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ABSTRACT
Many methods relying on the morphological notion of

shapes, (i.e., connected components of level sets) have been
proved to be very useful for pattern analysis and recogni-
tion. Selecting meaningful level lines (boundaries of level
sets) yields to simplify images while preserving salient struc-
tures. Many image simplification and/or segmentation meth-
ods are driven by the optimization of an energy functional,
for instance the Mumford-Shah functional. In this article, we
propose an efficient shape-based morphological filtering that
very quickly compute to a locally (subordinated to the tree of
shapes) optimal solution of the piecewise-constant Mumford-
Shah functional. Experimental results demonstrate the effi-
ciency, usefulness, and robustness of our method, when ap-
plied to image simplification, pre-segmentation, and detection
of affine regions with viewpoint changes.

Index Terms— Level lines, Tree of shapes, Energy mini-
mization, Pre-segmentation, Morphological shaping.

1. INTRODUCTION

In natural images, meaningful contours are usually smooth
and well-contrasted. Recently, many authors claim that sig-
nificant contours of objects in images coincide with segments
of the image level lines [1]. Each connected level line is the
contour of a level set, or shape, a connected set of pixels with-
out holes. The inclusion relationship of level sets allows for
representing an image by a tree, called a tree of shapes [2],
which is invariant to contrast changes. Image simplification
or segmentation can then be defined by selecting meaningful
level lines in that tree. That subject has been investigated in
the past ten years by [3, 4, 5, 6]. In [7] Lu et al. propose also
a tree simplification method for image simplification purpose
using the binary partition tree [8] and a knee function.

Following the seminal work of Mumford and Shah [9],
finding relevant contours is often tackled thanks to an energy-
based approach, as a compromise between some image-
driven force (image contrast along contours, data fidelity, etc.)
and the regularity of contours. Minimizing the Mumford-
Shah functional tends to find a simplified or segmented image

Fig. 1: Image in introduction.

into regions. Curve evolution methods [10, 11] are usually
used to solve such an energy minimization problem. They
have solid theoretical foundations, yet they are often compu-
tational expensive.

In this paper we propose to formalize the piecewise-
constant Mumford-shah functional on an image, subordi-
nated to the tree of shapes of this image. The selection of the
salient level lines corresponds to a meaningful locally optimal
solution of the energy minimization problem. The main con-
tribution is the proposition of an efficient greedy algorithm
which takes into account the meaningfulness of the set of
level lines. Simply put, a level line is easier to remove when
it has a low degree of meaningfulness and when it favors a
great decreasing of energy. Our algorithm drives very fast to
a relevant local optimum in the sense that no more level lines
can be removed while deceasing energy. The reason why we
claim that we reach a relevant optimum is that meaningful
level lines are hard to be removed during the proposed pro-
cess. Note that our method actually belongs to the class of
morphological shapings described in [12].

In [13], the authors proposed an efficient greedy algorithm
to minimize the Mumford-Shah functional on a certain hier-
archy, which leads to a global optimal segmentation on that
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Fig. 2: An image (left) and its tree of shapes (right).

hierarchy. In [14], the authors gave a detailed review of the
tree (including the tree of shapes) filtering strategies. The
works in [15] and [16] are closest to what we propose here.
They both select meaningful level lines for image simplifica-
tion and segmentation purpose using the piecewise-constant
Mumford-Shah functional. In [15] the whole image domain
is initially considered as a single region; level lines of the tree
of shapes are browsed from root to leaves and are successively
removed until the functional cannot decrease anymore. How-
ever, this top-down decision is based upon a non-significant
energy variation since it is computed from the very few pixels
lying between a shape and their immediate sub-shapes. Actu-
ally, our work is related to the one described in [16], where at
each removal step, the level line which decreases the most the
functional is selected. As a consequence, the iterative process
of [16] requires not only to compute a lot of information to be
able to update the functional value after each level line sup-
pression, but also to find at each step, among all remaining
level lines, the one candidate to the next removal. Hence [16]
is computationally expensive, while what we propose here is
fast.

The rest of this paper is organized as follows. Some back-
ground information about the Mumford-Shah functional and
the tree of shapes is provided in Section 2. Our proposed
method is detailed in Section ??. In Section ??, we present
some experimental results. We then conclude and give some
perspectives in Section 4.

2. BACKGROUND

2.1. The Tree of Shapes

For any λ ∈ R or Z, the upper level sets Xλ and lower level
sets X λ of an image f are respectively defined by Xλ(f) =
{p ∈ Ω | f(p) ≥ λ} and X λ(f) = {p ∈ Ω | f(p) ≤
λ}. Both upper and lower level sets have a natural inclusion
structure: ∀λ1 ≤ λ2, Xλ1 ⊇ Xλ2 and X λ1 ⊆ X λ2 , which
leads to two distinct and dual representations of an image, the
max-tree and the min-tree [17].

Another tree has been introduced in [2]. A shape is de-
fined as a connected component of an upper or lower level

set where its holes have been filled in. Thanks to the inclu-
sion relationship of both kinds of level sets, the set of shapes
gives a unique tree, called tree of shapes. This tree features
an interesting property: it is invariant to contrast changes. To
put it differently, it is a self-dual, non-redundant, and com-
plete representation of an image. Furthermore, such a tree in-
herently embeds a morphological scale-space (the parent of a
node/shape is a larger shape). An example on a simple image
is depicted in Fig. 2.

2.2. Computation algorithm

3. DISJOINT LEVEL LINES SELECTION

Each node of the topographic map represents a connected
component without holes, the boundaries of the connected
components are the level lines. It has been shown that sig-
nificant contours of objects in images coincide with segments
of the level lines [1]. In natural images, the number of level
lines is in the same order of number of pixels, which make the
topographic map difficult to be visualized. In fact, many level
lines share some parts in common, which is to say that two
neighboring level lines in the topographic map may only dif-
fer in a few pixel edges (in the case such that the level lines are
materialized into pixel edges, i.e., 1-faces). In this section, we
provide an efficient algorithm to select a set of disjoint level
lines from the topographic map, such that any two selected
level lines do not intersect. This algorithm yields a simplified
image f ′ reconstructed from those selected level lines. The
main structure of the topographic map of the original image
f can be easily visualized from this simplified image f ′. In
fact, this simplified image is a well-composed image which
is usually obtained by doubling the image size. In our case,
the generated well-composed image f ′ has the same size as
the original image f . The core of this algorithm will be de-
tailed in Section 3.1. Then in Section 3.2, we will depict the
algorithm and illustrate several rules of disjoint level lines se-
lection.

3.1. Incompatible nodes preparation

The core of the algorithm for selecting a set of disjoint level
lines relies on an image defined on the nodes that we call
last not allowed, that encodes for each node N the high-
est ancestor node Na for which they still share some pixel
edges. When this image is available, for each level line
∂N , we are able to predict a set of incompatible nodes of
this node N . In fact, if a node N is selected, we cannot
select its ancestor nodes Na till the one encoded by the im-
age last not allowed(N ), and the descendant nodes Nd for
which the selected node N is in the subbranch starting from
Nd till the ancestor node given by last not allowed(Nd)
cannot be selected either. Based on this principle, we are able
to select a set of nodes such that any pair of selected nodes
are not incompatible, i.e., they are disjoint level lines.



Now let us show how to compute the image last not allowed.
To compute it efficiently, we need another image depth stor-
ing the depth of each node on the tree (starting from 0 for the
root node). For each node N apart from the root node:

depth(N ) = depth(parent(N )) + 1 (1)

And thanks to the image appear and vanish used in Sec-
tion ??, the computation of the image last not allowed can
be achieved with the following process: For each pixel edge
e, let the node a = appear(e) and v = vanish(e) be re-
spectively the first node where e is on its boundary and the
first node where e is no longer on its boundary. Let vc be the
child of v being also an ancestor node of a. We can update
the image last not allowed for the nodes on the sub-branch
starting from a to v′, which cannot be lower than v′. That is
to say the depth of the nodes of the image last not allowed
on a to v′ cannot be smaller than depth(v′). The algorithm
to compute this image last not allowed is depicted in Algo-
rithm ??, where vec nodes stands for the sorted set of nodes
of the topographic map in the tree descending order, and NN
is the total number of nodes.

3.2. Final disjoint nodes selection

Once the image last not allowed is available, we are able to
select a set of nodes such that any pair of nodes are compat-
ible. Now let us detail how to process the choices according
to a pre-computed order of nodes selection, such as top-down
or bottom-up order. We propagate all the nodes in the pre-
computed order, for each node N , we perform two opera-
tions:

1) Check if there is an ancestor node being incompatible
with N has already been selected. This verification is
based on the image last not allowed.

2) If none of the incompatible ancestor nodes given by
the image last not allowed(N ) is selected, then se-
lect this node N , and disable all its incompatible an-
cestor nodes. This step makes sure that we don’t have
to check the incompatibility with the descendants for a
given node. Otherwise, do nothing.

Finally, the algorithm for the disjoint level lines selection is
depicted in Algorithm ??. We have experienced three dif-
ferent orders for disjoint level lines selection: top-down se-
lection order (from root node to the leaf nodes), bottom-up
(from the leaf nodes to the root node), and meaningfulness
decreasing order, e.g., average of gradient’s magnitude along
the level lines defined by Eq (??). Two examples of such dis-
joint level lines selection are illustrated in Figure 5 and Fig-
ure 4, where a grain filter [?] is also applied to not select level
lines of regions being too small. The main structure of the to-
pographic map can be easily visualized through the simplified
image reconstructed from the set of disjoint level lines.

Fig. 3: Illustration of the disjoint level lines selection with dif-
ferent orders. From top to down: original image, bottom-up,
top-down, average of gradient’s magnitude decreasing. Left:
grayscale image; Right: corresponding randomly colorized
image.



Fig. 4: Another illustration of the disjoint level lines selec-
tion with different orders. From top to down: original im-
age, bottom-up, top-down, average of gradient’s magnitude
decreasing. Left: grayscale image; Right: corresponding ran-
domly colorized image.

Fig. 5: An image in result

4. CONCLUSION AND PERSPECTIVES

In this paper, we presented an efficient morphological shaping
to salient level lines selection, based on the minimization of
the piecewise-constant Mumford-Shah functional. Our major
contribution is to rely on a meaningful ordering of level lines
in order to minimize this energy functional on the tree of
shapes. As a consequence, the proposed greedy algorithm
converges to a relevant local optimum very quickly compared
with the similar work of Ballester et al.. We have shown that
the proposed method allows for strongly simplifying images
while preserving their salient structures. We have seen that
a strong property of our proposal is its robustness to noise
and to viewpoint changes. Furthermore simplification results
can be used as pre-segmentations that are suitable for object
recognition, scene analysis, or practical shape matching [18].
The authors are currently investigating some applications of
the proposed simplification method. In addition, a major
perspective of this work is to rely on shape-based morphol-
ogy [12] to make this method hierarchical.
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