
TUGboat, Volume 0 (2060), No. 0 1001

Classes, styles, conflicts: The biological
realm of LATEX

Didier Verna

Abstract

The LATEX world is composed of thousands of soft-
ware components, most notably classes and styles.
Classes and styles are born, evolve or die, interact
with each other, compete or cooperate, very much as
living organisms do at the cellular level. This paper
attempts to draw an extended analogy between the
LATEX biotope and cellular biology. By considering
LATEX documents as living organisms and styles as
viruses that infect them, we are able to exhibit a set
of behavioral patterns common to both worlds. We
analyze infection methods, types and cures, and we
show how LATEX or cellular organisms are able to
survive in a world of perpetual war.

1 Introduction

Every LATEX user faces the “compatibility nightmare”
one day or another. With such great intercession
capability at hand (LATEX code being able to redefine
itself at will), a time comes inevitably when the
compilation of a document fails, due to a class/style
conflict. In an ideal world, class/style conflicts should
only be a concern for package maintainers, not end
users of LATEX. Unfortunately, the world is real,
not ideal, and end-user document compilation does
break.

As both a class/style maintainer and a docu-
ment author, I tried several times to come up with a
systematic approach, or at least some general princi-
ples on how to handle class/style cross-compatibility
in a smooth and gentle manner, but ultimately failed,
because the situation is just too complex. Classes
and styles evolve constantly, sometimes even in a
backward-incompatible way. Classes and styles die,
while new ones are born. Styles may conflict not only
with classes but with other styles as well. Styles may
be made aware of classes or other styles, but classes
may be made aware of styles as well. Then, there
is the influence of the end user who will combine
all available material in a somewhat unpredictable
way, possibly with his/her own personal additions,
or even modifications to the available features.

This vicious circle basically never ends and leads
to a paradoxical “If it ain’t broke, then fix it” situ-
ation in which complex trickery is added to classes
or styles, not to make them work out of the box,
but to prevent potential breakages resulting from
interactions with the outside world. In the end, the
only realistic conclusion is that there is no solution to

this problem, both because the system is too liberal,
and because the human factor is too important. One
cannot force a package author to write good quality
(for some definition of “quality”), non-intrusive or
even just bug-free code. One cannot force a package
author to keep track of all potential conflicts with
the rest of the LATEX world, let alone fixing all of
them by anticipation. One simply cannot prevent
software evolution.

Facing this somewhat pessimistic conclusion, it
is all the more intriguing to acknowledge the fact that
the system still globally works. Despite the complex-
ity of what happens behind the curtain, documents
are being produced, and in some way, seeing a freshly
compiled document pop up on the screen is just like
witnessing a small miracle. When it doesn’t compile,
you don’t really know why, but when it does compile,
you really don’t know why. This is the precise point
at which the parallel with biology occurred to me.
Any living being is by itself a miracle of complexity,
and unfortunately, sometimes it breaks as well.

One Monday morning, I woke up with this vi-
sion of the LATEX biotope, an emergent phenomenon
whose global behavior cannot be comprehended, be-
cause it is in fact the result of a myriad of “macro”-
interactions between smaller entities, themselves in
perpetual evolution. In this paper, I would like to
build bridges between LATEX and biology, by view-
ing documents, classes and styles as living beings
constantly mutating their geneTEX code in order to
survive \renewcommand attacks. . . .

The basis of our analogy is to consider LATEX
documents as living beings, and styles as viruses
that infect them. Based on this picture, a number of
puzzling similitudes can be found in the way organic/
LATEX material interact. In the following, we first
describe how LATEX documents can be morpholog-
ically compared to a specific kind of organic cells,
then draw a parallel between genetic and program-
matic material, and finally justify our view of styles
as viruses. After that, we respectively draw interest-
ing comparisons between existing viral or stylistic
infection methods, infection types, and also possible
cures.

2 Morphological analogy

In this section, we present a morphological analogy
between LATEX documents and a specific kind of
organic cells from the so-called “eukaryotes” domain.

2.1 Eukaryotes

According to Whittaker’s nomenclature [23], eukary-
otes subsume four of the five “kingdoms” of life,

Classes, styles, conflicts: The biological realm of LATEX

1002 TUGboat, Volume 0 (2060), No. 0

\documentclass{article}

\begin{document}

\end{document}

%% Preamble

%% Body

Nuclear Envelope

Plasma Membrane

Figure 1: Unicellular LATEX document

including animals and plants. As opposed to prokary-
otes, the cells in a eukaryote organism have a complex
structure, and in particular contain a nucleus. The
nucleus is separated from the rest of the cell by the
nuclear envelope and the cell itself is separated from
its surrounding environment by the plasma mem-
brane.

The contents of a cell is called cytoplasm. In eu-
karyotes however, the contents of the nucleus, called
nucleoplasm, is not considered to be part of the cy-
toplasm. While the nucleus contains most of the
cell’s genetic material, cellular functions (material-
ized by all sorts of biochemical activities) occur in
the cytoplasm.

2.2 Unicellular LATEX documents

Figure 1 shows a LATEX document as a unicellu-
lar eukaryote organism. Such a document indeed
has a specific structure. In particular, it contains a
preamble (the document’s nucleus) and a body (the
document’s cytoplasm). The preamble is separated
from the body by a call to \begin{document} (the
nuclear envelope) and the document ends with a call
to \end{document} (the plasma membrane).

Just as a cell’s nucleus contains most of the
genetic material, a document’s preamble contains
most of the programmatic material: a selection of
one class and a set of styles, (re)definitions for new
(existing) commands, etc.

Finally, most document “activity” (meaning
command expansion, execution and actual text pro-
cessing) occurs in the document’s body, just as most
cellular activity occurs in the cell’s cytoplasm.

3 Functional analogy

Based on the morphological analogy described in
the previous section, we can push the idea one step
further by comparing genetic and programmatic ma-
terial together. This leads to a parallel between how
cells or LATEX documents “work”, and which function
they fulfill.

A living cell performs some functions. Aside
from reproduction, which is a very common one,
different cells may function differently. For instance,
the role played by a liver cell is different from that of
a neuron. The role of a LATEX document, on the other
hand, is essentially to compile correctly in order to
be read. Both cells and LATEX documents implement
their respective functionality through very similar
processes: some piece of static information is read
and used in order to produce a concrete result or
side effect, much like a factory creates concrete items
based on formal specifications.

3.1 Cellular factory

Cells basically work by expressing genes. Genes
can be seen as an infrastructure that stores static
pieces of information (the formal specifications for
what needs to be produced). This information does
nothing by itself. However, it is available on demand.

A gene is said to be expressed when the informa-
tion it contains is used to actually produce something,
for instance, a protein. Expressing a gene can roughly
be described as a two-step process: first the DNA

sequence is transcribed into mRNA (messenger RNA).
This serves as a temporary copy of the original DNA

sequence which helps preserve the original piece of

Didier Verna

TUGboat, Volume 0 (2060), No. 0 1003

mRNADNA Protein

\def\foo{FOO} \foo Typesetting

Figure 2: The geneTEX factory

information from deterioration. Next, the resulting
mRNA is “read” by a ribosome, which will eventually
produce the resulting protein.

3.2 TEX factory

The similarity with TEX macros (in fact, with func-
tions in any programming language) is striking. The
biologists themselves speak of genetic “code”, be-
cause it is exactly that: just like a gene contains a
formal specification for something to be synthesized,
a TEX macro definition contains a formal specifica-
tion for something to be executed. The result is not
as concrete as a protein, but instead consists in some
side-effect like the actual typesetting of a portion of
a document.

Just like genes, TEX macros don’t do anything
on their own, but are available on demand. Figure 2
depicts the process of expressing a gene or executing
a TEX macro. A macro definition is much like a
gene, which encodes a formal specification. A macro
call is much like a messenger: an actual instance
or copy of the original information which is about
to be concretely used. TEX does not use ribosomes,
but a “mouth” and “stomach” instead (as per Don-
ald Knuth’s terminology in [6]), to perform macro
expansion and (primitive) command execution.

In the remainder of this paper, we use the term
“geneTEX material” to designate both genetic material
in cells and programmatic material in documents.

4 Higher view of geneTEX material

So far, we have established a morphological ground
on which to compare unicellular eukaryotes and
LATEX documents, and we also have exhibited similar-
ities in the way genetic and programmatic informa-
tion is processed. It is now time to stand back a little
and get some perspective on why this comparison is
interesting.

4.1 Roles

We know that genes (or rather the information they
encode) determine the way a cell will function. Let
us consider two eukaryote cells, for instance resulting

from the mitosis of a mother cell, and hence equipped
with the same initial genome (in other words, the
same functional potential). Why do these two cells
eventually turn out to be different?

The difference comes from the fact that the set
of actually expressed genes differ, because the orders
emanating from the cytoplasms differ, in turn partly
because ultimately, the cell’s environments differ.
In other words, different cytoplasms lead to cells
functioning differently, even when the original genetic
material is the same. In addition to that, variations
in the environment also lead to more divergence from
the two cytoplasms as time passes.

Now consider LATEX articles, reports, books, etc.,
in the sense of their corresponding \documentclass.
It is usually very easy to figure out the class of a
document just by the look of it. Two articles look
similar because their general layout is the same: it
is dictated by the article class. Consequently, a
document’s class can be seen as its original geneTEX
material. Two articles look roughly the same but
are still different, just like two liver cells are both
liver cells, but still different ones. If we extrapolate
a little further, outside the unicellular world, the
morphological similarities between documents of the
same class are not unlike those between brothers and
sisters or even twins (blue eyes, red hair, etc.) that
may share the same genetic pool although expressed
slightly differently.

Given this parallel, what makes two article

documents different is also exactly what makes two
liver cells different. The set of expressed genes/
macros may differ (you might or might not use
\subsubsection), the orders coming from the doc-
ument’s cytoplasm/body may differ (you may issue
macro calls at different times and with different pa-
rameters), and in fact the whole documents’ cyto-
plasms/bodies diverge (their respective text is not
the same). The ultimate source of divergence is of
course the documents’ authors, who write different
documents. A document author clearly takes the
role of the cell’s environment here.

4.2 Sources

A LATEX document. just like a cell, is a viable entity
as soon as its initial geneTEX material is defined
(its class), and it has a healthy body/cytoplasm.
However, it is rare that a document is satisfied only
with a class. In fact, a perhaps even more important
and abundant source of geneTEX material is the use
of styles. Styles provide the same kind of material
as classes: macro definitions. The difference is that
styles are not needed to give birth to a document.
When some are used, however, the document may

Classes, styles, conflicts: The biological realm of LATEX

1004 TUGboat, Volume 0 (2060), No. 0

function slightly or sometimes very differently.
In this context, the idea of viewing styles as

viruses that infect unicellular LATEX documents turns
out to be quite natural. Viruses are biological entities,
mostly genetic components, that need a host cell to
replicate themselves. Viruses are thus characterized
by the fact they cannot perform their function on
their own (this is why viruses are not considered
as living entities [4, 13], although the debate is still
open [11]). A LATEX style has similar properties: it
is basically useless as a standalone entity and needs
to “infect” a host document in order to perform
its function. Just like a virus, a style adds its own
geneTEX material to the document’s original pool.

Viruses are usually small compared to the organ-
isms they infect, apart from two notable exceptions:
the mamavirus and the mimivirus, which are twice
as big as the average. A quick survey of the TEX Live
2009 distribution exhibits a surprising coincidence:
among 2462 available sty files, the average size is
around 327 lines of code (LoC), with a median at
134. Styles are indeed rather small. However, two
of them are exceptionally bigger than the others:
texshade.sty and xq.sty, with 14470 and 24535
LoC respectively. These styles can arguably be called
the mimistyle and the mamastyle of LATEX.

All these considerations make it interesting to
analyze and compare the ways genetic material from
cells and viruses, or programmatic material from
classes and styles, interact. This is the purpose of
the following sections.

5 Infection methods

In cells as in documents, there are many ways to be
infected with new geneTEX material. The following
methods come to mind in both worlds.

5.1 Exogenic

Perhaps the most common way for a document to be
infected by a style is to “request” explicit infection by
means of the \usepackage command. This results
in the incorporation of the style into the document’s
preamble, the style being indeed an external LATEX
entity stored in a file of its own. We could even use
the term “stylon” to denote the style file, in reference
to the biological term “virion” which denotes the
viral particle outside the cell it is bound to infect.

Such a style infection always occurs after the
initial geneTEX material of the document has been
defined, since \documentclass must appear first.
As such, the style’s material is not technically part
of the original document’s material. The infection
occurs afterwards.

In biology, this process is said to be exogenic:
the cell is infected by the virus after it has been
created (for instance, after mitosis), and the genetic
material brought by the virus is not part of the cell’s
original pool.

5.2 Endogenic

A document might however be infected by a style
without even knowing it: a class may request infec-
tion by means of the \RequirePackage command.
As such, when a document is created based on this
class, even without explicit addition of any style
in the preamble, the document is already infected.
Arguably, this is a situation in which the geneTEX
material brought by the style is indeed part of the
original genome, because it is impossible to create a
non-infected document based on that class.

This kind of infection is known to be endogenic
in biology: when a new cell is born, it already con-
tains some genetic material that would have required
a former infection, for instance of the mother cell.

About 10% of our own genetic source material is
currently estimated to be endogenic. A quick survey
of TEX Live 2009 reveals that 259 out of the 271 avail-
able classes (95%) “suffer” from endogenic infections,
by 4 styles on average (the median being 2). CurVe
[21, 22], for instance, is infected by the ltxtable,
ifthen, calc and graphics viruses. The QCM style
is also endogenic to the QCM class [20].

5.3 Endosymbiosis

In biology, viruses are not the only source of external
genetic material. Endosymbiosis is defined as the
mutually beneficial cooperation between two living
organisms, one (the endosymbiont) contained within
the other. The so-called endosymbiotic theory [7] sug-
gests that some organelles from eukaryote cells (e.g.
mitochondria) actually come from the endosymbiosis
of former prokaryotes (cells without a nucleus).

In the LATEX world, we must acknowledge the
fact that endosymbiosis is not as widespread as it
should be. What we usually observe is the opposite
phenomenon: the proliferation of a multitude of dif-
ferent packages that are meant to work together, or
do more or less the same thing, instead of becoming
one single and bigger animal. To mention a couple of
examples, I have recently attempted twice to contact
the author of doc about incorporating the features
of DoX [17] (in other words, to turn DoX into an en-
dosymbiont for doc) but got no response.1 Not long
ago, I also launched a thread on comp.text.tex en-
titled “Please, make it stop!” in which I mentioned

1 It seems, however, that recent versions of doc do contain
endosymbiotic versions of newdoc, so there is still hope. . . .

Didier Verna

TUGboat, Volume 0 (2060), No. 0 1005

a couple of packages doing a similar job (key/value
processing). At the end of the thread, the number of
such packages, as reported by different participants,
amounted to 13. LATEX definitely needs more en-
dosymbiosis. Maybe the LATEX 3 project will help in
this regard.

As a final note on endosymbiosis, we must admit
that our analogy falls short on one point: in biology,
the symbiotic organisms are living creatures (mi-
tochondria are semi-autonomous: they live in cells
but have independent division capabilities). In our
case, we are mostly talking of symbiotic relations be-
tween styles and/or classes, which are not considered
“living” documents (see section 4.2 on page 1003).

5.4 Exosymbiosis

An interesting phenomenon in package development
seems to do the opposite of endosymbiosis. We call
it exosymbiosis. Many existing styles originate from
quick, local and often dirty hacks in specific doc-
uments, that are gradually abstracted away and
cleaned up in order to become styles of their own, offi-
cially distributed in the form of sty files (a “bottom-
up” development approach, in other words). In this
situation, a symbiosis continues to exist, but one of
the “organisms” is made external to the other, hence
the choice of terminology.

Here is a concrete example of this. For many of
my lectures, I use the Listings package for typesetting
code excerpts, and include them in Beamer blocks.
Providing nice shortcuts for doing so is not trivial
if one wants to preserve control over both Beamer
blocks and Listings options. The way I currently do
this is to simply cut and paste the same 50 LoC into
every new document I create over and over again.
Soon, however, this will become a style of its own
(probably called lstblocks) and released on CTAN.

This development process can indeed be re-
garded as the opposite of endosymbiosis: at first,
a document features some geneTEX material that
does not belong to its original pool, and by the way,
just as mitochondria live in the cell’s cytoplasm,
LATEX macros can be defined anywhere, including
the document’s body instead of preamble. However,
if we let natural evolution happen for some time,
this material will ultimately be extracted from the
original document and become a style, which in turn
will have the ability to infect other documents.

This is as if genetic material from a cell would
have been extracted and became a virus.

5.5 Transduction vs. transfection

Biologists speak of transduction when genetic mate-
rial is brought to a cell via a viral agent (when you

use a style). When no viral agent is involved, the
term transfection is used instead. Transfection cor-
responds to our version of endosymbiosis, where the
geneTEX material is not brought to the document by
a style, but simply by the document’s author typing
some macro definitions locally.

Interestingly enough, most cases of transfection
are transitory (as opposed to stable): the genetic
material is not copied into the cell’s genome, so it is
lost after the mitosis, just like you would need to cut
and paste endosymbiotic macros over and over again
into every new document, unless they are properly
incorporated into the relevant class. Class evolution
can hence be seen as a case of stable transfection (or
transduction if \RequirePackage is involved).

5.6 Stylophages

What if styles could infect other styles instead of just
documents? This is in fact very common practice, as
\RequirePackage can be used in styles as well as in
classes. Again surveying TEX Live 2009 reveals that
1111 out of 2462 (45%) available styles are themselves
infected, by 2 other styles on average.

This kind of behavior has been observed in bi-
ology as well, although only very recently. The
first virus capable of infecting another virus, called
the “virophage” in reference to bacteriophages, has
been discovered by Didier Raoult’s team in 2008 [12].
This virus infects the mimivirus (see section 4.2 on
page 1003) and uses its machinery in lieu of a cell’s
one in order to replicate itself.

6 Infection types

In the previous section, we have looked at similarities
in the way cells or documents can be infected. In
this section, we will analyze the effects of infection,
and draw some analogies again. In other words, we
will now consider examples of what infection does
rather than how it spreads.

6.1 Standalone

Perhaps the simplest (and most harmless) form of
style infection is by what we call standalone styles.
Standalone styles provide macros that do not modify,
interact, or even require anything particular from a
document class or other styles. They just use the
usual TEX machinery to add new features, completely
orthogonal to the rest; in other words, geneTEX ma-
terial that you are free to use. . . or not. An example
of this is the clock package which provides macros
for drawing clocks of all sorts of visual appearances.

This situation is similar to that of viruses infect-
ing non-permissive cells (in which they can’t replicate

Classes, styles, conflicts: The biological realm of LATEX

1006 TUGboat, Volume 0 (2060), No. 0

themselves), but in which however their genetic ma-
terial may remain in the form of free episomes, that
is, not integrated into the cell’s genome. Just like
the information necessary to draw a clock is here
but is really independent from the rest, (part of) the
genetic information of the virus is also here, but does
not interact with the cell’s original genome. The
genes brought by the virus may or may not be ex-
pressed depending on environmental conditions, just
like you may choose to actually draw a clock or not
in your document. If you don’t, the presence of this
exogenic material simply has no effect.

6.2 Prostyles

Instead of standing apart from the cell’s DNA, viruses
can have their genetic material incorporated into that
of their host, in which case they are called proviruses.
Because of this integration, proviruses passively repli-
cate as part of their host’s replication process, al-
though just as for standalone viruses, infection can
either remain latent or become active.

Because of this integration with the cell’s orig-
inal genome, the potential effects of a provirus are
extremely wide: they can amplify, inhibit or even
modify the different functions of their host. They
can either have very little pathogenic effect, like AAV

(Adeno-associated virus), or cause extremely serious
diseases, like HIV.

The vast majority of LATEX styles, including
those mentioned in the following sections, qualify
as prostyles in the sense that they incorporate their
programmatic material into the existing one, instead
of just contributing something new and orthogonal.
Most styles in LATEX indeed exist to enhance or mod-
ify an existing functionality.

The following very common programming idiom
makes a style a prostyle:

\let\@oldfoo\foo

\def\foo{... \@oldfoo ...}

What this does is essentially to incorporate some
new geneTEX material into the existing definition for
\foo, thereby modifying its associated function. In
a similar way, every time you \renewcommand some-
thing, you are creating a prostyle. The examples
are innumerable in LATEX. FiNK [18], for instance,
is a prostyle because it modifies the behavior of
\InputIfFileExists; hyperref [10] is another no-
table prostyle given the amount of semantic changes
it inflicts on existing commands, etc.

In fact, the use of a prostyle as a means to alter
the original programmatic material of a document
looks very much like the use of a virus to willingly
incorporate new genes into an organism. Such organ-
isms are called GMO/GEO (Genetically Modified/

Engineered Organisms). So we could say that using a
prostyle in a LATEX document makes it a GMD/GED

(GeneTEXally Modified/Engineered Document).

6.3 Satellite

One (perhaps the most) important source of style
proliferation in LATEX is what we call satellite styles.
A satellite style exists to amplify or extend the func-
tionalities provided by another style. Examples of
satellite styles are DoX, which extends the doc pack-
age, graphicx which extends graphics and xkeyval

which extends keyval.
Satellite styles typically depend on the presence

of their respective “sub-style” to work properly, be-
cause they build on top of them. They cannot work
properly on their own.

This behavior exists in biology as well, as some
viruses are considered to be satellites of others. For
instance, the so-called Delta virus, or Hepatitis D
Virus (HDV) is considered to be a satellite of HBV,
Hepatitis B. The HDV cannot propagate without
the presence of the HBV, but when both are present,
the risk for complication, or the lethal rate increases.
Other examples would be most of the avian sarcoma
viruses, which require the help of a non-defective (see
next section) leukemia virus.

Biologists distinguish between co-infection, when
a patient is infected by both viruses at the same
time, and super-infection when the two infections
happen one after the other. In the LATEX world,
super-infection is or should be nonexistent because
it would mean that a document author is required
to explicitly \usepackage both styles, one after the
other. A better practice for a satellite style is to
\RequirePackage the style it depends on. This way,
a document directly suffers from co-infection. In
fact, satellite styles are almost always stylophages
(see section 5.6 on the preceding page).

6.4 Defective

Satellite viruses are in fact a sub-category of so-
called defective viruses. A defective virus is a virus
that lacks a complete genome and hence depends on
another virus to provide the missing genetic function.
While defective viruses are defective by mutation,
defective styles are defective by design. Computer
science does not usually like to reinvent the wheel;
reusability is a key paradigm in software engineering.
So when a package author creates a new satellite
style, he or she usually avoids replicating the base
functionality with “cut-and-paste”, but relies on co-
infection by \RequirePackage’ing the underlying
functionality. The resulting style is indeed defective,
but on purpose.

Didier Verna

TUGboat, Volume 0 (2060), No. 0 1007

6.5 Host-dependent

When a virus is defective, it can rely on another
virus to provide the missing genetic function, or it
can rely on the host cell. Such viruses are not called
satellite anymore, but are said to be host-dependent.

Host-dependent styles exist in the LATEX world.
Such styles would only work with a specific document
class to provide the missing geneTEX functions. The
example which comes to mind immediately is that
of Beamer themes. Beamer is a class for writing
slides, the appearance of which can be customized.
Beamer themes are styles defining a specific set of
morphological traits for slides, and are obviously
specific to Beamer documents.

6.6 Cheaters

The defective styles presented so far work in a spirit
of cooperation with their “helper”: Beamer themes
exist to enrich Beamer documents, xkeyval exists to
improve keyval, etc. In a way, this is also the case
for the HDV and HBV viruses which “work” together
in the common and unfortunate goal of spreading
hepatitis.

But what if some defective styles were in fact
egoistically “stealing” functionality from their helper,
and diverting it for a totally different purpose? What
if, in other words, defective styles were working in a
spirit of competition instead of cooperation?

In a very amusing way, there is at least one style
that we know of which already cheats on itself: the
verbatim package. This style provides an environ-
ment for outputting text as is, but also provides a
comment environment which simply discards all its
contents. Although comments are completely unre-
lated to verbatim text, the implementation of the
comment environment steals the basic functionality
used to produce verbatim text: the ability to have
TEX read text without interpreting any commands
or special characters.

The soon-to-come lstblocks package will do
exactly the same. In order to properly integrate
inline Listings and Beamer blocks (which cannot
be nested out of the box), we use a trick based on
verbatim: the inline text is first output to a file, and
the file is later re-input by \lstinputlisting.2 In
other words, we steal functionality from verbatim

in order to do something which is the exact opposite
of what it is originally meant for: typesetting some
text with heavy fontification instead of as is.

In a very puzzling way, cheaters also exist in
the world of viruses. Experimental studies even

2 The technical details of this process are explained in
the following blog entry: http://lrde.epita.fr/~didier/

sciblog/index.php?entry=entry080604-120459

show that cheaters often win the competition and
overwhelm the cooperating ones [16]. An example of
a cheating virus is the umbravirus [8, 15] that steals
the coat protein of another virus, the luteovirus, in
order to spread to other plants.

7 Conflicts, diseases and cures

There is an angle from which the analogy between
LATEX and biology could be regarded as somewhat
shaky: viruses are usually studied and well known
for their pathogenic effects, while styles are supposed
to do some good.

7.1 Good or bad, or both

The replication of a virus usually entails cellular lysis
(the destruction of the host cell’s plasma membrane)
in order to disseminate new virions (complete virus
particles) in the environment. The pathogenic po-
tential of a virus (in other words its ability to lead
to a disease) is described in terms of virulence and
depends on the success of its replication. However,
from a unicellular point of view, the presence of a
single active viral entity is lethal to the cell. We, on
the other hand, are more interested in the benefits of
style infection: LATEX styles are normally meant to
be non-virulent and provide additional functionality:
“useful viruses” in some way.

It turns out, however, that our analogy is not
so shaky after all: a positive vision of viruses does
exist, although it is still quite young. Only recently
biologists have started to acknowledge the positive
role of viruses as important factors of evolution or
even as therapeutic tools. In fact, most viruses that
we live with every day are harmless. Consequently,
it appears that viruses, just like styles, have both a
Dr. Jekyll and a Mr. Hyde face: viruses play a crucial
role in evolution but they can cause diseases, while
styles give you more power but can cause conflicts.

7.2 Conflicts and diseases

Just as proviruses can cause serious diseases, prostyles
can cause the compilation to break, especially if some
bad interaction happens between their geneTEX ma-
terial and that of other styles or of the document
class. Basically, a LATEX document can be in three
states: healthy, ill-formed or dead. An ill-formed
document compiles successfully but displays incor-
rectly. A dead document is a document which could
not compile, so TEX aborted. In a similar way, a cell
can live normally, function improperly or be dead.

A very systematic and rather famous way of
getting a living yet ill-formed LATEX document is to
infect it with the a4wide style. If your document

Classes, styles, conflicts: The biological realm of LATEX

http://lrde.epita.fr/~didier/sciblog/index.php?entry=entry080604-120459
http://lrde.epita.fr/~didier/sciblog/index.php?entry=entry080604-120459

1008 TUGboat, Volume 0 (2060), No. 0

This is a test to see if the problems which seem
to, for example?]FiXme Note: what does [this] do,
for example? be caused by using square brack-
ets in marginal fixme notes, even in a minimal
document. . .

Figure 3: An ill-formed FiXme note

uses the twoside option, then the infection will ren-
der this option inoperative (odd and even pages get
the same geometry). Another shameful example is
that of FiXme [19] which seems to have problems
typesetting square brackets in marginal notes, as
depicted in figure 3. The next version, still under
development, does not seem to suffer from this prob-
lem. The reason for this is currently unknown, but
probably involves some kind of geneTEX mutation
in the codebase. . . .

The ways to break compilation because of style
infection are too numerous to be listed here. The
fact that you are reading this very paper can be
considered a miracle in itself, given that the source
involves both the hyperref and the varioref pack-
ages. Suffice to quote the README file from the
hyperref distribution:

There are too many problems with varioref.
Nobody has time to sort them out. Therefore
this package is now unsupported.

Note that viruses or styles are not a requirement
for a cell to malfunction or die, or a document to be
ill-formed or uncompilable. A cell can malfunction
for many other reasons, including DNA mutation
because of external conditions, etc. A document can
turn out ill-formed or even die because there are
bugs in its programming.

7.3 Cures

Just as in biology, facing the risk of possibly lethal
diseases to documents entails the search for cures.
In biology, viral infections are basically treated with
either prevention, vaccines or antiviral agents.

7.3.1 Prevention

No cure is needed if no infection is present. In other
words, if you don’t want to get sick, then just don’t
get a disease. Knowing the risks in advance is hence
the key to prevention, and this is probably much
easier to do in LATEX than in biology. In the LATEX
world, prevention will mostly be accomplished by
documentation.

An example of prevention against a non-lethal
disease is given in section 3.3 of the FiXme docu-
mentation: FiXme explicitly supports the standard
LATEX classes plus their KOMA-Script replacements

for typesetting the list of FiXme’s. For any other
class, the article layout will be used, which will
probably lead to an ill-formed list. In other words,
some classes are known to be immune to FiXme
infection, and for other cases, you know the risks.

Another example of prevention against lethal
sickness is the quote from hyperref’s README file
about varioref presented in section 7.2 on the pre-
ceding page. What it really says is:

You are infected by Hyperref. If you want to
live, don’t be infected by Varioref as well: just
don’t use it.

The other interesting aspect in this particular ex-
ample is that the concern is about super-infection
rather than just infection, since it deals with the
presence of two styles simultaneously. This is a bit
like saying:

You have got HBV. This is already serious
enough. Just don’t get HDV on top of that.

7.3.2 Adaptive immune systems

Mentioning adaptive immune systems here is a bit
borderline as it involves complex, multi-cellular or-
ganisms. However, there are still a number of inter-
esting common patterns to mention.

Adaptive immunity (contrary to innate immu-
nity) is the process by which an organism acquires
defenses against a pathogen such as a virus. Im-
munological memory, materialized by the presence
of so-called B- and T-cells, contains some kind of
history of previously encountered infections, and how
to fight them. We are principally interested in active
immunological memory, which is a long-term mem-
ory of immunological responses. Such memory can
be acquired naturally after a real infection (such as
with measles or mumps), or artificially from vaccina-
tion. Vaccination typically consists of faking a real
infection with a non-virulent form of a virus in order
to trigger an immune system response.

What is interesting here is the pattern by which
an organism suffers from an infection, learns to fight
it, and then memorizes the “counter-measures” in
order to be prepared for future attacks. This pattern
exists in LATEX and can be described by the following
steps:

1. John writes a document of class class, but
notices that when he uses the style style, com-
pilation breaks.

2. John sends a bug report somewhere (such as
comp.text.tex, the author of class, or more
probably the author of style).

Didier Verna

TUGboat, Volume 0 (2060), No. 0 1009

3. Some time later (for some definition of “some”),
a new version of either class or style is re-
leased and everything works smoothly.

Now, depending on whether class or style

mutates in order to circumvent the infection, we find
ourselves in two very different situations.

When a new version of the class is released, we
fall into the case of acquired immunity, as described
above: the class remembers the infection and will
know how to fight it in the future. The principal
LATEX organelle to implement acquired immunity is
the \@ifpackageloaded macro. This macro tests for
the presence of a known infection and lets you plug
in the appropriate counter-measures. In the TEX
Live 2009 distribution, only 37 out of 271 classes
(13%) seem to be equipped with an active immune
system, against 2 styles in average. The memoir

class has the strongest active immune system, with
antigens against 5 styles. revtex4 has an interesting
mechanism by which some incompatible styles are
known although no immunity is provided. Instead,
the class decides to commit suicide rather than fight
the infection, not unlike what a too brutal viral agent
would do: eradicate the virus but damage the cell,
or even kill it in the process.

When a new version of the style is released, how-
ever, the situation looks more like a case of adaptation
of the style to a new class of documents. Here, the
analogy is more that of a virus acquiring the ability
to infect new types of cells. Biologists have a term for
that: viral tropism. The principal LATEX organelle
to increase style tropism is the \@ifclassloaded

macro. This macro tests for the kind of document
you are trying to infect, and lets you plug in the
appropriate adaptation routines. As an example,
the sectsty and FiXme packages have explicit adap-
tation routines for 8 classes known in advance (in-
cluding the standard ones and their KOMA-Script
replacement). Note however that when a style does
not make use of \@ifclassloaded, this does not
mean that it has a very low viral tropism, but usu-
ally the opposite: it means that its geneTEX material
is universal enough that it doesn’t need to know the
type of its host document explicitly.

7.3.3 Acquired or innate?

A serious risk in any game of analogies is to miss
their limits. We must acknowledge a very important
divergence between biological and LATEX adaptive
immune systems as described in the previous section.

In a multi-cellular organism, the adaptive im-
mune system builds a functional response to an ag-
gression, for instance by selecting special kinds of
lymphocytes. The problem is that the active im-

munological memory is specific to the individual. In
other words, vaccinating a mother does not provide
immunity to her children. The descendants need
to be vaccinated as well. On the other hand, once
a class has mutated in order to provide the proper
immunological response to a style infection, all doc-
uments of that particular class will implicitly be
vaccinated (including the original one). In fact, the
immune response is now encoded into the original
geneTEX material of every new document of that
particular class, so that it essentially becomes an
innate trait.

The interesting question that arises here is hence
the following: can acquired traits become innate?
More specifically in our case: is it possible that a
response to a virus ends up encoded in a cell’s genetic
material? We currently don’t have a firm answer to
this question. A potential path for further study
would be to investigate the field of epigenetics at the
risk of opening the heated debate around the central
dogma of molecular biology. Recent studies show
for example that some plants are able to alter their
genetic material in response to environmental stress
(e.g. viral attacks) and that these alterations can be
transmitted to the next generations [9].

7.3.4 Antistyle agents

In the LATEX world, the fight between styles is even
more violent than the fight between styles and classes.
A particularly striking example is again that of sec-
tion 6 of the hyperref README file, which is 8
pages long and describes incompatibilities (and cures)
between hyperref itself and around 40 other pack-
ages. Sometimes, the cure simply consists in making
sure that your document is infected in a specific or-
der. Some other times, additional hacks are needed
to make things work, for instance in the case of
bibentry:

\makeatletter

\let\saved@bibitem\@bibitem

\makeatother

And then later:

\begingroup

\makeatletter

\let\@bibitem\saved@bibitem

\nobibliography{database}

\endgroup

This kind of very specialized and local “cure”
can be compared to so-called antiviral agents: spe-
cific molecules that treat specific kinds of infections.
Contrary to the case of an immune system, the organ-
ism is not prepared in advance to fight the infection.
Instead it is provided with an external compound

Classes, styles, conflicts: The biological realm of LATEX

1010 TUGboat, Volume 0 (2060), No. 0

once infected. The compound in question does not
provide any immunological memory either.

Antistyle agents such as those described in the
hyperref README file behave exactly like that.
The document is not immune to the infection, as
the class is not prepared geneTEXally for it. Instead,
every document needs an inoculation of the antistyle
agent in order to fight the infection.

7.3.5 Curative infections

The use of \@ifpackageloaded is not restricted to
class files. Style files can use it as well, hereby antic-
ipating the co-existence of multiple infections within
the same document. A quick survey of the TEX Live
2009 distribution shows that only 8% of the available
styles make use of this feature. Some of them, how-
ever, rely on it quite heavily. For instance, minitoc
knows about almost 30 other styles in advance, which
helps avoid conflicts.

In most cases, this kind of style/style interaction
exists for altruistic concerns, which is somehow the
opposite approach to what hyperref does with its
README file: a document is first infected with a
style which could potentially cause problems in the
case of super-infection, but this style also provides
some geneTEX material in order to protect the whole
document against those super-infections. In other
words, one infection helps in fighting another.

Another previously mentioned example is that of
the soon-to-come lstblocks package: Beamer blocks
and Listings inline environments don’t interact well
with each other, and the purpose of lstblocks is to
fix that. This is another form of “curative infection”
although there is one fundamental difference with
the previous one. In the first case, the style pro-
vided cures against potential diseases it could cause
itself, in the presence of another style. In the case
of lstblocks, its sole purpose is to cure a conflict
caused not by itself, but by the conflicting presence
of two other (and unrelated) infections.

A similar pattern of curative infection exists in
biology: there are situations in which a virus (or at
least part of its genome) helps fighting another. For
instance, some mice are naturally protected against
variants of a virus called Friend. The gene respon-
sible for this protection, named Fv1, was identified
in 1992 to be of endogenic retroviral origin. In other
words, some genetic material from a virus helps fight-
ing against another.

8 Breaking news

To end this paper on a positive note, we would like
to proudly announce the recent discovery of the first
oncogenic style ever. This style appears to be ex-

1 \ProvidesPackage{oncogenic}

2 [2010/07/28 v1.0 TUG Virus]

3 \expandafter\let\csname

4 ver@oncogenic.sty\endcsname\relax

5 \RequirePackage{oncogenic}

Listing 1: TUG virus strain #1

1 \ProvidesPackage{oncogenic}

2 [2010/07/29 v2.0 TUG Virus]

3 \def\@ifl@aded#1#2{%

4 \expandafter\@secondoftwo}

5 \RequirePackage{oncogenic}

Listing 2: TUG virus strain #2

tremely virulent, as we were able to witness a muta-
tion just one day after its discovery.

The first strain of the virus was discovered on
July 28th, 2010, at the TUG 2010 Conference, Sir
Francis Drake Hotel, San Francisco, CA, USA, and
is shown in listing 1. As you can see in line 2, this
style makes the document forget it has been infected
by removing the definition of \ver@oncogenic.sty,
and then replicates by requiring itself. This results
in the death of the document by resource exhaustion:

! TeX capacity exceeded, sorry

[input stack size=5000].

<to be read again>

\ver@oncogenic.sty

l.1 .../06/28 v1.0 TUG Virus]

No pages of output.

Transcript written on cancer.log.

zsh: exit 1 latex cancer.ltx

Just one day after its original discovery, we were
able to isolate a new strain of the style, depicted in
listing 2. This strain is much more aggressive and
has a much more widespread effect. Line 2 exhibits
a geneTEX mutation of a macro from the original
document’s genome: \@ifl@aded. This macro is
responsible for controlling whether a file has been
loaded before, and avoids loading it multiple times if
it so happens. As such, it regulates the growth of the
document, and hence qualifies as a proto-oncogene.

The mutation caused by the style makes this
macro unconditionally load the file in question, re-
sulting in the same proliferation of the style as be-
fore. What the style does is in effect turn the proto-
oncogene into a full blown oncogene [14] that may
affect the whole document.

So far, we have been able to synthesize an
\@ntibody that will suppress the effect of line 3.

Didier Verna

TUGboat, Volume 0 (2060), No. 0 1011

However, the oncogene in line 2 still remains latent
in the document’s genome, and might be expressed
again if a circular chain of file requirements ever hap-
pens, in which case the style would become virulent
again. We are confident that a definitive cure will
be found in the months to come.

9 Conclusion

Drawing bridges between apparently unrelated dis-
ciplines is always interesting and fun to do, if not
for the potential practical applications, at least for
the sake of the mental exercise. This kind of cross-
disciplinary thinking, however, has proven to be con-
cretely useful in the past. For instance, we know the
impact of Design Patterns, originating from Archi-
tecture [1], on the world of Computer Science [5, 3].

What we have done with this work is essentially
exhibit a set of behavioral patterns that seem to
equally rule the interactions between components
of different domains. In doing so, we hope to have
contributed to a better understanding of the world
we live in, whether biological or digital. It is also very
probable that we have only scratched the surface of
this idea, and that many other patterns are left for
us to discover.

Finally, we suspect that bridges with the same
essence can be extended to other macro systems,
such as m4, and beyond macro languages, program-
ming languages which provide for deep intercession
capabilities, such as the Lisp family of languages [2].

10 Acknowledgments

Alain Verna provided the original leukocyte photog-
raphy in figure 1. Mireille Verna provided valuable
comments on the ideas behind this work, as well as
proofreading of this article.

References

[1] Christopher Alexander, Sara Ishikawa, Murray
Silverstein, Max Jacobson, Ingrid Fiksdahl-King,
and Shlomo Angel. A Pattern Language: Towns,
Buildings, Construction. Oxford University Press,
1977.

[2] ANSI. American National Standard: Programming
Language — Common Lisp. ANSI X3.226:1994
(R1999), 1994.

[3] F. Buschmann, R. Meunier, H. Rohnert,
P. Sommerlad, and M. Stal. Pattern-Oriented
Software Architecture. Wiley, 1996.

[4] François Jacob. La vie. In Yves Michaud, editor,
Qu’est-ce que la vie, Université de tous les savoirs.
Odile Jacob, 2000.

[5] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.
Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley, 1994.

[6] D.E. Knuth. The TEXbook. Addison-Wesley,
1989 (reprinted with corrections).

[7] Lynn Margulis. Origin of Eukaryotic Cells.
Ignatius Press, San Francisco, 1970.

[8] R. Matthews. Plant Virology. Academic Press, 1991.

[9] J. Molinier, G. Ries, C. Zipfel, and B. Hohn.
Transgeneration memory of stress in plants.
Nature, 442:1046–1049, 2006.

[10] Heiko Oberdiek. PDF information and navigation
elements with hyperref, pdfTEX, and thumbpdf.
In EuroTEX, 1999.

[11] Ali Säıb. Les virus, inertes ou vivants ? Pour la
Science, December 2006.

[12] Bernard La Scola, Christelle Desnues, Isabelle
Pagnier, Catherine Robert, Lina Barrassi,
Ghislain Fournous, Michèle Merchat, Marie
Suzan-Monti, Patrick Forterre, Eugene Koonin,
and Didier Raoult. The virophage, a unique
parasite of the giant Mimivirus. Nature, August 2008.

[13] Wendell Stanley. Isolation of a crystalline protein
possessing the properties of tobacco-mosaic virus.
Science, 81:644–645, 1935.

[14] D. Stehelin, H.E. Varmus, J.M. Bishop, and P.K.
Vogt. DNA related to the transforming gene(s) of
avian sarcoma viruses is present in normal avian
DNA. Nature, 260:170–173, 1976.

[15] Michael E. Taliansky and David J. Robinson.
Molecular biology of umbraviruses: phantom
warriors. Journal of General Virology,
84:1951–1960, 2003.

[16] Paul E. Turner. Cheating viruses and game
theory. American Scientist, 93:428–435,
September–October 2005.

[17] Didier Verna. The DoX package. http://www.lrde.

epita.fr/~didier/software/latex.php#dox.

[18] Didier Verna. The FiNK package. http:

//www.lrde.epita.fr/~didier/software/latex.

php#fink.

[19] Didier Verna. The FiXme package. http:

//www.lrde.epita.fr/~didier/software/latex.

php#fixme.

[20] Didier Verna. The QCM package. http:

//www.lrde.epita.fr/~didier/software/latex.

php#qcm.

[21] Didier Verna. CV formatting with CurVe. TUGboat,
22(4):361–364, December 2001.

[22] Didier Verna. LATEX curricula vitae with the CurVe
class. The PracTEX Journal, (3), August 2006.

[23] R. H. Whittaker. New concepts of kingdoms of
organisms. Science, 163(3863):150–160, 1969.

� Didier Verna
EPITA / LRDE
14-16 rue Voltaire
94276 Le Kremlin-Bicêtre Cedex
France
didier (at) lrde dot epita dot fr

http://www.lrde.epita.fr/~didier

Classes, styles, conflicts: The biological realm of LATEX

http://www.lrde.epita.fr/~didier/software/latex.php#dox
http://www.lrde.epita.fr/~didier/software/latex.php#dox
http://www.lrde.epita.fr/~didier/software/latex.php#fink
http://www.lrde.epita.fr/~didier/software/latex.php#fink
http://www.lrde.epita.fr/~didier/software/latex.php#fink
http://www.lrde.epita.fr/~didier/software/latex.php#fixme
http://www.lrde.epita.fr/~didier/software/latex.php#fixme
http://www.lrde.epita.fr/~didier/software/latex.php#fixme
http://www.lrde.epita.fr/~didier/software/latex.php#qcm
http://www.lrde.epita.fr/~didier/software/latex.php#qcm
http://www.lrde.epita.fr/~didier/software/latex.php#qcm
http://www.tug.org/TUGboat/
http://www.tug.org/TUGboat/Contents/contents22-4.html
http://www.tug.org/pracjourn
http://www.tug.org/pracjourn/2006-3/index.html

	Introduction
	Morphological analogy
	Eukaryotes
	Unicellular LaTeX documents

	Functional analogy
	Cellular factory
	TeX factory

	Higher view of geneTeX material
	Roles
	Sources

	Infection methods
	Exogenic
	Endogenic
	Endosymbiosis
	Exosymbiosis
	Transduction vs. transfection
	Stylophages

	Infection types
	Standalone
	Prostyles
	Satellite
	Defective
	Host-dependent
	Cheaters

	Conflicts, diseases and cures
	Good or bad, or both
	Conflicts and diseases
	Cures
	Prevention
	Adaptive immune systems
	Acquired or innate?
	Antistyle agents
	Curative infections

	Breaking news
	Conclusion
	Acknowledgments

