can be completed before the next frame
is acquired, for frame rates in the order of a few seconds per
frame).

A second popular approach that recently emerged is to
address the plume detection problem as a clustering. In that
case, it is assumed that the properties of the spectral sig-
nature of the plume are sufficiently different from those
of the background, so it is possible to compose a cluster
solely containing the plume. Clustering-based method notably
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include [31], which performed spectral clustering (note that it
also requires a reference target spectrum), [32], which investi-
gated graph Laplacian-based spectral clustering, [33] and [34],
where a semisupervised diffused interface clustering (called
the Merriman-Bence-Osher scheme [35]) was implemented,
and [36], where the clustering is handled through robust non-
negative matrix factorization (RNMF). Temporal information
is only considered in [33], [34], and [36], where the proposed
clustering is performed on several stacked consecutive frames
(seven in the case of [33] and [34], and even the whole
sequence for [36]). While it is necessary to differentiate the
faint gas plume signature from the background, the main
downside of stacking consecutive frames is that the under-
lying clustering methods become not suited for the on-the-fly
detection and tracking of the chemical plume, which is an
essential characteristic for passive surveillance scenarios.

In a preliminary study [17], we proposed an alternative
approach to perform the tracking of a chemical plume in
LWIR hyperspectral sequences. Relying on a hierarchical
representation of the frames in the sequence, the tracking was
performed by sequentially recomposing the followed object
from the collection of regions provided by the hierarchi-
cal decomposition of each frame. However, a preprocessing
stage (being a Midway equalization [37]) was conducted over
the whole sequence, making the gas plume impossible to be
instantly tracked. In addition, the frame featuring the release
of the plume was supposedly known in advance, in order to
launch the tracking method on time. Here, we relax those
limitations.

1) The time where the plume appears in the sequence is
no longer supposed to be known, and a change detection
procedure is conducted on every frame in order to trigger
the tracking.

2) The proposed method does not require any preprocessing
step, such that the tracking can now be conducted on a
frame-by-frame basis.

3) A generic one object, one region paradigm is adopted
for the hierarchical object detection process. This simple
rule actually allows for a greater flexibility. Indeed,
the matching procedure (i.e., retrieving the tracked
object among the set of candidate ones, provided by
the hierarchical representation) becomes invariant of the
application, from which only depend the defined features
for the object detection procedure.

In addition, we provide here a quantitative and qualitative
performance analysis and comparison with state-of-the-art
methods, by notably delineating some reference data for two
different LWIR hyperspectral sequences. To the best of our
knowledge, this is the first time that ground-truth data are
created for gas plume tracking applications.

III. BACKGROUND NOTIONS

A. General Notations

In the following, let I = {It , t = 1 . . . , Nt } be a sequence of
Nt hyperspectral frames indexed by t (supposed to correspond
to a time index). Each hyperspectral frame can be viewed
as a mapping It : E → �

Nλ , where E ⊆ �
2 represents

the spatial support of the frame and Nλ is the number of
spectral channels. The elements of E are the pixels xi ∈ E ,
and their associated values through It are It (xi ) ∈ �

Nλ and
will be denoted in short by xt

i . More generally, bold notations
will refer to vector-valued elements. A region R ⊆ E is
a collection of pixels sharing some properties, and will be
equally handled either as a set or through its indicator function
with respect to E , �R : E → {0, 1} with �R(xi) = 1 if
xi ∈ R, 0 otherwise, which is the binary representation of R.

B. Hierarchical Representations

By definition, a pixel is the smallest structuring ele-
ment of an image and is the lowest scale, or level of
details, at which the image can be represented. Many
image processing low-level applications, such as denoising or
filtering, operate on pixels. However, for some other applica-
tions (such as segmentation or object recognition), the pixel-
based representation is not well suited, because the scale of
interest is larger than pixels. Consequently, those applications
are performed on region-based representations of images,
which are high-level descriptions of such images, since each
region, composed of a set of pixels, is assumed to contain
some semantic meaning.

For HSIs, region-based representations allow to combine
spectral and spatial properties of the scene, and several studies
have shown the interest of such approaches with respect
to traditional pixel-based approaches for classification [38],
segmentation [39], and unmixing [40], notably. Images intrin-
sically contain several scales of interest, and the level of
exploration to choose greatly depends on the underlying appli-
cation. Hierarchical representations are a solution to tackle this
issue, since they represent the image under all potential scales
of interest. More specifically, a hierarchy, hereafter denoted
by H , can be described as a collection of regions, which are
either pairwise disjoints or nested

H = {R ⊆ E} s.t ∀Ri , R j ∈ H, Ri ∩ R j ∈ {∅,Ri ,R j }.
(1)

The hierarchy can be built regardless of the application, and
the level at which it should be explored can be tuned afterward.

C. Binary Partition Tree

Among all existing hierarchical region-based representa-
tions, the BPT, by its capacity of handling very high-
dimensional data, such as HSIs, has been receiving increasing
attention. The BPT representation was initially proposed
in [41] for grayscale and color images, and was further
extended to hyperspectral imagery in [42]. It is now used for
classical hyperspectral remote sensing tasks, such as segmen-
tation [43], [44], classification [45], unmixing [46], and object
detection [47], [48].

1) Construction of the BPT: Starting from an initial par-
tition, which can be the pixel level or a coarser segmen-
tation of the image, an iterative bottom–up region merging
algorithm fuses neighboring regions until there is only one
region remaining (corresponding to the whole image support).
In the corresponding tree representation, each region of the
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Fig. 1. Example of a BPT representation.

initial partition is a leaf node, the whole image is the root
node, and each node in-between corresponds to the merging
of two children regions. An example of BPT representation
can be observed in Fig. 1. A proper region merging algo-
rithm is bound to the definition of three parameters of prime
importance:

1) the initial partition of the image, specifying the initial
regions on which the BPT is built;

2) the region model MR, which defines how a region R is
mathematically modeled, and how to handle the union
of two regions;

3) the merging criterion O(Ri ,R j ), which quantifies the
similarity between two neighboring regions Ri and R j

by measuring the distance between their corresponding
region models.

There exist several region models and their nonexhaus-
tive list of adapted merging criteria in the BPT literature
(see [44], [49]). It is also worth noting that a priority term
is often added to the merging algorithm: at a current iteration,
each region whose size is below a given percentage of the
average region size for this iteration is given the merging
priority, regardless of the distance with its neighbors. The
threshold percentage is typically set to 15% [50], to avoid
the unwanted presence of small and meaningless regions in
the last iterations of the merging process.

2) Object Detection With a BPT: The BPT representation
is naturally suited to perform object detection. As a matter of
fact, the BPT can be viewed as a decomposition of the image
in relevant regions across the image support and at various
scales. It naturally provides a finite number of candidates
regions represented by nodes in the tree structure, hence
drastically reducing the search space with respect to a pixel-
based representation. Plus, it is known from [51] and [52]
that considering multiple segmentations of an image at various
scales, hence more or less fine regions, greatly enhances the
recognition of object positions and shapes.

The object detection process can be formalized as fol-
lows: given a set of N reference features �ref =
{ωref

i }N
i=1 corresponding to an object of interest, and given a

BPT representation HBPT of an image, the object detection
process retrieves, for each region R ∈ HBPT, its own set of
features �R = {ωR

i }N
i=1 in the image. It subsequently evalu-

ates the similarity between �ref and �R for some application-
dependent distance function d (�ref,�R) (also often called
cost, objective, or energy function). The selected node is the
one minimizing this distance function. Alternatively, all nodes
below a set threshold can be retained. Fig. 2 shows an example

Fig. 2. Example of object detection using the BPT structure presented
in Fig. 1.

of object detection conducted with a BPT.
The strength of the BPT-based object detection is the

flexibility. As a matter of fact, the selection of relevant
features and appropriate distance functions to compare them,
combined with a proper BPT construction, ensures the method
to be adaptable to almost any kind of application. Features
classically used to perform BPT-based object detection for
RGB images include mean CIE L∗a∗b color and homogeneity
within the region [53] and reference shape models [54], [55].
To perform road and building detection in HSIs acquired over
urban environments, Valero et al. [47], [48] proposed spatial
features, such as the area of the region and of the smallest
oriented bounding box containing it, and spectral features,
such as the correlation between the region mean spectrum
and a reference spectrum (asphalt for roads, for instance), and
some class membership homogeneity.

IV. BPT-BASED HYPERSPECTRAL OBJECT TRACKING

Object tracking algorithms are generally organized in two
steps that are sequentially addressed.

1) The motion prediction step, whose goal is to estimate the
position of the object in the next frame. This is usually
conducted through an extrapolation from the current
position with the estimations of the motion direction and
velocity (plus some margin of error). Motion prediction
allows to reduce the search space by defining an area
where the object can be found with a high probability.

2) The matching step, which searches the object in the
area predicted by the motion estimation step. It typ-
ically involves the definition of reference features for
the sought object and their comparision with features
derived from candidate objects located in the search
space. The tracked object is declared to be the candidate
whose features are the closest from the reference ones.

The formulation of the motion prediction and matching steps
greatly depends on the nature of the tracker (punctual object,
primitive shape, exact contour, or region). The reader is
referred to [10] and [11] for complete and extensive reviews
about classical object tracking algorithms.

The matching step of the tracking algorithm is equivalent
to an object detection process and, therefore, falls in the
scope of the BPT processing. Consequently, object tracking
appears as an iterative object detection procedure, in which
the features used to identify the tracked object in each frame
of the sequence can be derived from the result of the previous
motion prediction step. The proposed methodology, detailed
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Fig. 3. Workflow of the proposed motion prediction step.

in the following, is based on the assumption that only the
object of interest is in motion over a fixed background in the
video sequence. This assumption may seem somewhat restric-
tive. For now, however, most spectrometer sensors providing
hyperspectral video sequences are still sensors mounted on a
tripod, therefore producing sequences of still images with a
fixed background. Like classical object tracking algorithms,
the proposed methodology is decomposed in a motion predic-
tion step and a matching step.

A. Motion Prediction Step

The purpose of the motion prediction step is to restrict, for
each frame I t , the search space only to a neighborhood where
the object is assumed to be found with a high probability.
Here, we propose to go even one step further: being the object
Ot ⊆ E a region of E , the motion prediction step outputs an
estimate region Ôt , such that the shape and position of Ot and
Ôt globally coincide. This estimation is then used to steer the
matching step to locate a candidate region that is similar to
the estimate region both in terms of position and shape.

The method we propose to perform the motion prediction
is decomposed in two inner steps, as shown in Fig. 3. First,
the change mask Ct−1,t between two consecutive frames It−1
and It is estimated. This change mask features areas where
significant change occurs between t−1 and t due to the motion
of the object. In a second step, the change mask is combined
with the position of the object estimated at t −1, denoted Ot−1
to produce an estimation of position at t , named Ôt .

1) Derivation of the Change Mask: Recall that we position
ourselves in the context of a video sequence where the
depicted scene is a superposition of a still background and
a moving object. We also assume that this object of interest
can be represented by a (possibly unknown) fixed spectral
response, denoted o. Following these assumptions, it becomes
possible to express each pixel value xt

i as an additive combina-
tion of the object signature o and the background response bi

at location i (which does not vary with time as the background
is supposed to be still), plus some additive noise:

xt
i = αt

i o + (1 − αt
i )bi + ηt (2)

with αt
i ∈ [0, 1] being the fractional proportion of the object

response in xt
i , and modeling the possible transparency of the

object. Note that (2) can also be understood as a particular
case of linear mixing model [56] where each background
pixel as well as the object signature would be considered as
endmembers. In that framework, αt

i has the same meaning as
classical spectral abundances. One can then write for the frame

difference I�t = It − It−1

x�t
i = xt

i − xt−1
i = α�t

i (o − bi ) + η�t (3)

with α�t
i = αt

i −αt−1
i is the temporal variation of the fractional

proportion of object signature in the considered difference
pixel x�t

i , and η�t = ηt − ηt−1. Consequently, a variation
in the proportion of the object signature at pixel position i
between time instances t − 1 and t yields α�t

i 	= 0, while
α�t

i = 0 when no change occurs. This observation naturally
leads to formulate the following two-hypotheses test:
H0 : α�t

i = 0, there is no change in xi between t − 1 and t

H1 : α�t
i 	= 0, there is change in xi between t − 1 and t .

(4)

For the purpose of hyperspectral anomaly or change detection,
it is classically assumed that η�t follows a Gaussian distri-
bution with zero mean and covariance �, η�t ∼ N (0,�)
(see [26], [27]). In such case, the probability distribution
function f of x�t

i is known under both hypotheses

H0 : f (x�t
i |α�t

i = 0) ∼ N (0,�)

H1 : f (x�t
i |α�t

i 	= 0) ∼ N (
μ�t

i ,�
)

(5)

with μ�t
i = α�t

i (o − bi ) unknown. Therefore, detecting a
change in the time difference frame reduces to testing whether
each pixel difference is drawn from a zero-mean Gaussian dis-
tribution or not. The classical solving of this two-hypotheses
test involves a generalized likelihood ratio test (GLRT) whose
expression for the pixel x�t

i , �(x�t
i ) is the following:

�(x�t
i ) =

maxμ�t
i 	=0 f (x�t

i |H1)

f (x�t
i |H0)

H1
≷
H0

γ. (6)

The unknown mean μ�t
i that maximizes the numerator of (6)

is the maximum likelihood estimator (MLE) μ̂
�t
i of μ�t

i ,
which is defined as follows:

μ̂
�t
i = 1

S

S∑

i=1

x�t
i (7)

where S = Swidth × Sheight is a predefined window of neigh-
boring pixels of x�t

i (here set to 5 × 5, the rationale will be
further detailed in Section IV-C).

Plugging (7) into (6), and solving for x�t
i finally yields to

�(x�t
i ) = S(μ̂�t

i )T �−1μ̂
�t
i

H1
≷
H0

γGLRT (8)

with (·)T denoting the transpose operation. The probability
distribution of �(x�t

i ) under H0 and H1 is given in terms
of χ2

Nλ
with Nλ degrees of freedom (being the number of

spectral channels in the hyperspectral frame) and noncentral
χ2

Nλ,φ with Nλ degrees of freedom and noncentrality parameter
φ = �(x�t

i ) [27], respectively. Knowing the distribution under
both hypotheses allows one to set γGLRT to achieve either
a predefine probability of false alarm or a probability of
detection. The binary change mask Ct−1,t is finally obtained
by thresholding according to γGLRT.
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Fig. 4. (b) Object Ot can be retrieved from (a) Ot−1 and (c) change mask
Ct−1,t by Ot = Ot−1

⊕
Ct−1,t .

Fig. 5. Workflow of the proposed matching step.

2) Estimation of the Position: Under the assumption of
a single moving object overlaying a fixed background,
the change mask Ct−1,t is composed of two categories of
regions.

1) Regions being left by the object. Those are the areas that
were occupied by the object in frame It−1 (αt−1

i > 0)
but no longer in It (αt

i = 0).
2) Regions invaded by the object. Those are the areas that

are reached by the object in frame It (thus, αt−1
i = 0

and αt
i > 0).

Intuitively, the new position of the object, Ot , is composed of
the previous position of the object, Ot−1, minus the regions
that have been left by the object plus the regions that have
been reached by it, as shown in Fig. 4. Mathematically, this
can be formulated by

Ôt = Ot−1

⊕
Ct−1,t (9)

where
⊕

denotes the binary XOR operation. However, as both
the previously known position of the object Ot−1 and the
change mask Ct−1,t may not be fully accurate, (9) is better to
be used as a simple estimate of the new position and shape
of the object. This estimate, output of the motion prediction
step, is going to be further refined in the following matching
step.

B. Matching Step

1) General Description: The proposed matching step,
shown in Fig. 5, involves the construction and processing of
a BPT on the hyperspectral frame, and its use offers several
advantages.

1) It drastically reduces the search space by representing
the frame as a set of hierarchically nested regions. The
set of candidate objects is only composed of regions that
are supported by a node in the BPT.

2) It ensures to represent the frame at various scales, which
is valuable as the size of the tracked object may evolve
along the sequence.

3) It allows to benefit from all the efficient tree-based
processing techniques for BPTs already available in

the literature, and especially those related to object
detection.

Therefore, the matching process aims at retrieving in the
tree structure the node that represents the object and can be
assimilated to a classical BPT-based object detection. In order
to do so, a set of reference features for the tracked object
is defined, and each candidate region has its own set of
similarly defined features evaluated against the reference set.
The region whose features match the reference the best is
declared to correspond to the tracked object.

More specifically, let �Ot = {ωOt
i } be the set of reference

features for the tracked object Ot , where ω
Ot
i is an individual

feature. For each frame, the matching process is done in three
stages. First, each region R of the BPT H t

BPT has its similarly
defined features collected in a set �R = {ωR

i }. Then, each
region has its features evaluated against the reference in order
to find the one whose features match the reference the best.
This implies the definition of a similarity measure di for
each pair of individual features ωR

i and ω
Ot
i , so the overall

matching distance d(R, Ot ) can be formulated as follows:
d(R, Ot ) =

∑

ωi ∈�

βi di
(
ωR

i , ω
Ot
i

)
(10)

where the βi values are optional weights that can be set
to stress the importance of some individual features against
others. The last stage of the matching process consists of
retrieving the region R whose features are the closest from
the reference ones

R = argmin
R∈Ht

BPT

d(R, Ot ). (11)

That region R becomes the object representation in the
current frame It , i.e., Ot ≡ R, and is going to be used for
the motion prediction step in the next frame It+1.

2) Definition of the Proposed Features: Hyperspectral video
sequences naturally provide a wealth of spectral, spatial, and
temporal information, from which the set of reference features
�Ot can be defined. More specifically, we propose, in the

following, a spectral feature ω
Ot
spect, a spatial feature ω

Ot
spat,

and a temporal feature ω
Ot
temp (i.e., �Ot = {ωOt

spect, ω
Ot
spat, ω

Ot
temp})

and their associated similarity functions to retrieve the tracked
object Ot in each frame It .

a) Proposed spectral feature: The purpose of this feature
is to provide some a priori knowledge regarding the spectral
signature of the sought object. Class membership homogeneity
and correlation with respect to a reference spectrum were,
for instance, proposed in [47] and [48] for road and building
extraction in hyperspectral urban scenes. However, those two
features require the availability of some reference spectrum
and are thus not applicable in a fully blind scenario. Therefore,
assuming a moderate motion in the sequence (and thus an
object overlaying similar backgrounds from one frame to the
other), we propose the mean spectrum ōt−1 of the detected
object Ot−1 in the previous frame as the spectral feature ω

Ot
spect

of �Ot .
The proposed spectral feature distance is derived from the

two-sample Hotelling’s T-square statistic, classically used to
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test the equality of the mean vectors of two populations [57].
More specifically, let �̂R and �̂Ot−1 be the respective sample
covariance matrices of R and Ot−1. The Hotelling’s T-square
statistic between R and Ot−1 has the following expression:
T 2(R, Ot−1)= |R||Ot−1|

|R|+|Ot−1| (r̄−ōt−1)
T �−1

pool(r̄−ōt−1) (12)

with �pool being the pooled covariance matrix

�pool = (|R| − 1)�̂R + (|Ot−1| − 1)�̂Ot−1

|R| + |Ot−1| − 2
. (13)

The normalized T 2 statistic

F(R, Ot−1) = |R| + |Ot−1| − Nλ − 1

Nλ(|R| + |Ot−1| − 2)
T 2(R, Ot−1) (14)

follows an F-distribution with Nλ numerator degrees of free-
dom and |R| + |Ot−1| − Nλ − 1 denominator degrees of
freedom. The final spectral feature distance is finally obtained
by normalizing the F-statistic between R and Ot−1 with the
F-statistic between Ôt and Ot−1

dspect
(
ωR

spect, ω
Ot
spect

) = F(R, Ot−1)

F(Ôt , Ot−1)
(15)

as it is desirable for a good candidate region to be closer from
the target spectrum ōt−1 than the estimate region Ôt (thus a
distance value being less than 1).

b) Proposed spatial feature: The goal of this feature is to
specify some descriptors related to the shape of the object to
detect. For basic geometric shapes, a suited spatial feature can
merely be defined as a reference template shape (for instance,
an elliptical template shape in the case of face detection,
as proposed in [55]), or the compactness and elongation of
the smallest fitting bounding box (as used in [47] for road and
building extraction). In this paper, the shape of the object to
detect is, however, supposed to be unknown and is likely to
evolve over time. Therefore, we propose here to take advantage
of the estimate region Ôt that should provide a good initial
guess for the spatial position and shape of the object. Thus,
the proposed spatial feature ω

Ot
spat is simply the output Ôt of

the motion estimation step.
Consequently, the proposed spatial feature distance evalu-

ates how similar from Ôt is any candidate region R

dspat
(
ωR

spat, ω
Ot
spat

) = |R�Ôt |
|R| (16)

where |R�Ôt | is the number of pixels in the symmetric
difference between R and Ôt (pixels either in R or in Ôt , but
not in both). It corresponds to the percentage of error pixels
with respect to the candidate region size. Good candidate
regions are, therefore, expected to have a spatial distance less
than 1.

c) Proposed temporal feature: The objective of this fea-
ture is to incorporate some information related to the motion
in the sequence of the object to detect. Here, we define
the temporal feature as a confidence area where the tracked
object is expected to be found with a very high probability.
This confidence area is derived from the estimate position Ôt

by a morphological dilation with a structuring element (SE),

δSE(Ôt ), and the percentage of inclusion of every candidate
region R in the confidence area is evaluated

R%Ôt
= |R ∩ δSE(Ôt )|

|R| . (17)

The proposed temporal feature distance is a hard thresholding
of this percentage of inclusion

dtemp
(
ωR

temp, ω
Ot
temp

) =
{

0 if R%Ôt
≥ τ

+∞ otherwise.
(18)

This distance allows to consider only regions in the BPT that
have at least τ% of their pixels in the confidence area as
possible candidates, dismissing all other regions. It is possible
to be more or less selective by varying the SE and the
threshold τ .

d) Overall matching distance: For each region R of
the BPT, the overall matching distance to the set of reference
features is obtained by adding the three feature distances

d(R, Ot ) = dspect
(
ωR

spect, ω
Ot
spect

) + dspat
(
ωR

spat, ω
Ot
spat

)

+ dtemp
(
ωR

temp, ω
Ot
temp

)
. (19)

Note that this is equivalent to only considering the spectral and
spatial feature distances for regions whose temporal feature
distance is equal to 0. The optional weights of (10), which
trade off the influence of a distance with respect to the other,
are all set to 1, since the spectral and spatial feature distances
were designed to have a similar range of values for good
candidate regions. The optimal region of the BPT is finally
the one achieving the smallest global distance to the set of
reference features, and is retrieved with an exhaustive search.

C. Initialization of the Object Tracking Procedure

The motion prediction and matching steps developed earlier
in Sections IV-A and IV-B are sequentially addressed in
order to track the object of interest. In order to trigger the
tracking process, however, an initial detection needs to be
performed to identify the object to track. This is the matter
of the initialization phase. In the following, we assume that
the frame in which the object starts moving (and thus where
the object tracking process must be launched) is unknown.
However, we presume that a few (at least two) still frames
It1, . . . ,ItNs

are available prior to the object being in motion.
This assumption seems, however, reasonable in a context of
surveillance, where nothing is moving in most of the frames
of the sequence.

To determine the point at which some motion appears in
the sequence, the change detection procedure described in
Section IV-A1 is applied for each new incoming frame It ,
and a change mask Ct−1,t is generated. If this change mask
remains empty (all pixels of the frame difference I�t have
been found not to feature any change), then it is stated that
no motion is occurring in the sequence yet. Conversely, if at
least one pixel was found to be changing between t − 1
and t (appearing as a 1 in the change mask Ct−1,t ), then
it is assumed that the object has started moving, and the
object tracking process is triggered. Deriving the change mask
requires the knowledge of the covariance matrix � of the
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Fig. 6. Illustration of (a) two layers model and (b) three layers model for the at-sensor radiance.

noise η�t , which is unknown in practice. However, due to the
assumptions that several (say Ns ) still frames are available, one
can compute Ns −1 frame differences featuring only instances
of η�t , which can be used to derive the sample covariance
matrix �̂ of �. In addition, due to the (ideally) large number
of samples on which �̂ is computed, it seems fair to state that
the sample covariance �̂ is a very good approximation of �,
which is the reason why this latter was used in the derivation
of the change mask instead of �̂.

The tracking process being triggered once at least one pixel
has been stated to change between t − 1 and t , the change
detection test needs not to suffer from any false alarm at
all, as the tracking would be engaged too early otherwise.
Therefore, instead of testing each pixel of the frame difference
x�t

i individually in the change detection process, it is tested
along with its 5 × 5 neighbors. Therefore, the pixel will
be marked as changing if and only if some change is also
happening in its direct neighborhood, decreasing the risk of
false alarms with respect to the individual testing case (or
conversely, guaranteeing that all pixels marked as change are
really changing). In the derivation of the GLRT, this translates
as the MLE μ̂

�t
i being equal to 1/S

∑
x�t

i ∈S x�t
i instead of

simply x�t
i .

The other main consequence of this no false alarm policy
is related to the setting of the γGLRT threshold. Usually, this
threshold is derived using the distribution of the GLRT under
hypothesis H0 in order to achieve a given probability of false
alarm pFA. In particular, it requires to invert the cumulative
distribution function of the GLRT under H0. In our case,
however, we wish to have pFA = 0, and thus needs to invert
the distribution of the GLRT under H1 to achieve a given prob-
ability of detection pD . It is known from [27] that the GLRT
�(x�t

i ) follows a noncentral χ2
Nλ,φ distribution under H1, with

Nλ degrees of freedom being the number of spectral bands in
the frame, and φ = �(x�t

i ) being the noncentrality parameter.
The threshold γGLRT and the probability of detection pD are
linked with the following relationship:

γGLRT = (X2
Nλ,φ)−1(1 − pD) (20)

where X2
Nλ,φ is the cumulative distribution function of χ2

Nλ,φ .
Therefore, using (20), one can set the value of γGLRT to
achieve a given probability of detection pD . In practice,
however, the cumulative distribution function X2

N,φ has no
closed form expression, and is computationally slow to invert.
However, it was shown [58, pp. 22–24] that if the random
variable Y follows a noncentral χ2

Nλ,φ distribution with Nλ

degrees of freedom and noncentrality parameter φ, then:
Y−(Nλ + φ)√

2(Nλ+2φ)

p−→ N (0, 1) when Nλ → +∞ or φ → +∞
(21)

where
p−→ denotes the convergence in probability. Here,

Nλ being equal to the number of spectral channel in the
hyperspectral frame (which is typically several hundreds),
it can be considered high enough for the approximation (21)
to hold. Therefore, the value of γGLRT can be derived by
inverting the cumulative distribution function of a standard
normal distribution provided that the proper shift and scaling
described in (21) is applied instead of this of the noncentral χ2

distribution as prescribed in (20) to achieve a given probability
of detection pD. Finally, note that γGLRT varies from one pixel
to the other, as it is linked to the value of φ = �(x�t

i ).
In Section V, we apply the proposed methodology to

the tracking of chemical gas plumes in hyperspectral video
sequences.

V. EXPERIMENTS

Hyperspectral sensors measure the radiance, amount of
electromagnetic energy emitted by the scene. The physical
nature of this energy depends on the scanned spectral range.
In the LWIR range, this emitted energy is governed by the
radiative transfer theory. Therefore, in order to understand
the physical nature of the used data sets, it is worth briefly
describing the radiative transfer theory.

A. Radiative Transfer Theory

The radiance of a material is defined as the amount of
electromagnetic radiation, which passes through or is emitted
from a particular unit area per solid angle, and is expressed
in Wsr-1m-2. Consequently, the radiance of a material is
expressed over the whole electromagnetic spectrum. How-
ever, the sensor cannot capture the radiance over the whole
spectrum, but rather at some particular wavelengths. Thus,
the spectral radiance is defined as the radiance of a material
at a given wavelength, and is expressed in terms of Wsr-1m-3.
When no plume is present in the scene, the spectral radiance
L(λ) (which is a function of the wavelength λ) reaching the
sensor can be expressed according to the two layers model
displayed in Fig. 6(a)

L(λ) = Latm(λ) + τatm(λ)Lb(λ) (22)

where Latm(λ) and Lb(λ) denote the atmosphere and back-
ground spectral radiances, respectively, and τatm(λ) is the
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atmosphere transmittance, defined as the ratio of the quantity
of light leaving the medium with respect to the quantity of
light entering the medium. When the plume is present in the
scene, (22) transforms into the so-called three layers model,
shown in Fig. 6(b) and expressed as

L(λ) = Latm(λ) + τatm(λ)L p(λ) + τatm(λ)τp(λ)Lb(λ) (23)

where L p(λ) and τp(λ) stand for the plume spectral radi-
ance and transmittance, respectively. It is often assumed that
the contribution of the atmospheric radiance with respect
to the plume and background radiances can be neglected.
Also, the atmospheric transmittance can be approximated to 1
due to the short distance between the release point and the
sensor, meaning that the atmosphere allows all the signal to
pass through unaffected [21]. Under those assumptions, the
at-sensor spectral radiance can be written

L(λ) = L p(λ) + τp(λ)Lb(λ). (24)

Spectral radiance is often converted into emissivity as the latter
plays in the LWIR domain the same role as the reflectance
does in the visible domain (in the sense that each material
is uniquely defined by its spectral emissivity signature). The
emissivity of a material, ε(λ), is the ratio of the energy
radiated by this particular material to the energy radiated by
a blackbody at the same temperature. While the former is the
quantity acquired by the sensor, the latter is described using
Planck’s blackbody law

B(λ, T ) = 2hc2

λ5

1

exp
( hc

kTλ

) − 1
(25)

where T is the temperature of the surface in Kelvin, h is
Planck’s constant, c is the speed of light, and k is Boltzmann’s
constant. The emissivity of each pixel is retrieved from the
radiance through the use of some temperature emissivity
separation (TES) algorithm [59], which operates in two steps:
first, the apparent temperature of each pixel is estimated by
inverting Planck’s law. Each pixel radiance is then divided by
its estimated blackbody curve to obtain its apparent emissivity.

B. Data Sets

The data sets used to validate the proposed methodol-
ogy were provided by the John Hopkins Applied Physics
Laboratory (JHAPL). They were acquired in 2006 at the
Dugway Proving Ground in Utah (USA) with a Field-Portable
Imaging Radiometric Spectrometer Technology (FIRST) [60]
LWIR sensor, located 2.82 km away from the release point.
This sensor typically produces video sequences at a frame
rate of 0.2 Hz, where each frame is an HSI composed of
128 × 320 pixels in the spatial domain and 129 spectral
channels, spanning 7.81 to 11.97 μm in wavelength. The
following experiments are conducted on two sequences fea-
turing the explosive release of an acetic acid canister, denoted
aa12_Victory and aa13_Victory. Despites each sequence ini-
tially contained hundreds of hyperspectral frames, only the
small portion of the sequence featuring the plume release
and diffusion was retained. The resulting sequences are both
composed of 30 frames, and the gas release occurs at the 11th

Fig. 7. False color RGB composition of (a) 20th frame of aa12_Victory
and (b) its corresponding ground-truth data.

frame. Note that for the following experiments, it is assumed
that only the first two frames of each sequence are known not
to contain the gas plume, which is a reasonable assumption,
since it should be easy in practical scenarios to obtain some
reference, plume-free frames of some area of interest under
monitoring. The radiance for each frame was converted into
emissivity using the TES algorithm [21] provided by JHAPL
along with the video sequences.

Reference data were created for the two data sets in order
to conduct some quantitative performance evaluations. To gen-
erate the ground-truth map for a given frame, a principal
component analysis (PCA) was performed, and the three prin-
cipal components (PCs) showing the highest contrast between
the plume and the background were selected, creating a false
color RGB composition of the scene. The PC selection was
conducted by visually analyzing the 20 PCs (being most
likely to feature some contrast between the gas plume and
the background). The identity of the selected PCs varied
between the two data sets, and even between two consecutive
frames of a single data set, making this selection automated
impossible. Two classes were carefully delineated from the
RGB composition, the first corresponding to the strongly
concentrated section of the plume (typically the central part),
and the second to more diffused components. Fig. 7 dis-
plays an example of ground-truth data for the aa12_Victory
sequence (more examples are further given in Figs. 8 and 10).
Due to the inherent subjectivity of the ground-truth manual
delineation task, it is advocated not to consider the created
ground truth as a perfect gold standard, but rather as a support
for the quantitative comparison of the performance of several
methods.

C. Experimental Setup

Gas plume tracking is a challenging task, since the gas
plume is a nonrigid object with no real boundary and whose
shape is evolving unpredictably. Moreover, the gas plume is
an optically thin object whose concentration changes with
time, as a natural consequence of the diffusion phenomenon,
making it more and more difficult to detect, hence the need
of appropriately tuning the proposed object tracking method-
ology. Here, we describe the experimental setup used in the
following to conduct the experiments on the aa12_Victory and
aa13_Victory sequences.

As it is assumed that the first two frames of both sequences
only feature the background, the noise covariance matrix � is
computed from the difference between those two frames. From
frame #3 on, the change detection procedure is conducted to
detect the release of the plume, as described in Section IV-C,
with a probability of detection pD = 0.99. Due to the high



4576 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 55, NO. 8, AUGUST 2017

value of pD, and in order not to suffer from the presence of any
false alarm (the size of the plume immediately after the release
being unknown, the tracking step is engaged if at least one
pixel is flagged as changing), the change detection procedure
is actually conducted on the PCA transform of the frame
difference I�t . As a matter of fact, the PCA transformation
decorrelates the data, hence improving its separability with
respect to the highly correlated hyperspectral data, and we
noted that the performances of the statistical testing were
greatly enhanced, performing the testing on the PCs instead,
resulting in no false alarms at all despites the high value
of pD. Note that the use of a PCA does not modify the null
hypothesis H0 of (5) while replacing μ�t

i by W−1μ�t
i in the

alternate hypothesis H1, with W being the eigenvector matrix
of the frame difference covariance matrix.

The motion prediction step is conducted, as presented in
Section IV-A. First, the change mask Ct−1,t is computed
by thresholding the result of the change detection statistical
test, so it achieves a probability of detection of 95%. Then,
the estimate position of the plume Ôt is obtained from Ct−1,t

and the previous position of the plume Ot−1 using (9). Note
that, similar to what is done to detect the release of the plume,
the statistical testing is performed on the PCA of the frame
difference.

The matching step, as described in Section IV-B, involves
the construction of a BPT for the current frame, which
is itself governed by the definition of an initial seg-
mentation map, a region model, and a merging criterion
(see Section III-C1). For our application, the initial segmen-
tation map was obtained using the hyperspectral watershed
algorithm [61]. This technique is known to produce severe
oversegmentation, but this is not a problem, since meaningful
regions will be created later on in the BPT construction from
the merging of initial regions. The efficiency of the hyper-
spectral watershed as an initial segmentation map for chemical
plume tracking was already demonstrated in [17]. The region
model and its associated merging criterion were, on the other
hand, defined as the mean spectrum (its ability to well separate
the plume from the background was shown in [17]), and
the so-called spectral information divergence [49]. Following
the construction of the BPT, the object detection procedure
is conducted to complete the matching step. For that pur-
pose, the spectral, spatial, and temporal features described
in Section IV-B2 are retrieved for each region of the BPT
representation, and the one that is the most likely to correspond
to the plume instance is retrieved by evaluating the overall
matching distance defined in (19) over all regions. Note that
the SE involved in the computation of the temporal feature (17)
is defined as a 9×9 square, and the threshold τ of its associated
feature distance (18) is set to 80%.

To assess the performance of the proposed BPT-based
tracking method, we compare the obtained results against three
state-of-the-art methods.

a) AMSD detector: It considers target pixels as anom-
alous with respect to a structured background model (i.e.,
the spectral variability of the background is described as a
linear subspace), and thus performs a two-hypotheses test on
the raw hyperspectral frame, therefore belonging to the class of

statistical methods (see Table I). The AMSD statistic is derived
from a GLRT approach and can be geometrically interpreted
as the ratio between the distance of the test pixel spectrum
to the subspace spanned by the sole background against the
distance to the subspace engendered by the background plus
the reference target [26]. The AMSD was notably investigated
in [20]–[22] for the detection of chemical gas plume in hyper-
spectral video sequences. The implementation and the refer-
ence target emissivity spectrum provided by the JHAPL [21]
were used in our comparison.

b) ACE detector: Unlike the AMSD, the ACE detector
employs an unstructured background model (i.e., the back-
ground is simply described using its first- and second-order
statistics) to perform a target detection test, hence also classi-
fying the ACE detector as a statistical method. In such case,
the GLRT approach allows for an even simpler geometrical
interpretation, since the resulting ACE statistic can be viewed
as the squared cosine angle between the test pixel and the
reference target spectra in the whitened space. The ACE
detector has also been widely used for hyperspectral chemical
plume detection [24], [62], as it is known to produce glob-
ally fewer false alarms than other statistical target detection
approaches.

c) RNMF method: This clustering-based approach [36]
aims at decomposing a hyperspectral frame as low-rank
matrix (accounting for the data) and a sparse matrix (rep-
resenting the noise corrupting the data), the former being
further factorized as the product between a cluster centroid
coordinates matrix and a cluster indicator matrix, both being
nonnegative. The overall decomposition is formulated as an
optimization problem, solved by the alternating direction
method of multipliers [63]. The RNMF results presented in
Section VI are reproduced from [36], where the clustering
method was applied both on aa12_Victory and aa13_Victory
sequences. To account for the temporal evolution of the gas
plume along the sequence, 20 frames (2 frames prior to the
release of the plume and the following 18 frames featuring
the diffusion for aa12_Victory, and 1 frame prior to the release
and the following 19 frames with the plume for aa13_Victory)
were first stacked together prior to the clustering. This method
additionally requires the number of final clusters as an input,
which was set to 4 (being the sky, the foreground, the moun-
tain, and the plume) in [36].

D. Assessing the Tracking Quality

Assessing the performances of a tracking algorithm is a
well-known challenge in computer vision. Several studies have
addressed the problem when ground-truth data are available.
In [64], a metric is introduced to compare the trajectory
of the tracked object with a reference trajectory accounting
for ground truth. In [65] and [66], frame-based surveillance
metrics relying on the number of true and false positives are
developed. These metrics are notably used to evaluate the
consistency of the tracker across the whole sequence (where a
true positive is claimed when the object is present in a given
frame and correctly detected by the tracker). Object-based
performance metrics, such as spatial overlap between ground-
truth object and tracked object and Euclidean distance between
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Fig. 8. Percentage of (a) strong detection, (b) weak detection, and (c) false alarms for the aa12_Victory data set. Black, green, and blue dashed lines
correspond to the state-of-the-art AMSD, ACE, and RNMF, respectively, while the plain red line corresponds to the proposed BPT-based method. For the
false alarm plots, the y-axis has been broken for an easier visualization.

TABLE II

DETAILED COMPUTATION TIME IN SECONDS (AVERAGE ± STANDARD DEVIATION) OF THE DIFFERENT STEPS

INVOLVED IN THE PROPOSED BPT-BASED TRACKING METHOD, FOR aa12_VICTORY SEQUENCE

their respective centroids, are considered in [67]. In particular,
we propose to use this notion of overlapping between ground
truth and corresponding object in order to derive three metrics
reflecting the performance and accuracy of the tracking. As can
be seen in Fig. 7, the ground-truth map for each frame is
composed of three different regions:

1) regions where the plume is strongly concentrated,
denoted GTstrong in the following;

2) regions where the plume is weakly concentrated,
denoted GTweak;

3) all remaining regions of the image, not containing any
gas and denoted GT∅.

We define the percentage of strong detections Nsd and of
weak detections Nwd as the percentage of strongly and
weakly concentrated ground-truth plume areas included in Ot ,
respectively

Nsd = |Ot ∩ GTstrong|
|GTstrong| (26)

and

Nwd = |Ot ∩ GTweak|
|GTweak| . (27)

Similarly, the percentage of false alarms Nfa is defined as the
percentage of GT∅ area that is wrongly comprised in Ot

Nfa = |Ot ∩ GT∅|
|GT∅| . (28)

High values of Nsd and Nwd (theoretically, 1) along with a
low value of Nfa (theoretically, 0) indicate a good detection
of the plume for a given frame. The temporal performance of
the tracking can be assessed by evaluating the consistency of
Nsd and Nwd to remain high and of Nfa to stay low across the
whole sequence.

VI. RESULTS AND DISCUSSION

This section presents the obtained results for the proposed
BPT-based approach, along with a critical comparison of its
performance with respect to the state-of-the-art AMSD, ACE,
and RNMF methods.

A. aa12_Victory Sequence

1) Results: Quantitative results for the aa12_Victory
sequence are presented in Fig. 8 and Table II. The former
is composed of three plots representing the evolution of the
percentages of strong detections, weak detections, and false
alarms across the sequence, where the x-axis corresponds to
the frame number and the y-axis is the percentage. Each
plot features the Nsd, Nwd, and Nfa values for the proposed
method and the three state-of-the-art approaches (for the
RNMF method, only 20 frames among the 30 that constitute
the sequence are available, hence truncated plots). Table II
exhibits the detailed computation time of the proposed method.
Finally, Fig. 9 displays some visual results, and is composed
of ten rows and six columns. Each row corresponds to a
particular frame of the sequence. Fig. 9(a)–(d) presents the
binary mask of the detected plume for the state-of-the-art
AMSD, ACE, RNMF, and the proposed BPT-based methods,
respectively. Fig. 9(e) and (f) shows the RGB representation
of the hyperspectral frame and the corresponding ground-truth
map, with the same color code as described in Fig. 7. While
it is impossible to show all frames by lack of room, only
frames #11, #12, #14, #16, #18, #20, #22, #24, #26,
and #28 are represented. We remind that the release of
the plume occurs in frame #11 in both sequences. Besides,
we recall that the false color RGB frames result from a
strong preprocessing stage, including the visual selection of
the three PCs showing the greatest contrast between the plume
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Fig. 9. Visual results of the tracking for ten frames of aa12_Victory sequence. (a)–(d) Binary mask of the detected plume for the AMSD, ACE, RNMF, and
the proposed BPT-based methods, respectively. (e) and (f) False color RGB representation of the hyperspectral frame and its ground truth, respectively.

and the background, as well as local contrast enhancement
and adjustment to ensure the color of the various elements
composing the scene (the plume, the foreground, the mountain,
and the sky) to remain relatively similar across the sequence.
Thus, the false color RGB frame does not reflect the difficulty
of separating the plume from the background.

2) Discussion: We now analyze in details the three plots
displayed in Fig. 8.

a) About the strong detection plot: The evolution of the
percentage of strong detection Nsd is shown in Fig. 8(a), and
several observations arise from its analysis.

The evolution of the Nsd curves for the AMSD, the ACE,
and proposed BPT-based methods features a similar trend:
remaining over 90% of strong detections until frame #19, they
both suffer a drop from frame #20 on (and even earlier for the
ACE), before rising again at the end of the sequence. At this
point of the sequence, the plume equally overlays the fore-
ground and the sky, as shown in Figs. 7(a) and 9, and all three
methods suffer from this split. For both statistical approaches,
the bottom half of the plume is poorly detected, and the small
cloud of dust (triggered by the explosive release and appearing
as bright green on the left-hand side of the red plume) is

erroneously identified as the gas plume. For the proposed
BPT-based method, on the other hand, this flaw comes from
the one object, one node paradigm that was adopted for the
hierarchical object detection process. As a matter of fact, both
halves of the plume (the one overlaying the foreground and
the other covering the sky) are supported by nodes in different
branches in the BPT decomposition of the frames. Only the
bottom half subsequently remains correctly tracked by the
proposed method, as it can be observed in Fig. 9. This notably
explains why the percentage of strong detection Nsd-BPT is
divided by 2 between frames #19 and #22. The percentage of
strongly concentrated plume Nsd is increasing again for the
proposed BPT-based method from frame #25 on, because the
top half of the plume is gradually disappearing from the frame
of view, leaving only residuals that are classified as weakly
concentrated in the ground-truth map.

The behavior of Nsd-RNMF is slight different as it remains
consistently over 90% between frame #15 and frame #28 (the
last available one for this method), but it gradually increases
for the first four frames of the sequence, as if the clustering
method was unable to efficiently differentiate between the
plume signature and the background for these initial frames of
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the sequence. A plausible (yet rather surprising) explanation
for this observation is that the plume is “too much” concen-
trated in those first frames. As the RNMF clustering method is
operating on the 20 frames stacked together, it may consider
that those highly concentrated plume pixels do not belong
to the same cluster as the more diffused plume pixels, and
misclassifies them as foreground.

b) About the weak detection plot: The evolution of the
percentage of weak detection Nwd is displayed in Fig. 8(b).
The ground-truth data labeled as weakly concentrated corre-
sponds to areas where the plume is diffused and thin, and is
likely to be mistaken with the background. In addition, there
are globally less pixels labeled as weakly concentrated, hence
the percentage value Nws being more impacted, even for errors
of a few pixels. For these reasons, the Nwd values are lower
than the Nsd ones for all four methods and the majority of the
frames.

There are, however, some common patterns with the strong
detection plot [Fig. 8(a)]. For the proposed BPT-based method,
the Nwd value remains relatively high for the first half of the
frames and significantly drops for the second half. This is in
accordance with the explanation that the plume is splitting
over the sky and the foreground, and only the bottom half is
tracked. The top part, overlaying the sky, quickly diffuses and
is labeled as weakly concentrated in the ground truth, therefore
missed by the tracker. As for the strong detections, the weak
detection values Nwd for the state-of-the-art RNMF clustering
remain low for the first four frames featuring the release,
confirming that the method does not assign those pixels (even
if moderately concentrated) to the plume cluster.

c) About the false alarm plot: The percentage of false
alarms Nfa is presented in Fig. 8(c). The y-axis has been cut for
a better visualization. The false alarms plots shall be analyzed
in two time intervals: prior to and after the release of the
plume.

For the first case, observing the Nfa-BPT plot, one can see
by that the percentage of false alarms remains equal to 0%
prior to the release occurring at the 11th frame. This implies
that the proposed method does not generate any false alarm
before the appearance of the plume, meaning that the tracking
is triggered at the right time, which is a strongly desirable
property for an object tracking algorithm operated in passive
surveillance scenarios. In comparison, the AMSD and ACE
consistently produce false alarms before the release of the
plume. This could be problematic in a scenario where further
processing relying on a precise detection of the plume release
is needed.

Once the plume has appeared in the sequence, the RNMF
and proposed BPT-based method only generate a tiny amount
of false alarms (no more than 2% of all background pixels).
While not necessarily implying that all plume pixels are
correctly detected, this observation signifies that background
pixels are, however, not confused with the plume. For the
proposed method, in particular, it indicates that the BPT is
able to properly separate the plume from the background
during the construction of the BPT, suggesting that the mean
spectrum, even if relatively standard, is an appropriate choice
for the region model. For the two statistical methods, however,

the amount of false alarms relatively significant: while being
constantly around 5% for the ACE detector, it globally
increases up to over 20% for the last frames of the sequence
for the AMSD. Looking, in particular, at Fig. 9, one can see
that the AMSD detects as plume a portion of the mountain in
the background, while the ACE detector scores several false
alarms in the sky region.

d) About the computational time: Table II presents the
computational time of the various steps of the proposed BPT-
based tracking method. The motion prediction step (with
includes the PCA transformation, the GLRT computation for
the change detection process, and the estimate of the new
position) is performed for every newly acquired frame in
the sequence, while the matching (composed of the BPT
construction and the object detection procedure) is achieved
only when some motion has been identified in the sequence.
We recall that the used FIRST sensor acquires a hyperspectral
frame every 5 s.

The most demanding step is the construction of the BPT,
which takes approximately 13 s, despite the use of the
hyperspectral watershed as an initial segmentation map to
lighten the computational burden. Nevertheless, it allows to
reduce the number of initial regions from 128 × 320 =
40 960 to 2750 regions in average, while still producing a
severe oversegmentation. This effect could be mitigated by
employing another strategy (such as superpixels [68] or mean
shift clustering [69]) to derive the initial segmentation, at the
risk of undersegmenting the gas plume if this latter is of
limited size. The object detection process takes approximately
8 s, most of which is due to the computation of the spectral
feature distance (15), which requires the inversion of a pooled
covariance matrix for all regions in the BPT structure. Finally,
the motion prediction step takes less than 3 s per frame,
which is already compatible with the real-time processing
constraint inherent to a passive surveillance context. The
overall computational time adds up to about 24 s per frame
for the motion prediction and the matching steps, when run on
a laptop computer with an Intel Core i7-4700HQ at 2.40-GHz
processor and MATLAB R2015a.

Although obtaining real-time performance is beyond the
scope of this paper, the computational time could be further
reduced by implementing the BPT algorithm in a more effi-
cient language (such as C/C++). Speedup strategies, such as
using the output of the motion prediction step as a mask to
guide the local coarseness of the initial segmentation map,
could, in addition, be employed.

B. aa13_Victory Sequence

1) Results: Quantitative results for the aa13_Victory
sequence are presented in Fig. 10 for the Nsd, Nwd, and Nfa
plots, and in Table III for the computational time. Visual
results are provided in Fig. 11. Their display is strictly
identical to the one of the aa12_Victory sequence.

2) Discussion: We now analyze in details the three plots
displayed in Fig. 10.

a) About the strong detection plot: Fig. 10(a) displays the
percentage of strong detections Nsd. The first observation that
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Fig. 10. Percentage of (a) strong detection, (b) weak detection, and (c) false alarms for the aa13_Victory data set. Black, green, and blue dashed lines
correspond to the state-of-the-art AMSD, ACE, and RNMF, respectively, while the plain red line corresponds to the proposed BPT-based method. For the
false alarm plots, the y-axis has been broken for an easier visualization.

TABLE III

DETAILED COMPUTATION TIME IN SECONDS (AVERAGE ± STANDARD DEVIATION) OF THE DIFFERENT STEPS INVOLVED

IN THE PROPOSED BPT-BASED TRACKING METHOD, FOR aa13_VICTORY SEQUENCE

can be made is that, unlike the proposed BPT-based approach,
all AMSD, ACE, and RNFM methods miss the release of the
plume at the 11th frame. This is confirmed by the first row
of Fig. 11, which shows that all three state-of-the-art methods
present some isolated false alarms, while the BPT is able to
accurately isolate the appearing plume from the background. It
confirms the robustness of the implemented change detection
approach to perform the tracking initialization, and the subse-
quent object detection procedure, as the proposed method is
able to lock on the plume directly as it appears in the sequence.

Contrarily to the aa12_Victory sequence, both the
Nsd-BPT and Nsd-RNMF plots have a close behavior, remain-
ing over 70% of strong detections until frame #25 before
significantly dropping for the last frames of the sequence.
The visual analysis of Fig. 11 suggests that the track has
been completely lost for the BPT-based method. The main
reason is that the gas has become so diffused as this point of
the sequence that the change detection test no longer detects
change between two consecutive frames, resulting in an empty

change mask Ct−1,t . Consequently, the output Ôt of (9) with
an empty Ct−1,t is equal to the previous object position Ot−1.
In this situation, the motion prediction step becomes trapped
in one part of the image (being the background mountain in
this case) and the track is lost. A possible solution to overcome
this issue would be to regularly reset the motion predictor by
estimating the change between the current frame and a frame
prior to the release instead of using two consecutive frames
and a more limited motion.

The AMSD and ACE approaches produce similar results,
with a drop at the middle of the sequence before increasing
again, overall outperforming both the RNMF and BPT-based
methods.

b) About the weak detection plot: The evolution of the
percentage of weak detection Nwd is shown in Fig. 10(b).

For all compared methods, the obtained Nwd plot is more
chaotic than the Nsd ones, as the curves oscillate a lot and
do not show much consistency from one frame to the other.
One can, however, remark a peak centered around the 25th
and 26th frames for the proposed BPT-based method. As a
matter of fact, the method has just lost the track of the object
and is settling in a particular region of the image instead.
In frame #26, this region coincides with the wake of the plume,
explaining the spike in the curve.

c) About the false alarm plot: Fig. 10(c) exhibits the
percentage of false alarms Nfa. The y-axis has been cut for
a better visualization. Similar to the aa12_Victory data set,
the percentage of false alarms should be analyzed in two
parts, being prior to and after the release of the plume in the
sequence.

For the first ten frames, the observations are almost similar
to those made for the aa12_Victory sequence. The AMSD
generates false alarms for all frames prior to the release,
contrarily to the ACE, which scores this time almost no false
alarms at all. The proposed BPT-based method remains at 0%
all along, validating the fact that the tracking algorithm is not
triggered prior to the release.

For all remaining 20 frames, the RNMF and the proposed
method do not generate a lot of false alarms, confirming that
both methods are able not to confuse the background pixels
with the plume. The loss of track for the BPT-based method
is illustrated by the increase in percentage of false alarms
from frame #25 on, remaining nevertheless moderate (no
more than 5%). While the AMSD still confuses part of the
background mountain with the plume, the ACE detector this
time produces less false alarms. However, and similar to the
aa12_Victory data set, both statistical methods tend mistake
the bright green cloud of dust, located directly below the
chemical plume.
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Fig. 11. Visual results of the tracking for ten frames of aa13_Victory sequence. (a)–(d) Binary mask of the detected plume for the AMSD, ACE, RNMF,
and proposed BPT-based methods, respectively. (e) and (f) RGB representation of the hyperspectral frame and its ground truth, respectively.

d) About the computational time: The computational time
for the aa13_Victory sequence is presented in Table III.
The running time is of similar order than for aa12_Victory
sequence, with the construction of the BPT being the slowest
step, followed by the object detection process and the motion
prediction step.

C. Critical Analysis and Comparison of Obtained Results

We finally conduct a critical comparison and list the advan-
tages and drawbacks of the proposed method and all three
compared state-of-the-art approaches.

a) Statistical AMSD and ACE detectors: Thanks to their
simplicity of use and their computational efficiency (less than
1s per frame for both of them), AMSD and ACE are popular
target detectors for the detection and tracking of chemical
plumes. Their main disadvantage is that they both require
the knowledge of the target spectrum to be operated. While
this latter is, in practice, estimated with spectral libraries,
it nevertheless implies that such libraries are well constituted,
with the sought samples matching the used sensor character-
istics in terms of number of bands and spectral frequencies.
Moreover, sample measurements are often conducted in-lab,

with next-to-perfect conditions that do not necessarily conform
the real data collecting situation. Their use of the temporal
information contained in the sequence is also limited, as they
commonly take only advantage of pixels that were labeled as
“background” with high confidence in It−1 to update some
parameters (the background endmembers in the AMSD case
and the whitening matrix for the ACE detector) for frame It .
There is, however, no real temporal consistency constraint for
the pixels labeled as “plume,” which leads both detectors to
suffer from many false alarms (even if this effect is less severe
for the ACE detector). This could, for instance, be detrimental
when a precise detection of the plume release is required for
further (and possibly uncorrelated) operations.

b) Clustering-based RNMF method: The results out-
putted by the RNMF clustering method are visually the closest
to the ground-truth data. Its formulation, as presented in [36],
however, suffers from two major drawbacks that would limit
its potential use for real chemical plume tracking scenarios.
First, it is necessary to stack several consecutive frames
together (including some empty background frames), in order
to enhance the capability of the algorithm to separate the
plume from the background. This point is not only problematic
to perform frame-by-frame tracking, since several consecutive
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frames must be grouped together prior to the clustering step,
but it also implies that the release point of the plume in
the sequence is known beforehand. Second, the clustering
operation requires to fix a priori the number of clusters to
employ, which can be difficult to set optimally for complex
background scenes.

c) BPT-based object tracking approach: The obtained
results for aa12_Victory sequence put in evidence a limit
of the one object, one node paradigm that was adopted
for the object detection process. This latter indeed assumes
that the whole tracked object is captured as one region in
the hierarchical structure, and this may not always be true,
as it was demonstrated on the aa12_Victory sequence by the
plume splitting in two different branches of the BPT. The
extension to a one object, multiple nodes paradigm, required
to accommodate such case, is, however, not straightforward as
there is also a risk of confusion with a multiple objects, one
node each situation. Nevertheless, handling both possibilities
appears as the next improvement of the proposed methodology,
and it is part of our future research avenues. Note that the
challenge for that purpose does not concern the adaptation
of the object detection procedure itself, but rather the motion
prediction step, and more particularly the derivation of the
change mask that must be able to differentiate to which part
of the changing map is linked each moving object, in order to
output several new estimate positions.

The experiments conducted on the aa13_Victory sequence
showed another limitation regarding the propagation of errors
that can lead to a loss of track. As a matter of fact, both the
motion prediction step and the matching step greatly depend
on each other results, as they are sequentially conducted, and
a poor output of any of these steps can potentially compromise
the whole tracking process. A possible solution to prevent
this effect could be to regularly check that the shape of the
estimate position obtained by (9) is similar to the output of a
change detection process between the current frame It and an
empty background frame, and reset the tracker if the test is not
conclusive. Conducting this test in an objective and generic
fashion is, however, a challenging task, since it requires to
define up to which point two shapes are similar or not, and
this could vary from one application to the other. Improving
this point is also part of our future research objectives.

In spite of the two aforementioned issues, the proposed
BPT-based tracking method features several advantages with
respect to the presented state-of-the-art approaches. First,
it really makes the most out of the temporal dimension of the
sequence through the motion prediction step, while the match-
ing stage itself relies on the spectral and spatial information
contained in each hyperspectral frame. The final output has a
real tracking connotation, with the tracked object appearing
as connected, unlike the three state-of-the-art methods for
which the pixels labeled as “plume” are not handled as a
semantic object as a whole. Another asset of the proposed
method is that it does not require any prior information on
the spectral composition of the object to track, which is
contrarily incorporated and updated on-the-fly. Last but not
least, the tracking can be performed on a frame-by-frame
basis, even though real-time performances are not reached

yet (and are beyond the scope of this paper), allowing for
passive surveillance applications.

VII. CONCLUSION

In this paper, we presented a new methodology to per-
form hyperspectral object tracking based on the hierarchical
analysis of hyperspectral video sequences, and applied it to
the tracking of chemical gas plumes. Like classical object
tracking algorithms for color video sequences, the proposed
method was decomposed in a motion estimation step and a
matching step, performed sequentially. The motion estimation
involved the derivation of a so-called binary change mask
between consecutive frames with a GLRT approach, based
on the assumption that every pixel spectrum can be written
as a linear combination between a moving object and a fixed
background. The change mask was then combined with the
known position of the object in the previous frame to derive
an estimate of its new position in the current frame. The
matching step was handled as an object detection process. The
use of a BPT to that purpose allowed to drastically reduce the
object search space by representing a hyperspectral frame as a
limited set of hierarchically organized candidate regions. The
matching involved the definition of a set of reference features
for the sought object and the evaluation of every candidate
region features against those reference ones.

The proposed method was applied to the tracking of chem-
ical gas plumes in two different LWIR hyperspectral video
sequences. This challenging application is, up to now, mostly
addressed in the literature with the use of anomaly detectors
that do not make the most out of the temporal information
in the sequence, in addition to requiring the knowledge of
the target spectrum, or clustering-based method that stack
several consecutive frames, hence not being operable in any
real-time scenario. We manually delineated some ground-truth
data for all frames of the two sequences, and corresponding
performance metrics were introduced in order to compare our
proposed method with three state-of-the-art methods, namely,
the statistical AMSD and ACE detectors and the clustering-
based RNMF approach. A critical evaluation of the obtained
results was then conducted, allowing to identify the advan-
tages and drawbacks of all compared methods. In particular,
despites the promising results of the proposed methodology,
we established several points to investigate in the future, such
as the relaxation of the one object, one node paradigm and
the management of errors propagation leading to a loss of
track. Further experiments will also be conducted on other
hyperspectral sequences of various physical natures in order
to evaluate the robustness of the proposed methodology with
respect to the underlying application.
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