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Abstract

Atrial fibrillation is the most common heart rhythm disease. Due to a lack of un-
derstanding in matter of underlying atrial structures, current treatments are still not
satisfying. Recently, with the popularity of deep learning, many segmentation meth-
ods based on deep learning have been proposed to analyze atrial structures, espe-
cially from late gadolinium-enhanced magnetic resonance imaging. However, two
problems still occur: 1) segmentation results include the atrial-like background; 2)
boundaries are very hard to segment. Most segmentation approaches design a spe-
cific network that mainly focuses on the regions, to the detriment of the boundaries.

Therefore, in this dissertation, we propose two different methods to segment
the heart, one two-stage and one end-to-end trainable method. For the two-stage
method, it can be decomposed in three main steps: a localization step, a Gaussian-
based contrast enhancement step, and a segmentation step. This architecture is sup-
plied with a hybrid loss function that guides the network to study the transformation
relationship between the input image and the corresponding label in a three-level
hierarchy (pixel-, patch- and map-level), which is helpful to improve segmentation
and recovery of the boundaries. We demonstrate the efficiency of our approach on
three public datasets in terms of regional and boundary segmentations. For the end-
to-end trainable method. we propose an attention full convolutional network frame-
work based on the ResNet-101 architecture, which focuses on boundaries as much
as on regions. The additional attention module is added to have the network pay
more attention on regions and then to reduce the impact of the misleading similarity
of neighboring tissues. We also use a hybrid loss composed of a region loss and a
boundary loss to treat boundaries and regions at the same time. The efficiency of
proposed approach is verified on three public datasets.

Finally, for evaluating the fibrosis degree, we proposed two methods, one is to
combine deep learning with morphology, and the other is to use deep learning di-
rectly. For the first method, we calculate the left atrial wall based on the segmenta-
tion results in the previous chapter by morphologically dilating, and then thresholds
to evaluate the fibrosis degree. For the second method, we provide one cascaded
UNet architecture and uses multi-modalities information to complete the segmen-
tation of the myocardium, scar and edema. We demonstrate the efficiency of our
approach on one public dataset.

Keywords: Deep Learning, Cardiac, Segmentation, Attention, Fully Convolu-
tional Network, Hybrid Loss, Fibrosis Assessment, Morphological Image Process-
ing.
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Résumé

La fibrillation auriculaire est la maladie du rythme cardiaque la plus courante. En
raison d’un manque de compréhension des structures auriculaires sous-jacentes, les
traitements actuels ne sont toujours pas satisfaisants. Récemment, avec la popu-
larité de l’apprentissage profond, de nombreuses méthodes de segmentation basées
sur l’apprentissage profond ont été proposées pour analyser les structures auricu-
laires, en particulier à partir de l’imagerie par résonance magnétique renforcée au
gadolinium tardif. Cependant, deux problèmes subsistent : 1) les résultats de la
segmentation incluent le fond de type atrial ; 2) les limites sont très difficiles à seg-
menter. La plupart des approches de segmentation conçoivent un réseau spécifique
qui se concentre principalement sur les régions, au détriment des frontières.

Par conséquent, dans cette thèse, nous proposons deux méthodes différentes
pour segmenter le cœur, une méthode en deux étapes et une méthode entraînable de
bout en bout. La méthode en deux étapes peut être décomposée en trois étapes prin-
cipales : une étape de localisation, une étape d’amélioration du contraste à base de
gaussienne et une étape de segmentation. Cette architecture est dotée d’une fonction
de perte hybride qui guide le réseau pour étudier la relation de transformation en-
tre l’image d’entrée et l’étiquette correspondante dans une hiérarchie à trois niveaux
(pixel-, patch- et carte), ce qui permet d’améliorer la segmentation et la récupéra-
tion des frontières. Nous démontrons l’efficacité de notre approche sur trois ensem-
bles de données publiques en termes de segmentations régionales et de frontières.
Pour la méthode entraînable de bout en bout, nous proposons un cadre de réseau
convolutif complet d’attention basé sur l’architecture ResNet-101, qui se concentre
sur les frontières autant que sur les régions. Le module d’attention supplémentaire
est ajouté pour que le réseau accorde plus d’attention aux régions et pour réduire
l’impact de la similarité trompeuse des tissus voisins. Nous utilisons également une
perte hybride composée d’une perte de région et d’une perte de frontière pour traiter
les frontières et les régions en même temps. L’efficacité de l’approche proposée est
vérifiée sur trois jeux de données publics.

Enfin, pour évaluer le degré de fibrose, nous avons proposé deux méthodes,
l’une consistant à combiner l’apprentissage profond avec la morphologie, et l’autre à
utiliser directement l’apprentissage profond. Pour la première méthode, nous calcu-
lons la paroi auriculaire gauche sur la base des résultats de segmentation du chapitre
précédent en dilatant morphologiquement, puis des seuils pour évaluer le degré de
fibrose. Pour la seconde méthode, nous fournissons une architecture UNet en cas-
cade et utilisons des informations multi-modalités pour compléter la segmentation
du myocarde, de la cicatrice et de l’œdème. Nous démontrons l’efficacité de notre
approche sur un jeu de données public.

Mots-clés: Apprentissage profond, cardiaque, segmentation, attention, réseau
entièrement convolutif, perte hybride, évaluation de la fibrose, traitement morphologique
des images.
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Résumé long

Résumé La fibrillation auriculaire est la maladie du rythme cardiaque la plus courante.
En raison d’un manque de compréhension des structures atriales sous-jacentes, les
traitements actuels ne sont pas encore satisfaisants. Afin d’aider les médecins dans
leur diagnostic, avec la popularité de l’apprentissage profond, nous proposons deux
méthodes différentes pour segmenter le cœur, une méthode en deux étapes et une
méthode entraînable de bout en bout. Ensuite, sur la base des résultats de la seg-
mentation du cœur, nous continuons à évaluer le degré de fibrose en combinant
l’apprentissage profond avec la morphologie. Enfin, nous démontrons l’efficacité de
notre approche sur un jeu de données public.

1 Introduction

La fibrillation auriculaire (FA) est la maladie du rythme cardiaque la plus courante,
correspondant à l’activation d’un substrat électrique au sein du myocarde auricu-
laire. La FA est déjà une maladie endémique, et sa prévalence est en pleine expan-
sion, en raison de l’augmentation de l’incidence de l’arythmie et de l’augmentation
de sa prévalence liée à l’âge. En effet, 1 à 2 % de la population souffre actuellement
de FA, et le nombre de personnes touchées devrait doubler ou tripler au cours des
deux ou trois prochaines décennies, tant en Europe qu’aux États-Unis [1].

Au cours des dernières années, plusieurs groupes ont testé la capacité du LGE-
CMR à détecter une fibrose préexistante. Bien que ces rapports suggèrent que l’étendue
de la fibrose peut prédire les récidives après les procédures d’ablation, l’absence de
reconstruction automatisée en 3D du LA, le manque de valeurs de référence pour
la normalité ont conduit à la publication de plusieurs protocoles d’acquisition et de
post-traitement d’images et de seuils pour identifier la fibrose, limitant finalement
la validation externe et la reproductibilité de cette technique.En raison de ces lim-
ites techniques [2–4], l’évaluation de la fibrose du LA n’a pas encore été largement
adoptée dans la pratique clinique [5].

Actuellement, avec la popularité de l’apprentissage profond, certaines méthodes
basées sur l’apprentissage profond ont été proposées pour segmenter l’oreillette et
évaluer la fibrose LA. Par exemple, Bai et al. [6] et Vigneault et al. [7] ont conçu un
cadre de réseau basé sur les FCN 2D pour segmenter directement l’oreillette gauche
et droite. En outre, les réseaux proposés peuvent également être appliqués pour
segmenter les ventricules après la formation sans changer de cadre de réseau. De
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même, Xiong et al. [8], Preetha et al. [9], Bian et al. [10] et Chen et al. [11] ont égale-
ment conçu un cadre de réseau de segmentation basé sur les FCN 2D pour segmenter
l’oreillette. Yang et al. [12, 13] ont utilisé une méthode basée sur un atlas pour iden-
tifier l’oreillette gauche, puis ont utilisé un réseau d’apprentissage profond pour
détecter les tissus fibrotiques dans la zone de l’oreillette gauche. En relation avec la
méthode de segmentation de bout en bout, Chen et al. [14] ont proposé un réseau
neuronal profond pour segmenter à la fois l’oreillette gauche et les cicatrices auricu-
laires.

Par conséquent, pour aider les médecins à établir un diagnostic et réduire leur
charge de travail, nous proposons de nouveaux cadres de réseaux neuronaux pour
segmenter l’oreillette et évaluer la fibrose de l’oreillette. Tout d’abord, nous pro-
posons deux méthodes différentes pour segmenter le cœur, une méthode en deux
étapes et une méthode entraînable de bout en bout. La méthode en deux étapes peut
être décomposée en trois étapes principales : une étape de localisation, une étape
de renforcement du contraste à base de gaussienne et une étape de segmentation.
Pour la méthode entraînable de bout en bout, nous proposons un cadre de réseau
convolutif complet d’attention basé sur l’architecture ResNet-101, qui se concentre
sur les frontières autant que sur les régions. Le module d’attention supplémentaire
est ajouté pour que le réseau accorde plus d’attention aux régions et pour réduire
l’impact de la similarité trompeuse des tissus voisins. Ensuite, sur la base des résul-
tats de la segmentation cardiaque, nous combinons l’apprentissage profond avec la
morphologie pour évaluer la fibrose de l’oreillette gauche. Nous calculons la paroi
de l’oreillette gauche à partir des résultats de la segmentation de l’oreillette gauche
par dilatation morphologique, puis nous fixons des seuils pour évaluer le degré de
fibrose. Enfin, nous démontrons l’efficacité de notre approche sur certains jeux de
données publics.
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2 Méthodes de Segmentation du Cœur

2.1 Méthode en Deux Étapes
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FIGURE 1: Architecture des réseaux à deux étages.

La vue d’ensemble de nos réseaux se compose de deux parties (localisation et seg-
mentation) comme le montre la Fig. 1. La première partie (le "réseau de localisation")
est utilisée pour localiser approximativement la position de l’objet. La seconde par-
tie est consacrée à la segmentation de l’objet (le "réseau de segmentation"). Réseau
de localisation: Tout d’abord, nous nous appuyons sur l’architecture originale du
réseau VGG16 [15], pré-entraîné sur des millions d’images naturelles d’ImageNet
pour la classification d’images [16]. Nous éliminons ensuite ses couches entièrement
connectées pour ne conserver que le sous-réseau composé de cinq “étages” basés sur
la convolution (le réseau de base). Chaque étage est composé de deux couches con-
volutionnelles, d’une fonction d’activation ReLU et d’une couche de max-pooling.
Comme les couches de max-pooling diminuent la résolution de l’image d’entrée,
nous obtenons un ensemble de cartes de caractéristiques fines à grossières (avec 5
niveaux de caractéristiques). Inspirés par les travaux de [17–20], nous avons ajouté
des couches convolutionnelles spécialisées (avec un noyau de taille 3×3) avec K (par
exemple K = 16) cartes de caractéristiques après les couches convolutionnelles as-
cendantes placées à la fin de chaque étape. Les sorties des couches spécialisées
présentent la même résolution que l’image d’entrée, et sont concaténées ensemble.
Nous ajoutons une couche convolutionnelle 1×1 à la sortie de la couche de concaté-
nation pour combiner linéairement les cartes de caractéristiques fines à grossières.
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Réseau de segmentation: Par rapport aux travaux sur la localisation nous ajoutons
trois couches convolutionnelles avec 256 ou 512 dilatés (dilatation = 2) [21] 3×3
filtres, et une couche de concaténation dans le réseau de segmentation basé sur le
réseau de localisation précédent. réseau de localisation précédent.

2.1.1 Perte hybride

Pour obtenir une segmentation régionale de haute qualité, nous définissons `R comme
une perte de région : `R = `CCE + `SSIM + `DC, où `CCE, `SSIM et `DC désignent re-
spectivement la perte d’entropie croisée catégorielle (CCE) [22], la perte de similarité
structurelle (SSIM) [23] et la perte de coefficient de dés (DC) [24].

La perte CCE [22] est couramment utilisée pour la classification et la segmenta-
tion multi-classes. Elle est définie comme suit:

`CCE = − ∑C
i=1 ∑H

a=1 ∑W
b=1 yi

(a,b) ln y∗i
(a,b), (1)

où C est le nombre de classes de chaque image, H et W sont la hauteur et la largeur
de l’image, yi

(a,b) ∈ {0, 1} est l’étiquette de vérité du sol à un coup de la classe i à la
position (a, b). et y∗i

(a,b) est la probabilité prédite que (a, b) appartient à la classe i.
La perte SSIM peut évaluer la qualité de l’image [23], et peut être utilisée pour

capturer l’information structurelle, ce qui diminuera le taux de mauvaise segmenta-
tion des tissus similaires environnants. Par conséquent, nous l’avons intégré dans
notre perte d’apprentissage pour apprendre les différences entre le domaine seg-
menté et les tissus similaires autour du domaine segmenté. Si S et G sont respec-
tivement la carte de probabilité prédite et le masque de vérité terrain, la fonction de
perte SSIM de S et G est définie comme suit

`SSIM = 1 − (2µSµG + ε1)(2σSG + ε2)

(µ2
S + µ2

G + ε1)(σ2
S + σ2

G + ε2)
(2)

où µS, µG et σS, σG sont les moyennes et les écarts types de S et G respectivement,
σSG est leur covariance, ε1= 0.012 et ε2= 0.032 sont utilisés pour éviter une division
par zéro.

La perte DC [24] est utilisée pour mesurer la similarité entre deux ensembles
comme défini dans Eq. 2.36. Mais pour la tâche de segmentation multi-classes,
Eq. 2.36 ne convient pas en raison du problème de déséquilibre des classes dans
de tels cas. Par conséquent, nous étendons la définition de la perte DC à la segmen-
tation multi-classes comme suit:

dicei = (ε + 2 ∑Ni
n=1 yi

n y∗i
n) / (ε + ∑Ni

n=1 (y
i
n + y∗i

n)) (3)

`DC = 1 − ∑C
i=1 dicei/ (Ni + ε), (4)

où Ni désigne les numéros de la classe i et ε > 0 est un facteur lisse.
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2.2 Méthode de Bout en Bout
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FIGURE 2: Architecture des réseaux de bout en bout.

Nous proposons un nouveau réseau d’attention (voir Fig. 2) utilisant ResNet-101
pré-entraîné sur ImageNet [25] pour calculer les cartes de caractéristiques. Nous
éliminons ses couches de mise en commun des moyennes et ses couches entière-
ment connectées, et ne conservons que le sous-réseau composé d’une étape basée
sur la convolution et de quatre “étapes” basées sur les résidus. Comme la résolu-
tion diminue à chaque étape, nous obtenons un ensemble de cartes de caractéris-
tiques fines à grossières (avec cinq niveaux de caractéristiques). Nous ajoutons des
couches convolutionnelles spécialisées (avec un noyau de taille 3×3) avec K (par ex-
emple K = 16) cartes de caractéristiques placées à la fin de quatre “étages” basés sur
les résidus. Elles sont concaténées ensemble après les couches convolutionnelles as-
cendantes. Ces dernières cartes de caractéristiques sont combinées avec chacune des
sorties des couches spécialisées, puis introduites dans le module d’attention pour
générer les caractéristiques d’attention. Enfin, nous concaténons les caractéristiques
d’attention avec les sorties de Conv1 et nous les introduisons dans la couche softmax.

Le module d’attention est inspiré de [26]. F ∈ RC×W×H agit comme une carte de
caractéristiques d’entrée pour le module d’attention, où C, W, H sont respectivement
le canal, la largeur et la hauteur de la carte de caractéristiques. La branche supérieure
F est alimentée dans une couche convolutive, une couche de Reshape et ensuite une
couche de Transpose, résultant en une carte de caractéristiques Fu

0 ∈ R(W×H)×C.
Dans la deuxième branche (considérons l’ordre de haut en bas), la carte de caractéris-
tiques d’entrée F suit les mêmes opérations moins la couche Transpose, ce qui donne
Fu

1 ∈ RC×(W×H). Ensuite, les couches Multiply et Softmax suivent ; elles sont ap-
pliquées sur Fu

0 et Fu
1 pour obtenir la carte d’attention spatiale Au ∈ R(W×H)×(W×H).

L’entrée F est introduite dans une couche convolutive différente dans la troisième
branche, puis elle est multipliée par A u introduite dans la couche Transpose, ce qui
donne Fu

2 . Par conséquent, la sortie Fu de la branche supérieure peut être formulée
comme suit: Fu = λ× Fu

2 + β× F, , où λ ∈ RC est initialisé à [0,..,0], et β ∈ RC est
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FIGURE 3: Illustration du calcul de la perte aux frontières

initialisé à [1,..,1]. Les valeurs λ et β sont utilisées pour apprendre progressivement
l’importance de la carte d’attention spatiale.

Dans la branche inférieure, le module d’attention se concentre principalement
sur les canaux les plus importants. La carte d’attention des canaux Al peut être
obtenue par différentes combinaisons de convolution. Enfin, la sortie Fl de la branche
inférieure peut être définie comme suit: Fl = λ′ × Fl

2 + β′ × F, , où λ′ ∈ RC est ini-
tialisé à [0,..,0], et β′ ∈ RC est initialisé à [1,..,1]. La carte de caractéristiques Fl

2 dénote
les résultats du produit de l’entrée F avec Al alimenté dans une convolution passant
par le bloc de transposition. Par conséquent, la carte de caractéristiques d’attention
Fa est définie comme :

Fa = Conv (Fu) + Conv
(

Fl
)

. (5)

2.2.1 Perte hybride

La perte hybride se compose de deux parties : la perte de région et la perte de fron-
tière. Elle est définie comme suit : `H = `R + `B, où `B la perte de frontière. Elles
sont expliquées ci-après.

Les fonctions de perte mentionnées précédemment sont principalement destinées
à la segmentation de régions, nous proposons donc une fonction de perte de fron-
tière multi-classe basée sur la distance de Kervadec [27] pour pouvoir affiner les
segmentations. Comme le montre la Fig. 3, ∆A désigne la différence entre la fron-
tière Gi

B de la vérité terrain de la classe i et la frontière Si
B de la prédiction de la classe

i. Lorsque ∆A tend vers zéro, cela signifie que les résultats de la segmentation devi-
ennent meilleurs autour des frontières. Ainsi, pour une classe i donnée, lorsque la
prédiction et la vérité terrain sont suffisamment proches, ce qui est facilement obtenu
grâce à notre perte régionale, la minimisation de la différence entre leurs frontières
peut être obtenue en minimisant la distance de Kervadec [27]:

`i
B =

∫

∂Gi

∥∥y∂Si (p) − p
∥∥2 dp (6)
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où ∂Gi et ∂Si désignent les frontières de Gi
B et (binarisé) Si

B et ‖·‖ désigne la norme
L2. Lorsque p est un point dans ∂Gi, y∂Si(p) désigne le point correspondant sur
la frontière ∂Si i le long de la direction normale à∂Gi (voir Fig. 3). On peut mon-
trer [27] que minimiser `i

B est équivalent à minimiser l’aire de la surface ∆Ai =

(Gi
B\Si

B)
⋃
(Si

B\Gi
B) (voir Fig. 3). Ainsi, notre perte de frontière multi-classe s’ensuit

naturellement:

`B =
C

∑
i=1

∫

∂Gi

∥∥y∂Si (p) − p
∥∥2 dp (7)

3 Méthodes d’évaluation de la Fibrose

(a) MRI d’entrée (b) Contours myocardiques (c) Paroi auriculaire gauche

(d) Histogramme (e) 3SD seuil (f) Détection

FIGURE 4: Schéma du processus proposé.

Sur la base des méthodes de segmentation précédentes, nous continuons à évaluer
la fibrose en utilisant une méthode de morphologie. La Fig. 4 présente le work-
flow attendu : segmentation du volume cardiaque conduisant à l’identification de
la paroi auriculaire gauche, analyse de la radiométrie au sein de la paroi, seuillage
pour quantifier le degré de fibrose. La segmentation cardiaque peut être complétée
par les méthodes de segmentation précédentes. La partie analyse peut s’appuyer
sur une approche de morphologie mathématique.
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4 Résultats Expérimentaux

Nous évaluons notre méthode sur le MICCAI 2018 Atrial Segmentation Challenge
1(AtriaSeg18). Son objectif est de segmenter l’oreillette gauche. Il contient 100 3D
MRIs annotées provenant de patients souffrant de fibrillation auriculaire. L’espacement
des pixels des MR images est de 0.625× 0.625× 0.625 mm/pixel. L’ensemble de
données comprend deux tailles d’images différentes: 88×576×576 et 88×640×640.

FIGURE 5: Segmentation de la paroi de l’oreillette gauche

Le jeu de données AtriaSeg18 fournit l’étiquette de la cavité auriculaire gauche
(LA), de sorte que les résultats de la segmentation du cœur du jeu de données Atri-
aSeg18 sont la cavité auriculaire gauche (LA) et le bord endocardique est obtenu.
Ensuite, la limite endocardique est dilatée morphologiquement (par 4 couches de
pixels, 2,5 mm), puis ajustée manuellement pour créer la coquille de la surface épi-
cardique de l’oreillette gauche [28]. Dans une dernière étape, la segmentation de
l’endocarde est soustraite de la couche épicardique pour définir la segmentation de
la paroi, comme indiqué sur la Fig 5.

1http://atriaseg2018.cardiacatlas.org/
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Après avoir obtenu la segmentation de la paroi, nous supposons que l’image ne
comprend que l’oreillette gauche A est défini comme A = ES× I, où ES désigne le
résultat de la segmentation endocardique (image binaire) et I désigne l’image grise
du cœur. Ensuite, nous calculons la valeur moyenne M et écart-type SD de A > 0,
et le seuil est fixé à M + 3SD. Enfin, la fibrose est ob Enfin, la fibrose est détectée par
W > (M + 3SD) (W indique que l’image ne comprend que la paroi de l’oreillette
gauche), comme le montre la Fig 6.

FIGURE 6: Vue 3D de la fibrose et de la paroi de l’oreillette gauche;
la couleur rouge indique la fibrose et la couleur verte la paroi de

l’oreillette gauche.

Comme le jeu de données AtriaSeg18 ne fournit pas le label de la cicatrice, nous
continuons à tester notre méthode sur le Left Atrial and Scar Quantification & Seg-
mentation Challenge (LAScarQS2022) [29–31], et le LAScarQS2022 vise à segmenter
l’oreillette gauche et à évaluer la cicatrice. Il comprend deux tâches (Tâche 1 et Tâche
2) et la Tâche 1 contient les données de cicatrices, nous utilisons donc uniquement
le jeu de données de la Tâche 1. La tâche 1 contient 60 IRM 3D annotées de patients
souffrant de fibrillation auriculaire pour l’entraînement et la validation. La taille
des voxels des images IRM est différente: 1.25× 1.25× 2.5 mm, 1.4× 1.4× 1.4
mm et 1.3× 1.3× 4.0 mm. L’ensemble de données comprend deux tailles d’images
différentes: 44×576×576 pixels et 44×640×640 pixels.
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TABLE 1: Étude d’ablation de SD sur le jeu de données LAScarQS2022
en utilisant une validation croisée 5 fois.

SD différente DC de la cicatrice

SD 0.328±0.035
2SD 0.305±0.067
3SD 0.062±0.038

5 Conclusion

Nous combinons des méthodes d’apprentissage profond largement utilisées avec
une approche de morphologie mathématique pour segmenter le cœur et évaluer la
fibrose. Le temps de calcul de l’ensemble du pipeline est inférieur à 4 secondes pour
un volume 3D entier, ce qui le rend utilisable dans la pratique clinique.
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Chapter 1

Introduction

1.1 Medical Context

The heart is an organ that supplies blood and oxygen to all parts of the body. As
shown in Fig.1.1, it is a hollow organ composed mainly of cardiac muscle and com-
prising the left atrium, left ventricle, right atrium, and right ventricle. The left ven-
tricle is connected to the aorta, the right ventricle to the pulmonary artery, the left
atrium to the pulmonary vein, and the right atrium to the superior and inferior vena
cava. Both the left and right atria and the left and right ventricles are separated by
the septum, so they are not connected. There are valves between the atria and the
ventricles. These valves ensure that blood flows only from the atria to the ventricles,
but not back. The heart and the circulatory system together form the cardiovascular
system.

FIGURE 1.1: The anatomy of the heart1

1https://www.thoughtco.com/thmb/Z5FC4sAv87cdE4L6tyTyybL9ww8=/4402x3856/filters:fill(auto,1)/human-
heart-circulatory-system-598167278-5c48d4d2c9e77c0001a577d4.jpg
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The diagnosis and treatment of heart rhythm disorders depend increasingly on
medical imaging from various scanners. For example, 1) Calcium deposits in plaque
are discovered via a computerized tomography (CT) scan, commonly known as a
calcium-score screening heart scan, in patients with heart disease. They are the
most effective way to detect atherosclerosis before symptoms appear. Atheroscle-
rosis of the coronaries increases with coronary calcium levels. 2) A magnetic reso-
nance imaging (MRI) scan is a non-invasive procedure that employs radio and mag-
netic waves produced by an MRI scanner to provide precise images of the interior
of your heart. It is used to detect congenital heart disease, cardiomyopathy, heart
valve disease, and other conditions. 3) A heart positron emission tomography (PET)
scan is a noninvasive nuclear imaging test. It creates images of your heart by us-
ing radioactive tracers (called radionuclides). Cardiovascular PET scans are used
by doctors to diagnose coronary artery disease and heart attack damage. PET scans
can distinguish between healthy and damaged heart muscle. PET scans can also
help determine whether you will benefit from a percutaneous coronary interven-
tion, such as angioplasty and stenting, coronary artery bypass surgery, or another
procedure. 4) A noninvasive nuclear imaging test is a single-photon emission com-
puterized tomography (SPECT) scan of the heart. It creates images of your heart by
injecting radioactive tracers into your blood. SPECT is used by doctors to diagnose
coronary artery disease and determine whether or not a heart attack has occurred.
SPECT imaging can reveal how well blood flows to the heart and how well the heart
functions. 5) Echocardiogram, cardiac echo, and transthoracic echo are all terms for
ultrasound (TTE). It creates a moving image of the heart by using ultrasonic waves
that bounce off it. It allows doctors to see the heart in motion, including the heart-
beat. It is most effective for detecting heart structure and function abnormalities
such as dilated cardiomyopathy or restrictive cardiomyopathy. It also aids in the
detection of cardiac chamber enlargement, irregular heart rhythms, and heart valve
disease.

Atrial fibrillation (AF), as shown in Fig.1.2, is the most common heart rhythm
disease, corresponding with the activation of an electrical substrate within the atrial
myocardium. AF is already an endemic disease, and its prevalence is soaring, due
to both an increasing incidence of the arrhythmia and an age-related increase in
its prevalence. Indeed, 1–2% of the population suffer from AF at present, and the
number of affected individuals is expected to double or triple within the next two to
three decades both in Europe and in the USA [1].
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FIGURE 1.2: Atrial fibrillation2

Due to the limited effects of anti-arrhythmic drugs, AF can only be cured by
percutaneous radiofrequency catheter ablation (CA) targeting triggers and critical
areas responsible for AF perpetuation in left atrium (LA). Identification and quan-
tification of AF electrical substrate prior to AF ablation remains an unsolved issue
as the number of targets remains unpredictable using clinical criterias. AF CA is
still a challenging intervention requiring a perioperative 3D mapping to identify AF
substrate to select the best ablation strategy [1].

Exploration of LA substrate has suggested that AF may be a self-perpetuating
disease with a voltage or electrogram (EGM) amplitude reduction which is an indi-
cator of the severity of tissue corresponding with collagen deposition in the myocar-
dial interstitial space. Non-invasive assessment of myocardial fibrosis has proved
useful as a diagnostic, prognostic, and therapeutic tool. Visualization and quan-
tification of gadolinium in late gadolinium-enhanced cardiac magnetic resonance
(LGE-CMR) sequences estimate the extracellular matrix volume and have been used
as a LA fibrosis surrogate [36].

2https://twitter.com/MayoClinic/status/1007688695590342657/photo/1
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FIGURE 1.3: The principle of late gadolinium-enhanced cardiac mag-
netic resonance (LGE-CMR) [32]

As shown in Fig. 1.3, following administration of a bolus of gadolinium con-
trast agent, the contrast will reach the various tissue compartments within the my-
ocardium at different rates until a dynamic steady state is reached. Signal inten-
sity time course from administration of bolus through late enhancement illustrating
slower wash-in and wash-out of gadolinium contrast into infarcted tissue compared
with normal ischemic tissue. Late enhancement imaging is typically performed
10–30 minutes following administration of gadolinium when there is sufficient con-
trast between normal and infarcted tissue. T1-weighted, T2-weighted and Fluid At-
tenuated Inversion Recovery (FLAIR) scans are the most common LGE-CMR se-
quences [37]. T1-weighted images are produced by using short Time to Echo (TE)3

and Repetition Time (TR)4 times. The contrast and brightness of the image are pre-
dominately determined by T1 properties of tissue. Conversely, T2-weighted images
are produced by using longer TE and TR times. In these images, the contrast and
brightness are predominately determined by the T2 properties of tissue. The FLAIR
sequence is similar to a T2-weighted image except that the TE and TR times are very
long, and it is very sensitive to pathology.

Over the last years, several groups tested the ability of LGE-CMR to detect pre-
existing fibrosis. Although these reports suggested that the extent of fibrosis may
predict recurrences after ablation procedures, the lack of 3D automated LA recon-
struction, the lack of reference values for normality has prompted the publication

3Time to Echo (TE) is the time between the delivery of the Radio Frequency (RF) pulse and the
receipt of the echo signal.

4Repetition Time (TR) is the amount of time between successive pulse sequences applied to the
same slice.
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of several image acquisition and post-processing protocols and thresholds to iden-
tify fibrosis, eventually limiting the external validation and reproducibility of this
technique [2–4].

Because of these technical limits, the assessment of LA fibrosis has not yet been
widely adopted in the clinical practice [5]. The aims of this project involving EPITA
and the Institut Cardiovasculaire Paris Sud (ICPS) are to provide a normalized, sys-
tematic, consistent, reproducible and automatically 3D LA LGE-CMR reconstruction
to identify LA fibrotic tissue prior to AF ablation.

1.2 Traditional Methods for Left Atrial Fibrosis/Scar Segmen-
tation

Most traditional methods present the expected workflow for left atrial fibrosis or
scar segmentation as follows:

(1) Segmentation of the heart volume leading to the identification of the left atrial
wall

(2) Analysis of the radiometry within the wall, thresholding to quantify the fibro-
sis degree.

For the first step, many methods are applied such as level-set [38], region grow-
ing [39] and watershed [40] and so on (as shown in Fig.1.4). In term of the level-set
method [38], the whole process was divided into two steps. First, the median fil-
ter was used to obtain the velocity image, and then the gradient magnitude filter
was used to process the velocity image. Taking segmentation of the atrial wall as
an example, first used the median filter to process the atrial images. After obtain-
ing the velocity images, the gradient magnitude filter detected the edge zones with
sharp gradients around the epicardial boundary, and then stops at these edge zones.
Finally, the atrial wall is obtained by subtracting the result of the level set method
from the endocardium segmentation mask. For the Region growing method [39], it
was also often used in medical image segmentation tasks. It achieved segmentation
by placing seed points in the segmentation area and choosing different thresholds
according to different situations. As shown in the Fig.1.4, because the threshold
depended on different situations, the final segmentation result was not stable, and
the method had no independent adjustment ability. For the watershed segmenta-
tion [40], in medical image segmentation, mainly used the image as a topographic
surface and markers for controlling. The seed points were placed in the target seg-
mentation area and the adjacent area similar to the target structure.
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FIGURE 1.4: From the MRI image database. Each row represents
a separate case. Each column represents (from left to right): orig-
inal MRI, segmentation for ground truth, level-set method, region-
growing and watershed segmentation. Abbreviations: LA – left
atrium, AO – aorta, LV – left ventricle, RV – right ventricle, LAA –

left atrial appendage [33]

For the second step, based on the left atrial wall, many fibrosis or scar detection
and segmentation algorithms are proposed. Firstly, we give an overview of the pre-
viously published fibrosis or scar detection and segmentation algorithms (as shown
in Table. 1.1). It could be concluded from Table. 1.1 that for detecting fibrosis or
scars, most researchers chose the SD algorithm [41–43]. But other methods also had
certain advantages. For example, FWHM [44] was further used to classify scars as
cores or peri-core areas [45], and other methods had been proposed to automati-
cally calculate thresholds [42] such as clustering [46, 47], and Graph-cuts [48]. MIP
algorithm was used to visualize the infarcted area [49], which was very useful for vi-
sualizing the number of scars on the surface of the atrial. For the detection of fibrosis
before ablation, the global threshold of the image could be calculated and adjusted
according to the data of each slice to achieve the best detection effect [3].

All the methods in Table. 1.1 except [3] and [49] can be used to detect scars in
the myocardium. But facing the task of scar segmentation, many difficulties need
to be solved urgently, especially the nearby enhanced structures such as the aortic
wall and valves. There are also differences between the atrial myocardium and the
ventricular myocardium. For example, the thickness of the atrial myocardium is
thinner than that of the ventricle, and it is more difficult to segment. Therefore,
only using some fixed models to detect the scar of the atrial myocardium cannot
achieve good results. Some researchers have used it, but we still think that it is not
suitable for scar segmentation of the ventricular myocardium. The reason is simple:
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TABLE 1.1: Overview of previously published scar detection and seg-
mentation methods [35]

Reference Model Modality LV/LA Algorithm
Oakes et al.[3] Human CMR LA SD
Kim et al.[41] Canine CMR LV SD
Kolipaka et al.[42] Human CMR LV SD
Schmidt et al..[43] Human CMR LV SD
Amado et al.[44] Animal CMR LV FWHM
Yan et al.[45] Human CMR LV SD
Positano et al.[46] Human CMR LV Clustering
Detsky et al.[47] Human CMR LV Clustering
Lu et al.[48] Human CMR LV Graph-cuts
Knowles et al.[49] Human CMR LA MIP
Hennemuth et al. [50] Human CMR LV EM
Tao et al.[51] Human CMR LV Otsu

Note: LV denotes Left ventricle and LA denotes left atrium. Most methods em-
ployed simple standard deviation (SD) thresholding from a base healthy tissue
intensity value. Others such as full-width-at-half-maximum (FWHM), maximum
intensity projection (MIP) and expectation-maximisation (EM) fitting have also
been proposed.

using a single fixed model cannot deal with all the different variables encountered
randomly. These variables may come from outside (image resolution, noise, image
acquisition time, etc.), and it may also come from the inside (the size and shape of
the scar, etc.). This fact has been supported in [3] that in order to obtain a suitable
segmentation, the threshold must be constantly re-adjusted according to the data on
each slice.

1.3 State-of-the-art for Left Atrial Fibrosis/Scar Segmentation

Forward/inference

Backward/learning

FIGURE 1.5: Fully convolutional networks
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Among these traditional methods mentioned above, the most common method of-
fers good accuracy for fibrosis or scar detection and segmentation, but often looses
efficiency due to heavy calculations with the registration algorithm. Recently, deep
learning becomes more and more famous and is used in many field. Many re-
searchers have combined deep learning approaches with traditional segmentation
methods for the purpose of scar segmentation. For the deep learning methods in
the field of medical image segmentation, most of the proposed network frameworks
are mainly based on fully convolutional networks (FCNs) [52] or on U-Net [53], as
shown in Fig.1.5 and Fig.1.6. They use upsampling layers and combine the feature
maps from lower to higher resolutions. Many extensions to these networks have
been proposed.

FIGURE 1.6: U-net architecture

Firstly, some researchers mainly focus on atrial segmentation, because it can be
used as a basis for scar segmentation and atrial fibrosis quantification from LGE
images. For example, Bai et al. [6] and Vigneault et al. [7] designed one network
framework based on 2D FCNs to directly segment the left and right atrium. In ad-
dition, the proposed networks can also be applied to segment ventricles after train-
ing without changing in network framework. Similarly, Xiong et al. [8] , Preetha et
al. [9], Bian et al. [10], and Chen et al. [11] also designed a segmentation network
framework based on 2D FCNs to segment the atrial. Compared with the previously
proposed 2D network frameworks, their network structures were optimized, which
made the network pay more attention to feature learning. However, in medical im-
age segmentation, most of the data is 3D volume. Therefore, in order to capture
3D global information, some 3D networks [54–58] and multi-view networks [59, 60]
were constantly proposed. Especially the fully automatic two-stage segmentation
framework proposed by Xia et al. [54], which mainly includes two steps of localiza-
tion and segmentation. First, the first 3D UNet was used to roughly locate the center
of the target, and then the target region was cropped out, and input the second 3D
UNet performed precise segmentation, and the final segmentation result won the
first place in the left atrium segmentation challenge 2018.

As attention mechanisms become more popular, it is increasingly used for the
cardiac segmentation. For example, Zhou et al. [61] designed a cross-modal attention
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module between the encoders and decoder, which leveraged the correlated informa-
tion between modalities to benefit the cross-modal cardiac segmentation. Based on
3D U-Net et al. [62], Li et al. [58] designed one attention based hierarchical aggrega-
tion module, and through the ablation study, the module was proved that it was an
effective way to force the network to focus the left atrium of cardiac. Zhang et al. [63]
designed three types of attention modules including the spatial attention module
that selectively aggregates the features at each position, the channel attention mod-
ule that focuses on integrating associated features among all channels, and the re-
gion attention module that highlights useful feature regions from the whole feature
maps, through directly inserting into a FCN, which achieved one good segmenta-
tion performance on left and right ventricle of cardiac. Tong et al. [64] presented
an interleaved attention mechanism, which can effectively combined low-level and
high-level features, and made more discriminative information pass forward to the
refinement stage, through applying to recurrent fully convolutional architecture, the
performance of cardiac MRI segmentation was improved. Wei et al. [65] proposed a
spatial constrained channel attention module to pay more attention to left ventricle
of cardiac, decrease the impact of surrounding similar tissues, which can effectively
deal with segmentation of multiply connected domains.

Then, in order to segment fibrosis or scars, we mainly base on LGE MR images,
because it can show scars and fibrosis [41]. Before deep learning was widely used
in the field of medical images, traditional segmentation methods, such as inten-
sity threshold-based or clustering methods, were used for scar segmentation. These
methods are very sensitive to the local intensity changes of the image [66], and dif-
ferent parameters need to be designed according to different data each time, and
they are not suitable for being widely used. At the moment, they need to manually
segment the region of interest to reduce the workload [67]. Therefore, these semi-
automatic methods cannot be widely used in hospitals to reduce the workload on
doctors.

Therefore, only using traditional segmentation methods to segment scars is not
a development trend. Combining with widely used deep learning methods is the
current development trend. For example, Yang et al. [12, 13] used one atlas-based
method to identify the left atrium, and then used a deep learning network to de-
tect fibrotic tissue in the left atrium area. Related to the end-to-end segmentation
method, Chen et al. [14] proposed a deep neural network to segment both the left
atrium and atrial scars. In particular, to achieve better segmentation accuracy, they
also proposed a multi-view framework with one attention module to integrate dif-
ferent visual information.

Currently, there are still many challenges in fully automatic end-to-end scar seg-
mentation, because the proportion of scars in the entire image is very low, it is easy
to cause serious overfitting of the network, and because of the differences of pa-
tients, LGE images will also be generated abnormal. To achieve one fast segmen-
tation speed, Fahmy et al. [68] designed one network based on UNet to segment
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both the myocardium and the scars, but the segmentation results on the scar regions
were very low. Subsequently, Zabihollahy et al. [66] and Moccia et al. [69] proposed
one semi-automatic method that kept the higher segmentation accuracy on the test
sets for the scar segmentation, first by manually segmenting the myocardium, and
then applying a 2D network to distinguish between scars and normal myocardium.
Excitingly, an RNN method proposed by Xu et al. [70] could automatically delin-
eate the myocardial infarction area from the MR image sequence without contrast
agent. Compared with the manual annotation on the LGE MR images, their method
obtained a higher dice score and provided a new method for infarction assessment.

1.4 Public datasets

Among these deep learning methods mentioned above, the most common method
is mainly data-driven, and study the transformation relationship between the input
image and the corresponding label. So, obtaining the labeled patient data is piv-
otal for deep learning methods. We make a summary of public datasets on heart
segmentation in recent years as shown in Table 1.2.

TABLE 1.2: Summary of public datasets on heart segmentation

Source Data Image size/pixels Voxel size/mm
HVSMR16 [71] 10 3D CMR 390×390×165 0.9×0.9×0.85
MM-WHS2017 [72] 60 CT, 60 bSSFP MRI 324×325×171 0.94×0.94×1.20
AtriaSeg18 [73] 150 LGE MRI 608×608×88 0.625×0.625×0.625
LVQuan19 [74, 75] 56 CMR 347×347×20 1.18×1.18×1.18
LAScarQS2022) [29–31] 298 LGE MRI 608×608×44 1.32×1.32×2.3

HVSMR16 [71] (MICCAI Workshop on Whole-Heart and Great Vessel Segmen-
tation from 3D Cardiovascular MRI in Congenital Heart Disease5) is to segment my-
ocardium and blood pool, it contains 10 training cardiovascular magnetic resonance
(CMR) scans. For each patient, three kinds of images were provided: the full-volume
axial images, the cropped axial images around the heart and thoracic aorta, and the
cropped short axis reconstruction. The average voxel size is 0.9×0.9×0.85 mm. The
average image sizes: 390×390×165 pixels.

MM-WHS2017 [72] (Multi-Modality Whole Heart Segmentation 6) aims to seg-
ment 7 substructures of the whole heart. It contains 60 cardiac MRI and 60 CT im-
ages. The average voxel size is 0.94×0.94×1.20 mm. The average sizes: 324×325×
171 pixels.

AtriaSeg18 [73] (MICCAI 2018 Atrial Segmentation Challenge 7) aims to segment
the left atrium and contains 150 annotated 3D MRIs from patients with atrial fibril-
lation. The voxel size of the MR images is 0.625× 0.625× 0.625 mm. The dataset
includes two different image sizes: 88×576×576 pixel and 88×640×640 pixel.

5http://segchd.csail.mit.edu/index.html
6http://www.sdspeople.fudan.edu.cn/zhuangxiahai/0/mmwhs17/index.html
7http://atriaseg2018.cardiacatlas.org/
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LVQuan19 [74, 75] (MICCAI 2019 left ventricle (LV) Full Quantification Chal-
lenge dataset8) is to segment the myocardium of the left ventricle and estimate a
set of clinical significant LV indices such as regional wall thicknesses, cavity dimen-
sions, and cardiac phase and so on. It contains the processed SAX MR sequences
of 56 patients. For each patient, 20 temporal frames are given and cover a whole
cardiac cycle. All ground truth (GT) values of the LV indices are provided for every
single frame. The pixel spacings of the MR images range from 0.6836 mm/pixel to
1.5625 mm/pixel, with mean values of 1.1809 mm/pixel. The LV dataset includes
two different image sizes: 256×256 or 512×512 pixels.

LAScarQS2022 [29–31] (Left Atrial and Scar Quantification & Segmentation Chal-
lenge 9) aims to segment the left atrium and evaluates the scar. It includes two tasks
(Task 1 and Task 2) and Task 1 contains the scar data. Task 1 contains 60 annotated
3D MRIs from patients with atrial fibrillation for training and validating. The voxel
size of the MR images is different: 1.25× 1.25× 2.5 mm, 1.4× 1.4× 1.4 mm, and
1.3× 1.3× 4.0 mm. The dataset includes two different image sizes: 44×576×576
pixels and 44×640×640 pixels.

However, due to the long time taken to form MRI images (10–30 minutes) [32],
there are some difficulties in implementing heart segmentation tasks and fibrosis
assessment tasks using MRI images from the aforementioned public datasets. As
shown in Fig. 1.7, there are 1) poor contrast between myocardium and surround-
ing structures, 2) brightness due to blood flow, 3) non-homogeneous partial volume
due to limited MRI resolution, 4) noise due to motion artifacts and heart dynamics,
5) shape and intensity variability due to different patients and pathologies. So, we
should take these problems into account when we design segmentation and evalua-
tion methods.

Image with lable Original image

FIGURE 1.7: MRI images. RV: right ventricle blood cavity; Myo: my-
ocardium of the left ventricle; LV: left ventricle blood cavity; LA: left

atrium blood cavity; AO: ascending aorta; PA: pulmonary artery.

8https://lvquan19.github.io
9https://zmiclab.github.io/projects/lascarqs22/

https://lvquan19.github.io
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1.5 Main contributions

The main contribution of thesis is to assist doctors in diagnosis by designing neural
network frameworks to reduce the workload of doctors. Throughout the design
process, we found that there were many difficulties to segment atrial and evaluate
fibrosis from cardiac MR images, for example, the presence of poor contrast between
the segmented tissue and surrounding structures, the brightness heterogeneities due
to blood flow, the shape and intensity variabilities of the structures across patients
and pathologies, and so on.

FIGURE 1.8: Detail segmentation at the left atrial

Although the fact that most methods continue to improve segmentation accu-
racy, the problem of low accuracy of boundaries and small objects segmentation still
exists, which is due to the fact that they mainly pay attention to region accuracy,
more than to the quality of the boundaries and small objects. As shown in Fig. 1.8,
boundaries and details segmentation are especially important when the accuracy
of region segmentation is about the same. Therefore, we consider two challenging
problems applied on cardiac imaging : 1) how to improve the segmentation accu-
racy on small parts of objects; 2) how to balance the importance of the regions and
the boundaries of objects.

1.5.1 Design of Neural Network Framework

Two-stage framework: For segmenting the left atrial, we propose a two-stage ar-
chitecture, which is consist of a localization network and a segmentation network.
These two networks mainly rely on the original VGG16 network architecture, pre-
trained on millions of natural images of ImageNet for image classification. We
then discard its fully connected layers to keep only the sub-network made of five
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convolution-based “stages” (the base network). Each stage is made of two convolu-
tional layers, a ReLU activation function, and a max-pooling layer. Since the max-
pooling layers decrease the resolution of the input image, we obtain a set of fine
to coarse feature maps (with 5 levels of features). We added specialized convolu-
tional layers (with a 3 × 3 kernel size) with K (e.g. K = 16) feature maps after the
up-convolutional layers placed at the end of each stage. The outputs of the special-
ized layers show the same resolution than the input image, and are concatenated
together. We add a 1×1 convolutional layer at the output of the concatenation layer
to linearly combine the fine to coarse feature maps.

End-to-end framework: For segmenting the left atrial, we propose a end-to-end
architecture, using ResNet-101 pre-trained on ImageNet to compute feature maps.
We discard its average pooling and fully connected layers, and keep only the sub-
network made of one convolution-based and four residual-based “stages”. Since
the resolution decreases at each stage, we obtain a set of fine to coarse feature maps
(with five levels of features). We add specialized convolutional layers (with a 3×3
kernel size) with K (e.g. K =16) feature maps placed at the end of four residual-based
“stages”. They are concatenated together after up-convolutional layers. These last
feature maps are combined with each of the outputs of the specialized layers, and
then fed into the attention module to generate the attention features. Finally, we
concatenate the attention features and fed them into the softmax layer.

For segmenting the fibrosis/scar, we propose a hybrid network using five U-Net
frameworks, which is composed of three U-Net to segment myocardium, left and
right ventricle, and whole heart, and the remaining two U-Net to segment edema
and scar.

1.5.2 Design of Attention

To decrease the impact of similar tissues on segmentation results, we built on the
biological visual system, which concentrates on certain image regions requiring de-
tailed analysis.

Gaussian attention: In the two-stage framework, between the localization net-
work and the segmentation network, we propose one Gaussian attention method,
which is to multiply the positioning target area by the Gaussian weight.

Attention module: In the end-to-end framework, we design one attention module
embedded in the neural framework, which consists of one position attention branch
and one channel attention branch. The attention module can make full use of spatial
information and information between channels.
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1.5.3 Design of Hybrid Loss

We propose the hybrid loss function that guides the network to study the transfor-
mation relationship between the input image and the corresponding label. To let the
network to balance boundaries, small objects and regions during the process of train-
ing, we not only design region loss, but also boundary loss. For the region loss, we
combines Categorical Cross Entropy (CCE), Structural Similarity (SSIM) and Dice
Coefficient (DC) to guide the training process at three levels: pixel-level, patch-level,
and map-level. For the boundary loss, it is used in calculating the difference between
the boundary of the ground truth and the boundary of the prediction.

1.6 Manuscript organization

The thesis is divided into three parts.
The first part explains the main concept of work proposed in this thesis. It con-

sists of two chapters.

• Chapter 1: Introduction. This chapter mainly describes the research back-
ground of cardiac segmentation and evaluation of fibrosis and some related
research methods, and explains the significance and contribution of our re-
search in this field.

• Chapter 2: Theoretical Background. This chapter is a briefly introduction to
the relevant background knowledge required. We explain the fundamentals of
deep learning, mainly explaining the convolutional layer and pooling layer, as
well as how to train the network and evaluate the prediction results. Finally,
we focus on explaining the principle of attention.

The second part of this thesis proposes different methods to segment heart and
evaluate fibrosis. It consists of three chapters.

• Chapter 3: Heart Data Preparation. Deep learning is mainly based on big
data, so it is very important to choose a suitable method to preprocess heart
data. This chapter mainly explores how different preprocessing methods affect
prediction results of network. We compare centralized and standardized, and
find that the standardized makes the network more robust to noise through a
large number of experiments.

• Chapter 4: Two-stage Segmentation Method. For cardiac magnetic resonance
images, ambiguities often appear near the boundaries of the target domains
due to tissue similarities. This chapter, to address this issue, we propose a new
architecture, which can be decomposed in three main steps: a localization step,
a Gaussian-based contrast enhancement step, and a segmentation step. This
architecture is supplied with a hybrid loss function that guides the network
to study the transformation relationship between the input image and the
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corresponding label in a three-level hierarchy (pixel-, patch- and map-level),
which is helpful to improve segmentation and recovery of the boundaries. We
demonstrate the efficiency of our approach on three public datasets in terms of
regional and boundary segmentations.

• Chapter 5: End-to-end Segmentation Method. This chapter proposes an at-
tention full convolutional network framework based on the ResNet-101 archi-
tecture, which focuses on boundaries as much as on regions. The additional
attention module is added to have the network pay more attention on regions
and then to reduce the impact of the misleading similarity of neighboring tis-
sues. We also use a hybrid loss composed of a region loss and a boundary
loss to treat boundaries and regions at the same time. We demonstrate the ef-
ficiency of the proposed approach on the MICCAI 2018 Atrial Segmentation
Challenge public dataset.

The third part of this thesis proposed different methods to evaluate fibrosis. It
consists of one chapters.

• Chapter 6: Evaluation of Fibrosis. For left atrial fibrosis/scar, this chapter
mainly designs two different segmentation methods: (1) Based on the segmen-
tation results of left atrial of Chapter 4 or Chapter 5, combining mathematical
morphology approaches, the segmentation results of fibrosis is obtained by
setting the fixed threshold. (2) We directly segment the pathology tissue such
as the scar by deep learning methods without mathematical morphology ap-
proaches. Firstly, we begin with a segmentation of the anatomical tissue (left
ventricle (LV), right ventricle (RV), whole heart (WH), myocardium (myo))
around myocardial pathology, and then let the network learn a relationship
between these segmentation results to obtain the myocardial pathology. The
effect of class imbalance can be reduced by the segmentation of surrounding
anatomical tissues, because it helps the network to focus on the small lesions
regarding to the surrounding tissues.

The fourth part of this thesis makes one conclusion and perspectives. It consists
of one chapter.

• Chapter 7: Conclusion and Perspectives. This chapter mainly summarizes the
dissertation and introduces some research directions that can be explored.
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Part II

Concept
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Chapter 2

Theoretical Background

2.1 Fundamentals of Deep Learning

Input layer

Hidden layer 1 Hidden layer 2 Hidden layer N

Output layer

FIGURE 2.1: Neural networks; gray circle denotes neuron

Deep learning models are deep artificial neural networks. Each neural network (as
shown in Fig.2.1) consists of an input layer, an output layer, and multiple hidden
layers. Convolutional neural network (CNN), which is the most common type of
deep neural networks for image analysis. CNN have been successfully applied to
advance the state-of-the-art on many image classification, object detection and seg-
mentation tasks [76].

2.1.1 Convolutional Neural Networks (CNNs)

As shown in Fig.2.2, a MR image is input into a CNN, and then hierarchical fea-
tures are learned by convolutions and pooling layers. Some CNN frameworks are
now well known such as LeNet [77], AlexNet [16], VGG [78], Inception [79], and
ResNet [80] and so on. These frameworks are mainly used in extracting features at
different levels for input images, and then use these features to perform different
tasks, for example, these feature maps are flattened and reduced into a vector by
fully connected layers, and then the vector can be varied for different tasks. It can be
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probabilities for a set of classes (image classification) or coordinates of a bounding
box (object localization) or a predicted label for the center pixel of the input (patch-
based segmentation) or a real value for regression tasks. Therefore, it is very impor-
tant to fully grasp the role of each layer of CNN, which often contains convolutional
layers, pooling layers and/or fully-connected layers.

Input

Feature maps

Predictions

Convolution Pooling Fully-connected

FIGURE 2.2: Convolutional Neural Networks (CNNs)

2.1.1.1 Convolutional Layers
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FIGURE 2.3: The calculation process of convolutional layer with the
convolution kernel 3× 3

The convolutional layer CONVl is the key part of CNN, and its primary parameters
are convolution kernels and convolution filters. Fig. 2.3 shows the calculation pro-
cess of convolutional layer with the convolution kernel 3× 3. For one convolutional
layer, if the convolution filter and convolution kernel are set to nl and k× k, respec-
tively, which means to extract nl feature maps by the k × k convolution kernel. In
general, the convolution kernel is set to small such as 3× 3, which can reduce the
number of training parameters of network. However, if using the small convolu-
tion kernel, the receptive field (the area of the input image that potentially impacts
the activation of a particular convolutional kernel/neuron) is also small. To increase
the region of receptive field, the network usually build very deep, which means to
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increase the number of convolutional layers. In fact, increasing the depth of convolu-
tion neural networks (the number of hidden layers) to enlarge the receptive field can
lead to improved model performance. If directly using the big convolution kernel
such as 7× 7, compared to three convolution layers with 3× 3 convolution kernel,
the receptive field remains same, but the number of weights is increased by about
twice. An online resource1 is applied to clearly illustrate and visualize the change of
receptive field by changing the number of hidden layers and the size of kernels.

2.1.1.2 Pooling Layers

The pooling layer used in CNN framework is mainly to reduce the redundant in-
formation and image size, and retain more important features. The most common
type of pooling layers used is Max Pooling; the less common Average Pooling is
sometimes seen in very deep neural networks.
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Max Pooling

f=2, s=2

FIGURE 2.4: Max Pooling

The pooling layer does not contain any trainable parameters, and its operation
mode is similar to the convolution operator by sliding a small matrix of size f × f
across the input image with stride s, but unlike convolution, pooling is used in each
channel individually. As shown in Fig.2.4, an example of Max Pooling, the operation
involves taking the max value for f = 2 and s = 2 applied on a 4× 4 matrix of feature
map.

2.1.1.3 Activation Function

According to Fig.2.1, we only consider one neuron N:

N = ∑ (wi × inputi) + b (2.1)

1https://fomoro.com/research/article/receptive-field-calculator
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where wi is weight corresponding to inputi, b denotes one bias.
So the neuron is to calculate a weighted sum of its input, and then add a bias

(see Fig.2.3), for the activation function, it is defined as how the weighted sum of the
input is transformed into an output. As shown in Eq. 2.1, N ranges from negative
infinity to positive infinity, which let neuron do not know the bounds of the value.
Therefore, if we want neurons to make a purposeful choice of input values, there
must be certain restrictions by the activation function.

However, for the neural networks, there are three types of layers as shown in
Fig. 2.1. Each of the multiple hidden layers commonly uses the same activation func-
tion, but the activation function of the output layer will constantly change according
to different tasks.

It is well known that neural networks are trained by backpropagation using er-
ror algorithms, requires the activation function to be differentiable. Until now, many
activation functions have been proposed and widely used in neural networks, al-
though perhaps only a small part of the activation functions is actually used in the
hidden layer or the output layer.

Activation Function for Hidden Layer: There are three activation functions for
most commonly using in the hidden layer as follows:

• Rectified Linear Activation (ReLU) [81];

• Logistic (Sigmoid) [82];

• Hyperbolic Tangent (Tanh) [83].

For the ReLU [81] activation function, it is defined as:

f (x) = max (0, x) (2.2)

ReLU [81] activation function (as shown in Fig. 2.5) means from Eq. 2.2 that if the
input value (x) is negative, then 0 is returned, otherwise, x is returned. However,
it has some potential problems such as non-differentiable at zero, not zero-centered,
and unbounded and so on. So, in order to solve its disadvantages, many activation
functions were subsequently expanded based on ReLU such as Exponential linear
units (ELU) [84], and Leaky ReLU [85],
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FIGURE 2.5: ReLU activation function

For the Sigmoid [82] activation function, it is the logistic function shown in the
Fig. 2.6 and defined by the formula:

S (x) =
1

1 + e−x (2.3)

FIGURE 2.6: Sigmoid activation function

The sigmoid activation function is familiar S-shape, and its output value range is
from 0 to 1. The larger the input value, the closer the output value is to 1, otherwise,
the closer to 0. However, sigmoid has some similar problems with ReLU such as
not zero-centered, but it improves the non-differentiable at zero and unbounded
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problems. If we want to use the sigmoid or ReLU in the hidden layer, the input data
should preferably be scaled to the range of 0 to 1.

For the Tanh [83] activation function (as shown in Fig. 2.7), it is a scaled sigmoid
function and defined as:

T (x) = 2 ∗ S (2x)− 1 (2.4)

FIGURE 2.7: Tanh activation function

The Tanh activation function combines the advantages of ReLU and sigmoid,
and is zero-centered. Its output value range is from -1 to 1. But but we need to pay
attention to if we want to use in the hidden layer, the input data should be scaled to
the range of -1 to 1, which is different with ReLU and sigmoid.

Activation Function for Output Layer: There are also three activation functions
for most commonly using in the output layer as follows:

• Linear [86];

• Logistic (Sigmoid);

• Softmax [87].

For the linear [86] activation function, it directly returns the weighted sum of
the input and not change the value. The linear activation function in output layer
is mainly used for the regression task. Sigmoid is used for the binary classification
task.
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For the softmax [87] activation function, it outputs a vector of values that sum to
1 that can be interpreted as probabilities of class membership and is defined as:

σ (z) =
ezi

∑k
j=1 ezi

f or i = 1, · · ·, k and z = (z1, · · ·, zk) εRk (2.5)

It uses the standard exponential function to each element zi of the input vector z and
normalizes these values by dividing by the sum of all these exponentials, which en-
sures that the sum of the components of the output vector σ(z) is 1. The softmax acti-
vation can be used not only for binary classification, but also for multi-classification
tasks.

2.1.2 Training Neural Networks

For the neural network model to be successfully used, it must be trained for a long
time based on big data. Therefore, there are certain requirements for the provided
dataset. The dataset must contains paired images and labels for training and validat-
ing. Model parameters are updated through a loss function and an optimizer such as
adam [88], RMSprop [89] and stochastic gradient descent [90] and so on. If you want
to learn more about optimizers, please refer to the literature [91]. During the process
of training, the loss function continuously calculates the error between the prediction
and the label in each iteration, then minimizes the error value by providing signals
for the optimizer to update the network parameters through backpropagation [92].

2.1.2.1 Loss Functions

Categorical Cross Entropy (CCE) [93] loss is commonly used for multi-class classifi-
cation and segmentation. It is defined as:

`CCE = − ∑C
i=1 ∑H

a=1 ∑W
b=1 yi

(a,b) ln y∗i
(a,b), (2.6)

where C is the number of classes of each image, H and W are the height and width of
image, yi

(a,b) ∈ {0, 1} is the ground truth one-hot label of class i in the position (a, b)
and y∗i

(a,b) is the predicted probability of class i.
Dice Coefficient (DC) [94] loss is used to measure the similarity between two sets

as defined in Eq. 2.7.

`DC = 1 − 2 |A⋂ B|
|A|+ |B| (2.7)

where A and B denote the 2D image matrix of prediction and target, respectively.
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FIGURE 2.8: An example of dice coefficient calculation process

The loss function mentioned above is the simplest form, and some new loss func-
tions are extended based on them, for example, to solve class imbalance problem, the
weighted cross-entropy loss [95] and weighted dice loss [96] are presented, which is
weighted to calculate rare classes or small objects.

2.1.2.2 Optimizers

During the training process of the network, optimizers are used for changing the
parameters (weights) of the network to minimize the loss function. To successfully
train the network, choosing the right optimizer is crucial. Therefore, we need to
fully understand the pros and cons of various optimizers. Nowadays, the main op-
timizers are Stochastic Gradient Descent (SGD) [97], Adaptive gradient algorithm
(Adagrad) [98], Root Mean Square Prop (RMSprop) [89], and Adaptive Moment Es-
timation (Adam) [88], etc. Next we will explain them one by one.

Stochastic Gradient Descent (SGD) [97]: It is defined as:

θ = θ − ηOθ J
(

θ; xi, yi
)

(2.8)

where θ is a network’s parameters θεR. J (∗) denotes an objective function (loss
function).Oθ J (∗) denotes the opposite direction of the gradient of the objective func-
tion. η is the learning rate, which denotes the step size of updating gradient. xi and
yi denotes the input and label of each training example, respectively.

The network’s parameters are updated based on each training example by SGD
optimizer, which does not perform redundant computations for large datasets, and
new training example can be added. However, every iteration is not toward the di-
rection of global optimization, because SGD does not update the network’s parame-
ters based on the entire sample. Although the training speed is fast, the accuracy is
reduced, which is not the global optimum. SGD updates the parameters frequently,
which will cause serious fluctuations for the objective function.
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SGD is easily trapped in the case of ravines. Ravines means that one direction
of the surface is steeper than the other. At this time, SGD will oscillate and it will
not be close to the minimum value. To solve this problem, momentum is added into
Eq. 2.8 that is redefined as:

vt = γvt−1 + ηOθ J
(

θ; xi, yi
)

(2.9)

θ = θ − vt (2.10)

where γ is a fraction and usually set to 0.9. Essentially, we push a small ball down
a mountain. There are no obstacles in the whole process of rolling down. The speed
of the ball is getting faster and faster, so its momentum is also increasing. The same
phenomenon also appears in updating the network parameters:the increase of mo-
mentum must be the same as the direction of the gradient, otherwise, it will decrease.
Finally, we gain convergence quickly and reduce the oscillation as shown in Fig. 2.9.

(a) with momentum (b) without momentum

FIGURE 2.9: SGD with or without momentum

Adaptive gradient algorithm (Adagrad) [98]: It can make larger updates to pa-
rameters related to uncommon features, and smaller updates to parameters related
to frequently occurring features, which let the Adagrad optimizer adapt the learning
rate to the parameters. The update rules are as follows:

θt+1,i = θt,i −
η√

Gt,ii + ε
· gt,i (2.11)

Gt,ii =
t

∑
τ=1

(gτ,i)
2 (2.12)

where gt,i denotes the gradient of θi at time step t:

gt,i = Oθ J (θi) (2.13)

Therefore, the advantage of Adagrad is that it eliminates the need to manually
tune the learning rate and the learning rate is usually set to 0.01, but its disadvantage
is also very obvious. Since the denominator in Eq. 2.11 is accumulating the square
gradient during training, which causes the learning rate to shrink and eventually
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become infinitely small. At this time, the optimizer can no longer acquire additional
knowledge.

Root Mean Square Prop (RMSprop) [89]: It is to solve the problem of Adagrad’s
radically diminishing learning rates and is defined as

E
[
g2]

t = γE
[
g2]

t−1 + (1− γ) g2
t (2.14)

where E(·) denotes the expectation, therefore, E
[
g2]

t is calculated by the previous
average and the current gradient according to Eq. 2.14, and γ is usually set to 0.9.
And then, the update rules are as follows:

θt+1 = θt −
η√

E [g2]t + ε
· gt (2.15)

Adaptive Moment Estimation (Adam) [88]: It is equivalent to RMSprop plus mo-
mentum. The decaying averages of past and past squared gradients mt and vt is
calculated, respectively, as follows:

mt = β1mt−1 + (1− β1) gt

vt = β2vt−1 + (1− β2) gt
(2.16)

where mt denotes the estimate of the first moment at time step t. vt denotes the
estimate of the second moment at time step t. If mt and vt are initialized as vectors
of 0’s, they will be biased towards 0, so the bias is corrected as follows:

m̂t =
mt

1− βt
1

v̂t =
vt

1− βt
2

(2.17)

Therefore, the Adam optimizer’s update rules are as follows:

θt+1 = θt −
η√

v̂t + ε
· m̂t (2.18)

where β1=0.9, β2= 0.999, ε=10e-8.
In summary, choosing the right optimizer is very important for training the net-

work. If the training data is sparse data, we should choose the self-applicable opti-
mizer such as Adagrad, RMSprop, Adam, but, in general, Adam is the best choice.

2.1.2.3 Metrics

Before training the network, we need to set up some observation metrics to know
whether the network is moving in our predetermined. We usually use classification
accuracy and logarithmic loss as observation metrics during the training process.
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For the classification accuracy, it is the ratio of number of correct predictions to
the total number of input samples and is defined as follows:

Accuracy =
Number o f correct predictions

Total number o f predictions made
(2.19)

However, it does not work well for tasks with the class imbalance, for example, a
binary classification task, one class A accounts for 96% of the entire sample, and the
other class B only accounts for 4%. Then the classification accuracy can easily reach
96% at the beginning of training.

For the logarithmic loss, if there are N training samples corresponding to M
classes, it can be calculated as follows:

loss =
−1
N

N

∑
i=1

M

∑
J=1

yij ∗ log
(

pij
)

(2.20)

where yij denotes whether the sample i belongs to the class j or not. pij denotes the
probability that the sample i belongs to the class j. It can work well for classification
tasks. Generally, the classifier can be provided with higher accuracy by minimizing
the logarithmic loss. There are many other observation metrics such as Confusion
Matrix [99], Area under Curve [100], Mean Absolute Error [101] and Mean Squared
Error [102] and so on.

2.1.2.4 Backpropagation
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FIGURE 2.10: A simple example of backpropagation

In order to facilitate the understanding of the principle of backpropagation [103],
we have created a simple structure as shown in Fig. 2.10 to explain the calculation
process of backpropagation. As shown in Fig. 2.10, there are two inputs, two outputs
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and one hidden layer. We assume that:

i1 = 0.04

i2 = 0.2

w1 = 0.12

w2 = 0.24

w3 = 0.25

w4 = 0.3

w5 = 0.5

w6 = 0.35

w7 = 0.45

w8 = 0.55

b1 = 0.36

b2 = 0.8

o1 = 0.02

o2 = 0.98

(2.21)

The purpose of backpropagation is mainly to optimize the weights so that the
network learn how to correctly transform inputs to outputs. We want the final out-
put o1 and o2 to reach 0.02 and 0.98, respectively. Therefore, we first need to calculate
the predicted value of the forward path of the network.

There are two neurons in the hidden layer, called h1 and h2. We use the logistic
function as the activation function. So outh1 is calculated by

outh1 = sigmoid(i1× w1 + i2× w2 + b1)

= sigmoid(0.04× 0.12 + 0.2× 0.24 + 0.36)

=
1

1 + e−0.4128

= 0.6017590759

(2.22)

outh2 is calculated by the same process and outh2 = 0.60587366843. We con-
tinue to calculate the final outputs outpre1 and outpre2: outpre1 = 0.78799802619;
outpre2 = 0.80281786099. Then calculating the total error between the final outputs
and prediction outputs by squared error function:

Etotal =
2

∑
i

1
2
(oi− outprei)

2

= Eo1 + Eo2

=
1
2
(0.02− 0.78799802619)2 +

1
2
(0.98− 0.80281786099)2

= 0.310607239

(2.23)
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We have completed the calculation of the forward path of the network. Then we
need to calculate the backward path of the network. During the process of calculat-
ing the backward path, its purpose is to minimize the total error by minimizing the
error of each neuron, for example, we consider how w5 affects the total error Etotal ,
and it is denotes ∂Etotal

∂w5 . ∂Etotal
∂w5 denotes the partial derivative of Etotal with respect to

w5. According to the chain rule2:

∂Etotal

∂w5
=

∂Etotal

∂outpre1
× ∂outpre1

∂w5
(2.24)

Due to Etotal =
1
2 (o1− outpre1)

2 + 1
2 (o2− outpre2)2, so

∂Etotal

∂outpre1
= 2× 1

2
(o1− outpre1)

2−1 × 1 + 0

= −0.767998026
(2.25)

Due to outpre1 = sigmoid(outh1 × w5 + outh2 × w6 + b2), so

∂outpre1

∂w5
= outpre1 × (1− outpre1)× 1× outh1 × w51−1 + 0 + 0

= 0.78799802619× (1− 0.78799802619)× 1× 0.6017590759× 1

= 0.100528148

(2.26)

Therefore,
∂Etotal

∂w5
=

∂Etotal

∂outpre1
× ∂outpre1

∂w5

= −0.767998026× 0.100528148

= −0.077205419

(2.27)

We can update w5 by

w5update = w5− η × ∂Etotal

∂w5
(2.28)

where η denotes the learning rate, if η is equal to 0.01:

w5update = 0.5− 0.01× (−0.077205419)

= 0.500772054
(2.29)

w6, w7, and w8 can be updated by the same process. Next, we will continue to
calculate the w1, w2, w3 and w4, for example, we consider how w1 affects the total
error Etotal by

∂Etotal

∂w1
=

∂Etotal

∂outh1
× ∂outh1

∂w1

= (
∂Eo1

∂outh1
+

∂Eo2

∂outh1
)× ∂outh1

∂w1

(2.30)

2https://en.wikipedia.org/wiki/Chain_rule
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According to the Eq. 2.30, ∂Etotal
∂outh1

needs to take into consideration its effect on the
both output outpre1 and outpre2. Based on Eq. 2.26, ∂Eo1

∂outh1
can be simply calculated by

∂Eo1

∂outh1
= −0.767998026× 0.78799802619× (1− 0.78799802619)× 0.5

= −0.064149776
(2.31)

Following the same process for ∂Eo2
∂outh1

, we can get ∂Eo2
∂outh1

= 0.043590891.
Therefore,

∂Etotal

∂outh1
= 0.043590891− 0.064149776

= −0.020558885
(2.32)

Due to outh1 = sigmoid(i1× w1 + i2× w2 + b1), so

∂outh1

∂w1
= outh1 × (1− outh1)× i1

= 0.6017590759× (1− 0.6017590759)× 0.04

= 0.009585804

(2.33)

Finally,
∂Etotal

∂w1
=

∂Etotal

∂outh1
× ∂outh1

∂w1

= −0.020558885× 0.009585804

= −0.000197073

w1update = w1− η × ∂Etotal

∂w1
= 0.12− 0.01× (−0.000197073)

= 0.120001971

(2.34)

w2, w3, and w4 can be updated by the same process. The above calculation pro-
cess is the update principle of backpropagation for all weights of the network.

2.1.2.5 Over-fitting

In the field of medical image analysis, due to the small dataset, such as just a few
patient data, it often leads to over-fitting problems in training neural networks. In
order to alleviate this problem, many new methods have been proposed as follows:

(1) Data augmentation [104] is a method to artificially create new training data
from existing training data by using affine transformations such as rotation,
scaling, and flipping and so on;

(2) Regularization is a method which makes slight modifications to the learning
algorithm such that the model generalizes better. L1 and L2 [105] regulariza-
tion are commonly used, which penalize the sum of the absolute weights and
the sum of the squared weights, respectively;
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(3) Dropout [106] is also a regularization technique that randomly drops some
units (both hidden and visible) in the neural network during the process of
training, which prevents complex co-adaptations on training data;

(4) Transfer learning [107] is a method where knowledge is transferred from one
model to another, which is achieved by loading the weights of a pre-trained
model into the current model, and keeps the framework of the pre-trained
models unchanged in the different tasks.

2.1.3 Evaluation Metrics

In order to evaluate the performance of medical image segmentation methods, many
evaluation metrics are proposed, which are mainly divided into three types: (a)
volume-based metrics such as Dice metric [94] and Jaccard similarity index [108]; (b)
surface distance-based metrics such as Hausdorff distance [109]; (c) clinical perfor-
mance metrics such as ventricular volume and mass. In this dissertation, we mainly
report the accuracy of methods in terms of the Dice metric [94] and Hausdorff dis-
tance [109], which already includes the evaluation of regions and boundaries and
can fully evaluate methods.

FIGURE 2.11: An example of 3D image matrix of prediction

Firstly, the Dice metric [94] is defined in Eq. 2.35. In the evaluation process,
the evaluation metrics is based on one patient (3D volume) rather than one image,
therefore, A3D and B3D of Eq. 2.35 are the 3D image matrix of prediction (as shown
in Fig. 2.11) and target, respectively.

Dice =
2 |A3D

⋂
B3D|

|A3D|+ |B3D|
(2.35)
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FIGURE 2.12: Hausdorff distance3

For the Hausdorff distance [109] as defined in Eq. 2.36, it is the longest distance
you can be forced to travel by an adversary who chooses a point in one of the two
sets, from where you then must travel to the other set. In other words, it is the
greatest of all the distances from a point in one set to the closest point in the other
set. It is also based on 3D space, which is the same as dice metric.

dH (X, Y) = max

{
sup
xεX

(in f
yεY

d (x, Y)), sup
yεY

(in f
xεX

d (X, y))

}
(2.36)

where X and Y denote two non-empty subsets of a metric space, sup represents the
supremum.

2.2 Attention Method

In the field of medical imaging, due to the existence of a large amount of redundant
information, the over-fitting of the network is aggravated. An important property
of the human visual system is to not process a whole scene at once. Instead, hu-
mans exploit a sequence of partial glimpses, and selectively focus on salient parts
in order to capture the visual structure in a better way [110, 111]. For this reason,
attention methods have been developed: they focus on important regions, filter ir-
relevant information, and make up the limited receptive field of CNNs. They get
good performance on segmentation tasks [112–115]. The block diagram of the at-
tention module is shown in Fig. 2.13. The attention module teaches the network to
pay attention to important features (e.g., features relevant to anatomy) and ignore
redundant features.

3https://en.wikipedia.org/wiki/Hausdorff_distance
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Attention 

mechanism

FIGURE 2.13: Block diagram of the attention module

For the attention unit in Fig. 2.13, it has been widely used for medical image
segmentation. The common attention units mainly include Channel Attention Block
(CAB), Region Attention Block (RAB), Position Attention Module (PAM), Channel
Attention Module (CAM) [116]. CAM and PAM evolved based on CAB and RAB.

Channel Attention Block (CAB): Its purpose is to select the more important chan-
nel among all input channels, which means that each channel will be given a corre-
sponding weight. The entire realization process is shown in Fig. 2.14.

c
Fc

A

C×W×H

F
C×1×1 C/16×1×1 C×1×1 C×1×1 C×W×H

Batch_dot

Global 

Average 

Poiling

FC+ReLU Sigmoid

FIGURE 2.14: Channel Attention Block (CAB)

. C, W and H denote channel, width and height, respectively.

First, CAB will use the global average pooling layer to compress the spatial in-
formation, which transforms the shape of the input feature map from C×W × H to
C× 1× 1. We assume that F = [M1, M2, M3, ..., MC] (MiεRH×W , iε[1, C]) as the input
feature maps. After the global average pooling layer, the output g is acquired by
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gi =
1

H ×W

H

∑
j=1

W

∑
k=1

Mi(j, k) (2.37)

where (j, k) denotes the spatial position.
Then g goes through two fully connected layers, which squeezes and expands

the dimensions of feature maps. Finally, CAB uses one sigmoid layer to score each
channel and get attention maps AC. The final output FC after passing CAB can be
calculated by

FC = F×AC (2.38)

Region Attention Block (RAB): It can reduce redundant information and make the
network concentrated in the target region. The entire realization process is shown in
Fig. 2.15.

R
FR

A

C×W×H

F
1×W×H C×W×H

Batch_dot SigmoidConv 1×1

1×W×H

FIGURE 2.15: Region Attention Block (RAB)

RAB focuses on spatial information, first, the number of channel is compressed
from C to 1 by one convolutional layer, then using the sigmoid layer to score each
pixel of feature maps and get attention maps AR. The final output FR after passing
RAB can be calculated by

FR = F×AR (2.39)

Position Attention Module (PAM): It is used in obtaining the similarity of pixels
at different locations. Therefore, the corresponding weight of each pixel depends on
the degree of similarity. The entire realization process is shown in Fig. 2.16.
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FIGURE 2.16: Position Attention Module (PAM)

F is fed into a convolutional, a Reshape and then a Transpose layers, result-
ing in a feature map Fu

0 ∈ R(W×H)×C. In the second branch (consider the order
from top to bottom), the input feature map F follows the same operations minus
the Transpose layer, resulting in Fu

1 ∈ RC×(W×H). Then, the Multiply and the Soft-
max layers follow; they are applied on Fu

0 and Fu
1 to obtain the spatial attention map

Au ∈ R(W×H)×(W×H). The input F is fed into a different convolutional layer in the
third branch, and is then multiplied by Au fed into the Transpose layer, resulting in
Fu

2 . Therefore the output Fu can be formulated as follows:

Fu = λ× Fu
2 + F, (2.40)

where λ ∈ RC is initialized to [0,..,0]. The values λ is used to gradually learn the
importance of the spatial attention map.

Channel Attention Module (CAM): Its purpose is mainly to discover the rela-
tionship between the different channels. The entire realization process is shown in
Fig. 2.17.
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FIGURE 2.17: Channel Attention Module (CAM)

The channel attention map Al can be obtained by different combinations of con-
volutional, Reshape and Transpose layers. Finally, the output Fl can be defined as
follows:

Fl = β× Fl
2 + F, (2.41)

where β ∈ RC is initialized to [0,..,0]. The feature map Fl
2 denotes the results of the

product of the input F with Al fed into a convolutional passing through the transpose
block.

The above attention units belong to soft attention. Soft attention is parameteriza-
tion, so it is differentiable. Therefore, we can embed it into the network framework
and train it together with other layers of the network. The gradient can be back
propagated to other parts of the network through the attention unit.

FIGURE 2.18: Soft vs Hard Attention [34]

Compared with soft attention, there must be hard soft. However, there is rel-
atively little research on hard attention by researchers. For the hard attention, we
need to select feature maps of the input by using attention scores, which means one
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problem, because we can choose one function such as argmax to finish the selection,
however, as we all know, it is not differentiable. Therefore, we can not embed it
into the network for directly training, and need to more complex methods to solve
this problem. Fig. 2.18 details the different between soft attention and hard atten-
tion. Soft attention can process everything but weights various regions differently.
Hard attention can select only a fraction of the data for processing [117]. Hard-
attention models address various use-cases, and can be motivated by interpretabil-
ity [118], reduction of high-resolution data acquisition cost [119], or computational
efficiency [120].

2.3 Conclusion

In this chapter, we have explained the fundamentals of deep learning and attention
method. These basic knowledge will facilitate the understanding of the content of
the subsequent chapters.
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Part III

Heart Segmentation Methods
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Chapter 3

Heart Data Preparation

There are many ways to preprocess medical image data before feeding into the net-
work such as data augmentation, crop, resample, centralization (subtracting mean)
and standardization (subtracting mean and then dividing standard deviation) and
so on. Although we have used data augmentation cropping and resampling during
the process of preprocessing, in this part we mainly explore the impact of centraliza-
tion and standardization on network output.

3.1 Data Preprocessing Exploration

We design a series of experiments, which are mainly based on two network frame-
works and two public datasets. These two frameworks are UNet as shown in Fig. 1.6
and an improved FCN framework [19] as shown in Fig. 3.1. These two public
datasets are MRBrainS20181 and 2018 atrial segmentation challenge2.

3.1.1 Architecture of Network
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FIGURE 3.1: Architecture of the proposed network

1https://mrbrains18.isi.uu.nl
2https://atriaseg2018.cardiacatlas.org/



46 Chapter 3. Heart Data Preparation

UNet [53]: The framework of network is shown in Fig. 1.6. The yellow part de-
notes the contracting path and the green part denotes the expansive path. For the
contracting path, it mainly includes convolutional layers and max-pooling layers.
C1, C3, C5, C7 are the repeated application of two 3×3 convolution operation with
a rectified linear unit (ReLU), and its number of filters is [32 64 128 256 512 256 128
64 32]. C2, C4, C6, C8 are the max pooling operation with stride 2, after passing
the max-pooling layer, the number of channels is doubled. For the expansive path,
it mainly includes upsampling layers, convolutional layers and concatenate layer.
After passing the upsampling layers and convolutional layers, the shape of feature
maps doubles as before, but the number of channels is halved. Then concatenating
the corresponding to feature maps from the contracting path. Finally, the output of
network is obtained by the 1×1 convolutional layer.

Improved FCN framework [19]: The network architecture is illustrated in Fig. 3.1.
The architecture is based on the 16-layer VGG network [15] pre-trained on millions
of natural images of ImageNet for image classification [16], but there is a little dif-
ference with VGG16 network that the fully connected layers of VGG16 network is
removed, and only keep the four blocks of convolutional parts called “base frame-
work”. The base framework consists of convolutional layers: zi = wi × x + bi, Recti-
fied Linear Unit (ReLU) layers for non-linear activation function: f (zi) = max(0, zi),
and max-pooling layers between two successive blocks, where x is the input of each
convolutional layer, wi is the convolution parameter, and bi is the bias term. The
three max-pooling layers divide the base network into four blocks of fine to coarse
feature maps. Inspired by the work in [17, 18], specialized convolutional layers (with
a 3× 3 kernel size) with K (e.g. K = 16) feature maps are added after the convolu-
tional layers at the end of each block. All the specialized layers are then rescaled to
the original image size, and concatenated together. A last convolutional layer with
kernel size 1× 1 is added at the end of the network. This last layer combine linearly
the fine to coarse feature maps in the concatenated specialized layers, and provide
the final segmentation result.

3.1.2 Dataset Description

MRBrainS2018: It3 provides 30 MRI scans, which contains three modalities such as
T1-weighted, T1-weighted inversion recovery and T2-FLAIR. Seven of them are re-
leased as the training dataset. Another 23 scans are kept unreleased for test dataset.
Its aim is to segment the 8 brain structure such as cortical gray matter, basal ganglia,
white matter, white matter lesions, cerebrospinal fluid in the extracerebral space,
ventricles, cerebellum and brain stem. The dataset includes same image size: 48×
240×240.

3https://mrbrains18.isi.uu.nl/
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Atrial dataset [73]: 2018 atrial segmentation challenge released 100 annotated 3D
MRIs from patients with atrial fibrillation. Its aim is to segment the left atrium.
The pixel spacing of the MR images is 0.625 x 0.625 x 0.625 mm/pixel. The dataset
includes two different image sizes: 88×576×576 and 88×640×640.

3.2 Experimental Results

For the 2018 atrial segmentation challenge dataset, based on the UNet framework,
we obtain two segmentation results by using different preprocessing method as
shown in Table. 3.1, but the difference between the two segmentation results is very
small, only 0.59% in term of dice coefficient. Based on the improved FCN frame-
work [19], for using the centralization method to preprocess the training data, the
atrial segmentation results can reach 90.96%. If changing preprocessing method to
standardization, the segmentation results do not show significant fluctuations.

TABLE 3.1: Segmentation results on the 2018 atrial segmentation chal-
lenge.

Method Preprocessing Dice/%

UNet [53]
centralization 89.86

standardization 90.45

Improved FCN framework [19]
centralization 90.96

standardization 90.03

We continue to experiment on the MRBrainS2018 dataset, which is different from
the previous experiment because it is a multi-classification task rather than a binary
classification task. The experimental results are shown in Table. 3.2. Based on the
improved FCN framework [19], the segmentation results of 8 brain structures are
obtained, although the segmentation results of white matter lesions and brain stem
exist certain fluctuations for different preprocessing method, the segmentation re-
sults of another 6 structures remain stable. Therefore, these experiments does not
indicate which preprocessing method is better. So we conducted another supple-
mentary experiment.
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TABLE 3.2: Segmentation results using the improved FCN frame-
work [19] on the MRBrainS2018.

Segment labels
Dice/%

centralization standardization

Cortical gray matter 85.30 84.96
Basal ganglia 79.02 80.92
White matter 84.68 84.43

White matter lesions 61.3 58.66
Cerebrospinal fluid in the extracerebral space 84.1 84.81

Ventricles 93.89 94.55
Cerebellum 91.84 91.63
Brain stem 86.11 83.97

As we all know, noise is everywhere. To evaluate the quality of a network, anti-
noise is also one of the indicators, so we continue to explore the sensitivity of the net-
work to noise for different preprocessing methods. In order to add different noises
to the original image, we use a python library called imgaug4, which can help user
with augmenting images for machine learning projects. We mainly use functions
AdditiveGaussianNoise() and SaltAndPepper() of imgaug library. For the AdditiveGaus-
sianNoise(), if user wants to add gaussian noise to an image, it will sample once per
pixel from a normal distribution N(0, s), where s is sampled per image and varies
between 0 and s ∗ 255 as follows:

import imgaug . augmenters as i a a
aug = i a a . AdditiveGaussianNoise ( s c a l e =(0 , s ∗2 5 5 ) )

For the SaltAndPepper(), it means that replaces p such as 10% of all pixels with
salt and pepper noise as follows:

import imgaug . augmenters as i a a
aug = i a a . SaltAndPepper ( p )

For adding the gaussian noise to images, as shown in Fig. 3.2, we change the pa-
rameter s of function AdditiveGaussianNoise() from 0.01 to 0.09. As s increases, there
is more and more noise in the image. For adding the salt and pepper noise, we test
the network based on the parameter p of function SaltAndPepper() in two different
orders of magnitude, which is from 0.01 to 0.09 and from 0.001 to 0.009, respectively.
As can be seen in Fig. 3.3, the same phenomenon occurs as when Gaussian noise is
added, i.e., as the parameter p increases, the noise becomes stronger.

4https://imgaug.readthedocs.io/en/latest/
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(a) s=0.01 (b) s=0.02 (c) s=0.03

(d) s=0.04 (e) s=0.05 (f) s=0.06

(g) s=0.07 (h) s=0.08 (i) s=0.09

FIGURE 3.2: Adding gauss noise to the original image

(a) p=0.01 (b) p=0.02 (c) p=0.03

FIGURE 3.3: Adding salt and pepper noise to the original image
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(a) p=0.04 (b) p=0.05 (c) p=0.06

(d) p=0.07 (e) p=0.08 (f) p=0.09

(g) p=0.001 (h) p=0.002 (i) p=0.003

(j) p=0.004 (k) p=0.005 (l) p=0.006

FIGURE 3.3: Adding salt and pepper noise to the original image
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(a) p=0.007 (b) p=0.008 (c) p=0.009

FIGURE 3.3: Adding salt and pepper noise to the original image

As shown in Fig. 3.4, it shows the sensitivity of networks to noise for different
preprocessing methods on the 2018 atrial segmentation challenge. For the Fig. 3.4(a)
and Fig. 3.4(b), facing gauss noise, there is a clear distinction when s = 0.04. If
s < 0.04, the dice coefficient fluctuates less, but s > 0.04, the dice coefficient drops
sharply, which is an overall trend no matter what kind of preprocessing method.
However, from the overall trend, the dice coefficient based on standardization de-
creases more slowly than centralization. For the Fig. 3.4(c) and Fig. 3.4(d), facing
salt and pepper noise, there is an obvious difference to the Gaussian noise. Their
changing trends are the concave function, which denotes that the dice coefficient
always drops sharply. In the Fig. 3.4(c), standardization is significantly better than
centralization in term of anti-noise. In the Fig. 3.4(d), standardization is still better
than centralization between p=0.02 and p=0.06, but finally, they approach a very low
dice coefficient and the dice coefficient of standardization is always higher than the
centralization.

We continue to explore different network whether different networks have dif-
ferent sensitivity to noise. Compared Fig. 3.4(a) and Fig. 3.4(c) with Fig. 3.4(b) and
Fig. 3.4(d), for the same parameter s and p, the dice coefficient based on UNet is al-
ways higher than the improved FCN framework [19], therefore, different networks
have certain differences in sensitivity to noise.
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(a) Based on the improved FCN frame-
work [19]

(b) Based on UNet

(c) Based on the improved FCN frame-
work [19]

(d) Based on Unet

FIGURE 3.4: The sensitivity of networks to noise for different prepro-
cessing methods on the 2018 atrial segmentation challenge

The 2018 atrial segmentation challenge dataset is only binary segmentation task,
so we continue to choose one different dataset that belongs to multi-class segmen-
tation task. As shown in Fig. 3.5, it shows the sensitivity of the improved FCN
framework [19] to noise for different preprocessing methods on the MRbrains2018
dataset. For Fig. 3.5, to facilitate the summary of the trend, the dice coefficient de-
notes the mean value of segmentation results of 8 brain structures. No matter what
kind of noise, the dice coefficient based on standardization is always higher than the
centralization. For the multi-class segmentation task, facing to the standardization
preprocessing method, the relationship between dice coefficient and noise is approx-
imately linear.
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(a) (b)

FIGURE 3.5: The sensitivity of the improved FCN framework [19]
to noise for different preprocessing methods on the MRbrains2018

dataset

According to Fig. 3.4 and Fig. 3.5, we can make one conclusion that, for differ-
ent preprocessing methods, the sensitivity of networks to noise is different. The
standardization makes the network more anti-noise as the noise increases than the
centralization.

Fig. 3.6 and Fig. 3.7 denote the 3D segmentation results of one sample based
on the improved FCN framework [19] for different preprocessing methods. For the
same parameter s, the integrity of left atrial segmentation based on the standardiza-
tion is better than the centralization.

Fig. 3.8 and Fig. 3.9 illustrate the 3D segmentation results based on UNet for
different preprocessing methods. There is one same phenomenon as Fig. 3.6 and
Fig. 3.7 when the parameter s is same, which is that using the standardization can
get better integrity of left atrial segmentation than the centralization. In Fig. 3.8,
the surface of the segmentation results is smoother than the segmentation results of
Fig. 3.9, which also explains that the standardization preprocessing method makes
the network more robust to noise than the centralization.
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(a) s=0.02 (b) s=0.04

(c) s=0.06 (d) s=0.09

FIGURE 3.6: The 3D segmentation results based on the improved
FCN framework [19] for standardization

(a) s=0.02 (b) s=0.04

(c) s=0.06 (d) s=0.09

FIGURE 3.7: The 3D segmentation results based on the improved
FCN framework [19] for centralization
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(a) s=0.02 (b) s=0.04

(c) s=0.06 (d) s=0.09

FIGURE 3.8: The 3D segmentation results based on UNet for stan-
dardization

(a) s=0.02 (b) s=0.04

(c) s=0.06 (d) s=0.09

FIGURE 3.9: The 3D segmentation results based on UNet for central-
ization



56 Chapter 3. Heart Data Preparation

3.3 Conclusion

In this chapter, we have explored the impact of different preprocessing methods on
the output of network. We have seen that using the standardization preprocessing
method makes the network more robust to noise than the centralization method,
and different networks have different sensitivity to noise. Therefore, we will choose
standardization as our preprocessing method to process the dataset.
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Chapter 4

Two-stage Segmentation Method

For medical images, in addition to the object regions, there are a large number of
background regions, which affects the segmentation accuracy. Therefore, in this
chapter, we first localize roughly the object to reduce the influence of the back-
ground, and then crop the object regions to segment.

4.1 Methodology

4.1.1 Overview of Network Architecture

The global overview of our A0Net consists of two parts (localization and segmenta-
tion) as depicted in Fig. 4.1, and the architecture of our networks in Fig. 4.2. The first
part (the “localization network”) is used to localize roughly the object position. The
second part is devoted to segment the object (the “segmentation network”).
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FIGURE 4.1: Global overview of the proposed method (A0Net).
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FIGURE 4.2: Architecture of our networks. Block 1 and Block 2 corre-
spond to the components of Net.1 and Net.2 of Fig. 4.1, respectively.
Because the role of Net.1 is only to roughly locate the target, using
Block 1 instead of Block 2 can both reduce model parameters and
improve the speed of model prediction. N denotes the number of

feature map.

4.1.2 Localization Network

The localization network (Net.1) is depicted in Fig. 4.2. The black dotted box Block
1 is dedicated to the localization network, it can be replaced by Block 2 to become
the segmentation network (Net.2). For Net.1 and Net.2, the difference concerns only
Block 1 and Block 2 as shown in Fig. 4.2, while the other components of the archi-
tecture are the same. Block 1 consists of one convolutional layers with 256 or 512.
First, we rely on the original VGG16 [15] network architecture, pre-trained on mil-
lions of natural images of ImageNet for image classification [16]. We then discard its
fully connected layers to keep only the sub-network made of five convolution-based
“stages” (the base network). Each stage is made of two convolutional layers, a ReLU
activation function, and a max-pooling layer. Since the max-pooling layers decrease
the resolution of the input image, we obtain a set of fine to coarse feature maps (with
5 levels of features). Inspired by the works in [17–20], we added specialized convo-
lutional layers (with a 3×3 kernel size) with K (e.g. K = 16) feature maps after the
up-convolutional layers placed at the end of each stage. The outputs of the special-
ized layers show the same resolution than the input image, and are concatenated
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together. We add a 1×1 convolutional layer at the output of the concatenation layer
to linearly combine the fine to coarse feature maps 1.

4.1.3 Segmentation Network

As mentioned above, we replace Block 1 of Net.1 with Block 2, which becomes the
segmentation network (Net.2). Because the role of Net.2 is mainly to obtain accu-
rate segmentation results, we use Block 2 that is more complicated than Block 1 in
Fig. 4.2. It can capture the global information and decrease the effect of surrounding
similar tissues. Block 2 consists of three convolutional layers with 256 or 512 dilated
(dilation = 2) [21] 3×3 filters, and one layer of concatenation.

4.1.4 Hybrid Loss

To obtain high quality regional segmentation and nice boundaries, we define ` as a
hybrid loss: ` = λ1`CCE + λ2`SSIM + λ3`DC, where `CCE, `SSIM and `DC respectively
denote CCE loss [22], SSIM loss [23] and DC loss [24] respectively, λ1 = λ2 = λ3 = 1.

CCE [22] loss is commonly used for multi-class classification and segmentation.
It is defined as:

`CCE = − ∑C
i=1 ∑H

a=1 ∑W
b=1 yi

(a,b) ln y∗i
(a,b), (4.1)

where C is the number of classes of each image, H and W are the height and width of
image, yi

(a,b) ∈ {0, 1} is the ground truth one-hot label of class i in the position (a, b)
and y∗i

(a,b) is the predicted probability of class i.
SSIM loss can assess image quality [23], and can be used to capture the structural

information, which will decrease the mis-segmentation rate of surrounding similar
tissues. Therefore, we integrated it into our training loss to learn the differences be-
tween the segmented domain and similar tissues around the segmented domain. Let
S and G be the predicted probability map and the ground truth mask respectively,
the SSIM of S and G is defined as:

`SSIM = 1 − (2µSµG + C1)(2σSG + C2)

(µ2
S + µ2

G + C1)(σ2
S + σ2

G + C2)
, (4.2)

where µS, µG and σS, σG are the mean and standard deviations of S and G respec-
tively, σSG is their covariance, C1= 0.012 and C2= 0.032 are used to avoid a division
by zero.

DC [24] loss is used to measure the similarity between two sets as defined in
Eq. 2.36. But for the multi-class segmentation task, Eq. 4.3 is not suitable due to the
class imbalance problem in such cases. Therefore, we extend the definition of the
DC loss to multi-class segmentation in the following manner:

dicei = (ε + 2 ∑Ni
n=1 yi

n y∗i
n) / (ε + ∑Ni

n=1 (y
i
n + y∗i

n)) (4.3)

1Note that we designed our network’s architecture to work with any input shape.
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(a) (b)

(c) (d) (e)

FIGURE 4.3: Gaussian-like attention (GA). (a) Original image. Red
rectangle denotes segmented object, and yellow ellipse denotes sim-
ilar tissues. (b) Gaussian-like attention image of (a) by using Eq. 4.5.
(c) The cropped image after locating the segmented object (red rect-
angle). (d) The image of the Gaussian-like weighted function (ωGA).

(e) The image after blending (c) and (d).

`DC = 1 − ∑C
i=1 dicei/ (Ni + ε), (4.4)

where Ni denotes the numbers of class i and ε is a smooth factor.

4.1.5 Gaussian-like Attention (GA)

Fig. 4.3(a) is an example from the MICCAI 2019 left ventricle (LV) Full Quantifica-
tion Challenge dataset2 (LVQuan19) [74, 75]. The red box denotes the object domain,
here the left ventricle. A large number of similar tissues are around it, highlighted
by the yellow ellipses. As shown in Fig. 4.7, the similar tissues can lead to mis-
segmentation. Even after a localization procedure, these tissues are still present. An
idea to decrease their impact on segmentation results is to get inspired by the biolog-
ical visual system, which concentrates on certain image regions requiring detailed
analysis [121]. We define the GA as: IGA(a, b) = I(a, b)ωGA(a, b), where I(a, b) de-
notes the image intensity at location (a, b) and ωGA(a, b) is a Gaussian-like weighted
function defined by

ωGA(a, b) = α exp−|
(a,b)−(a∗ ,b∗)

δ |β (4.5)

where (a∗, b∗) denotes the object center, α is a normalization constant, δ is a scale
parameter, and β is a shape parameter. As shown in Fig 4.4, when we keep the

2https://lvquan19.github.io

https://lvquan19.github.io
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(a) β=0.5 (b) β=1 (c) β=2

FIGURE 4.4: Different β.

rest of the parameters unchanged, the change in β leads to a change in the range of
attention.

As shown in Fig 4.5, we use temporal information, therefore, in order to cooper-
ate with the operation of temporal information, we refine the normalization constant
α at Eq. 4.12 by Hamming window at Eq. 4.6 and Hanning window at Eq. 4.8.

κ(p) = a0 − (1− a0) · cos
(

2π · p
H − 1

)
, 0 ≤ p ≤ H − 1 (4.6)

where a0 = 0.53836 because of Hamming windows. H denotes height.

A(p) =
[
κ(0), · · · , κ(p), · · · , κ(H − 1)

]
H×1

(4.7)

ν(q) = 0.5 · cos
(

2π · q
W − 1

)
, 0 ≤ q ≤ W − 1 (4.8)

where W denotes width.

B(q) =




ν(0)
...

ν(q)
...

ν(W − 1)




1×W

(4.9)

Θ(a, b) = exp−|
(a,b)−(a∗ ,b∗)

δ |β (4.10)

C(a, b) =




Θ(1, 1) · · · Θ(1, W)
... · · · ...

Θ(H, 1) · · · Θ(H, W)




H×W

(4.11)

α =
A(p)B(q)

∑H
a=1 ∑W

b=1 A(p)B(q)
⊗

C(a, b)
(4.12)
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δ =
H + W

2
(4.13)

Because the cropped image size constantly changes after locating, δ is used for de-
creasing the impact of image size.

If IGA(a, b) is directly applied on each original image, the object of interest would
probably be missed. Therefore, we first must find the region of interest; and then
use IGA(a, b) to focus on the object. This procedure is depicted in Fig. 4.3(e), where
similar tissues are clearly less important compared to Fig. 4.3(c).

4.2 Experimental Results

4.2.1 Dataset Description

We evaluated our method on four datasets: LVQuan19, the MICCAI Workshop on
Whole-Heart and Great Vessel Segmentation from 3D Cardiovascular MRI in Con-
genital Heart Disease3 (HVSMR16), Multi-Modality Whole Heart Segmentation 4

(MM-WHS2017) and MICCAI 2018 Atrial Segmentation Challenge 5 (AtriaSeg18).
The aim of LVQuan19 is to segment the myocardium of the left ventricle and esti-
mate a set of clinical significant LV indices such as regional wall thicknesses, cavity
dimensions, and cardiac phase and so on. It contains the processed SAX MR se-
quences of 56 patients. For each patient, 20 temporal frames are given and cover a
whole cardiac cycle. All ground truth (GT) values of the LV indices are provided
for every single frame. The pixel spacings of the MR images range from 0.6836
mm/pixel to 1.5625 mm/pixel, with mean values of 1.1809 mm/pixel. The LV
dataset includes two different image sizes: 256×256 or 512×512 pixels. The aim
of HVSMR16 [71] is to segment myocardium and blood pool, it contains 10 train-
ing cardiovascular magnetic resonance (CMR) scans. For each patient, three kinds
of images were provided: the full-volume axial images, the cropped axial images
around the heart and thoracic aorta, and the cropped short axis reconstruction. In
the current work, we only use the full-volume axial images. The slice spacings of
the full-volume axial images range from 0.65 mm/pixel to 1.15 mm/pixel, while in-
plane resolution ranged from 0.73 mm/pixel to 1.15 mm/pixel. The average sizes:
387×387×165 pixels. MM-WHS2017 [72] aims to segment 7 substructures of the
whole heart. Although it contains 20 cardiac MRI and 20 CT images, we only use the
MRI modality. The slice spacings of MRI volume range from 0.899 mm/pixel to 1.60
mm/pixel, while in-plane resolution ranged from 0.78 mm/pixel to 1.2 mm/pixel.
The average sizes: 324×325×171 pixels. AtriaSeg18 aims to segment the left atrium
and contains 100 annotated 3D MRIs from patients with atrial fibrillation. The voxel

3http://segchd.csail.mit.edu/index.html
4http://www.sdspeople.fudan.edu.cn/zhuangxiahai/0/mmwhs17/index.html
5http://atriaseg2018.cardiacatlas.org/
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size of the MR images is 0.625× 0.625× 0.625 mm. The dataset includes two differ-
ent image sizes: 88×576×576 pixel and 88×640×640 pixel.

4.2.2 Preprocessings

Since the VGG-16 network’s input is an RGB image, we propose to take advantage
of the temporal information by stacking 3 successive 2D frames: to segment the nth

slice, we use the nth slice of the MR volume, and its neighboring (n− 1)th and (n +

1)th slices, as green, red and blue channels, respectively. This new image, named
“temporal-like” image, enhances the area of motions, here the heart, as shown in
Fig. 4.5.

Let us remind what we call Gauss normalization: for each (2D + t)-image I corre-
sponding to a given patient, we compute I := (I − µ)/σ where µ is the mean of I
and σ its standard deviation (σ is assumed not to be equal to zero). There are then
two different pre-processing steps as depicted in Fig. 4.1.

1) The first pre-processing (see Prepro.1 in Fig. 4.1) begins with a Gauss normal-
ization. Then, for each n, we created the width×height×3 pseudo-color (“temporal-
like”) image where R, G, B correspond respectively to the n− 1, n, n + 1 frames and
we concatenate them.

2) The second pre-processing (Prepro.2 in Fig. 4.1) follows five steps: (1) data
augmentation using rotations and flips for the LVQuan19 dataset (only for the train-
ing phase), but it is not used on the HVSMR16, MM-WHS2017 and AtriaSeg18
dataset, (2) resizing with a fixed pixel-spacing (0.65mm), (3) GA, (4) Gauss nor-
malization, and (5) pseudo-color concatenated image like above. Such a use of a
pseudo-color image in the context of 3D medical imaging has been proven effective
in [122] to segment brain structures and in [123] to extract white matter hyperinten-
sities in brain volumes.

4.2.3 Postprocessing

Let us assume that we crop an initial volume of T frames of size T×W×H into
an image of size T×w×h (where the crop is due to the localization procedure, and
W and H are the initial width and height of a slice). After Prepro.2 we obtain a
T×w×h×3 image. Then we filter the ouput of the segmentation network, of size
T×w×h, by keeping only the greatest connected component, in order to get back
the initial pixel-spacing. Finally, we add a padding of zeros to get back a T×W×H
image.

4.2.4 Implementation and Experimental Setup

We implemented our experiments on Keras/TensorFlow using a NVidia Quadro
P6000 GPU. For the localization network, we used the multinomial logistic loss func-
tion for a one-of-many classification task, passing real-valued predictions through a
softmax to get a probability distribution over classes. We used an Adam optimizer
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(a) Slice n− 1. (b) Slice n. (c) Slice n + 1.

(d) RGB concatenation at n.

FIGURE 4.5: Illustration of our “temporal-like” procedure.

(batchsize = 1, β1 = 0.9, β2 = 0.999, ε = 0.001, lr = 0.002) and we did not use learn-
ing rate decay. We trained the network during 10 epochs. For this step, we merged
all the classes into the object class to obtain a binary segmentation. For the segmen-
tation network, we used the same optimizer and parameters detailed previously.
We used the hybrid loss as loss function. For this task, we considered three differ-
ent classes (background, myocardium, cavity) for LVQuan19, three different classes
(background, myocardium, blood pool) for HVSMR2016 and eight different classes
(background, myocardium, left atrium, left ventricle, right atrium, right ventricle,
ascending aorta and pulmonary artery) for MM-WHS2017.

4.2.5 Evaluation Methods

Three measures are used to evaluate our method: DC given in Eq. 2.36, 95% in the
Hausdorff distance (95HD) [124] and Boundary of Dice Coefficient (BDC) to quanti-
tatively evaluate the boundaries. As many diseases appear in the myocardium wall,
we chose to quantitatively evaluate the precision of the segmentation on boundaries.

Fig. 4.6 shows the illustration of BDC procedure. For the BDC evaluation method,
given a segmentation map M, we first convert the class i to a binary mask, Mi

bm.
Then, we obtain the mask of class i of its one pixel wide boundary by conducting
an XOR(Mi

bm, Mi
erd) operation where Mi

erd is the eroded binary mask of Mi
bm. The

same method is used to get the GT mask boundaries, Mi
g. Then the DC is calculated

on the boundaries of the GT and segmentation masks to obtain the BDC.
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FIGURE 4.6: Illustration of BDC procedure.

4.2.6 Ablation Study

TABLE 4.1: Ablation study; Dice values are for the myocardium.

Ablation Configurations DC/% 95HD BDC

Architecture
a: B. + `CCE 84.15 3.186 0.269
b: B. + L. + `CCE [20] 86.68 2.209 0.281
c: BLP + `CCE 87.74 2.019 0.303

Loss

d: BLP + `SSIM 87.30 2.094 0.297
e: BLP + `DC 87.11 2.193 0.295
f: BLP + `CD 87.53 2.071 0.300
g: BLP + `CS 87.77 2.043 0.303
h: BLP + `CSD 87.87 1.912 0.305

A0Net (our method) i: BLP + GA + `CSD 87.93 1.826 0.306

UNet [53] - 86.20 3.976 0.291

“B.” means “baseline” (Net.1) [125, 126]; “L.” means “localization”; “P.” means “Block 2”(Net.2);
“BLP” means “baseline + localization + P”.
Note: `CD = `CCE + `DC; `CS = `CCE + `SSIM; `CSD = `CCE + `SSIM + `DC.
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image

(c) `CCE (d) `SSIM (e) `DC

(f) `CD (g) `CS (h) `CSD

(i) A0Net GT

FIGURE 4.7: The comparative results trained with our A0Net on dif-
ferent losses.
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FIGURE 4.8: Box plots of dice scores for the 56 patients. The red dot-
ted line represents the average value, and a, b, c, etc. on the abscissa

correspond to the methods of Tbl. 4.1

FIGURE 4.9: Box plots of 95HD for the 56 patients. The red dotted
line represents the average value, and a, b, c, etc. on the abscissa

correspond to Tbl. 4.1
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To validate the influence of each component used in our method, we conducted the
ablation study that includes three parts (architecture, loss and GA) on the LVQuan19
dataset with 5-fold cross-validation. Results are shown in Tbl. 4.1. Architecture ab-
lation: To demonstrate the effects of our A0Net, we compared the results of our
method with other related frameworks. We took a network used in our previous
works [125, 126] as baseline network (Net.1). First, we added a localization mod-
ule (as shown in Fig. 4.1) based on the baseline; with this module, we obtained a
mean improvement of 1.89% in terms of DC, 0.9772 on 95HD, which meant that re-
ducing the proportion of the background in the image is beneficial to improve seg-
mentation accuracy. This architecture was the one we presented for the Challenge
LVQUAN19 [20]. Further, we added the Block 2 module, so Net.1 was changed
to Net.2 (Baseline+Block2) as shown in Fig. 4.2. We learned from our comparison
results that, when using dilated convolution and capturing the global information
in the feature maps of high level, we could refine the segmentation results, which
meant further improvement of 1.70% in terms of DC, 0.1893 on 95HD. Loss abla-
tion: To prove the effects of our hybrid loss, we conducted comparative experi-
ments over different losses based on our method. The results in Tbl. 4.1 illustrate
that the proposed hybrid loss helps to improve the performance, and, compared
with other combinations, that loss function based on three-level hierarchy (pixel-,
patch- and map-level) can fully guide the network to study the transformation re-
lationship between the input image and the corresponding label. GA ablation: As
shown in Fig. 4.7, without GA, the surrounding similar tissues are mis-segmented,
meaning that the segmentation results are disturbed by these similar tissues, and
mis-segmented parts are connected to the ground truth, which is very difficult to
remove. Therefore, by using our GA module, we decrease the impact of the sur-
rounding similar tissues, and the segmentation results are better.

λ ablation To explore the influence of the proportionality coefficient λ of the hy-
brid loss on the segmentation results, we continued to conduct the λ ablation study,
and its results were shown in Tbl. 4.2. As shown in the Tbl. 4.2, if the proportionality
coefficient λ1 = λ2 = λ3 = 1, the segmentation results will be best. Compared with
the Tbl. 4.1, no matter what the proportionality coefficient is, the 95HD is still around
1.85, which verifies that the proposed hybrid loss can preserve more boundary de-
tails than a single loss. If added a higher weight to any one of the three loss functions
of the hybrid loss, or added a higher weight to any two of the three loss functions,
the 95HD is lower than unweighted hybrid loss, which meant that in different level
hierarchy, it is best not to bias against a certain level hierarchy.

Statistical analysis Fig. 4.8 shows the box plots of the evaluation on different
framework configurations for dice scores. Compared with others configurations,
the segmentation results obtained by our method (configuration:i) have a small stan-
dard deviation, which shows that our method is more stable on region segmentation.
Fig. 4.9 shows the box plots of the evaluation for 95HD. Compared with others con-
figurations, based on the median quantile of box plots and the average of 56 patients,
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TABLE 4.2: Ablation study on the proportionality coefficient λ of the
hybrid loss

λ1 λ2 λ3 DC/% 95HD BDC

1 1 1 87.93 1.826 0.306

1 1 2 87.34 1.839 0.290
2 1 1 87.18 1.912 0.291
1 2 1 87.32 1.848 0.294

Average 87.28 1.866 0.292

1 2 2 87.20 1.876 0.285
2 1 2 87.13 1.879 0.287
2 2 1 87.04 1.891 0.288

Average 87.12 1.882 0.287

1 2 3 87.25 1.898 0.289
1 3 2 87.24 1.892 0.292
2 1 3 87.28 2.064 0.294
2 3 1 87.16 1.889 0.293
3 1 2 87.09 1.928 0.289
3 2 1 87.20 1.851 0.289

Average 87.20 1.920 0.291

most of the values of our method are low, which shows that our method optimizes
the boundary quality.

Fig. 4.10 shows several localization and segmentation results of our A0Net on
LVQuan19. Fig. 4.10a indicates that we started with finding the smallest rectangu-
lar box for each slice of the patient’s heart, ensuring that each box contained the
segmentation object. Then we found the biggest rectangular box on the basis of
these smallest rectangular boxes; and based on its shape, we cropped a new 3D vol-
ume from the original 3D volume as shown in the segmentation module of Fig. 4.1.
Thanks to the localization results of Fig. 4.10a, we knew that the object was con-
tained in/by the box, which greatly increased the proportion of objects in the image
and reduced class imbalance. Fig. 4.10b compares ground truth and prediction, and
we can see that the differences mainly are near the boundaries.
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(a) Some localizations of the LV (in blue) of the 9th patient. The red dotted box denotes that we extend next to the
box by a size equal to 10 pixels to ensure that the whole LV is included into the bounding box.

FIGURE 4.10: Localization and segmentation of our A0Net on
LVQuan19.
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(b) Different comparisions between ground truth and prediction corresponding to
(a); yellow denotes the difference.

FIGURE 4.10: Localization and segmentation of our A0Net on
LVQuan19.
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4.2.7 Comparison with State-of-the-Art Methods

TABLE 4.3: Comparison of the proposed method and other chal-
lengers on the HVSMR16 training dataset.

Method DC of myocardium
Computation
time

Datasets
Data

augm.

A0Net (our method) 0.826±0.038 < 2s Full-volume No
Best [127] 0.825±0.042 > 12s Cropped axial Yes

Second-best [128] 0.80±0.06 41.5±14.7s Cropped axial Yes
D.-S. 3D FCN [129] 0.726 2.5min Cropped axial Yes

Rahil [130] 0.69 - Cropped axial No
Maria [131] 0.74±0.09 - Full-volume No

3D U-Net [132] 0.694±0.076 - Cropped axial Yes
VoxResNet [133] 0.774±0.067 - Cropped axial Yes

Note: Red: best; Blue: second-best.

We compare the proposed method with other challengers on HVSMR16 training
dataset with 10-fold-cross-validation. The best and second-best methods of HVSMR16
challenge both use only the cropped axial or cropped short axis reconstruction im-
ages rather than full-volume axial images as in the training dataset. The cropped
axial images are equivalent to our localization results. To ensure that the whole seg-
mented domain is included in our localization result, we enlarged the crop area by
taking 10 supplementary pixels. Our segmentation results are obtained based on the
full-volume axial images without data augmentation unlike the two first methods.
As shown in Tbl. 4.3, our segmentation results on myocardium are better than the
best method of the HVSMR16 challenge. For an entire 3D volume, our computa-
tional time for the entire pipeline is clearly less than other methods.
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(a) Some localization results in one scan.

(b) 3D visualization of the segmentation results in one scan. Left: ground truth, Right: prediction.

FIGURE 4.11: Localization and segmentation of our A0Net on
HVSMR16. Green denotes the segmentation results of myocardium.
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(c) Some segmentation results in one scan corresponding to (a).

FIGURE 4.11: Localization and segmentation of our A0Net on
HVSMR16. Green denotes the segmentation results of myocardium.

TABLE 4.4: Comparison of our method and other challengers on the
MM-WHS2017 MRI training dataset for segmenting the myocardium.

Method DC (train) DC (test) Computation time Data augmentation

Our (best) 0.851 - < 2s No
Best [134] 0.796 0.781 < 2min & > 2s No

Second-best [135] 0.752 0.778 - Yes
UB2 [136] - 0.811 - Yes

3D U-Net [137] 0.720 0.791 - Yes
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(a) Some localization results in one patient.

(b) Seven structures of the whole heart. Myo: myocardium, LA: left atrium, LV:
left ventricle, RA: right atrium, RV: right ventricle, AO: ascending aorta, PA: pul-
monary artery.

FIGURE 4.12: Localization and segmentation of our A0Net on MM-
WHS2017.
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(c) Some segmentation results in one patient corresponding to (a).

FIGURE 4.12: Localization and segmentation of our A0Net on MM-
WHS2017.

We continued to test our method on the MM-WHS2017 challenge with 5-fold
cross-validation and we obtained segmentation results for each class. As we focus
on the myocardium segmentation, we will only present our results for this structure.
For the comparison with state-of-the-art methods, we choose to compare our results
with the results of the first and second prizes of the challenge, who respectively get
dices of 0.87 and 0.863 in average for all classes. We reported their results on the
training and on the testing sets. We also add a comparison with a late submission on
the testing set only (scores on the training dataset are not available), having the best
actual score of the challenge [136, 138]. As shown in Tbl. 4.4, compared with the first
and second prizes of the MM-WHS2017 challenge, without using data augmenta-
tion, our method outperformed them for the segmentation of the myocardium of the
left ventricle. Furthermore, our method needs less time to compute the prediction,
which further validates the results in LVQuan19. Fig. 4.12 shows some localization
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and segmentation results. Concerning the whole heart segmentation, the class im-
balance causes a lot of damage without the localization module, because the seven
structures of the heart do not always appear at the same time in a slice of the same
3D volume of a same patient. Without the GA module and Block 2, the network can
confuse one class with another: the RA can be confused with the RV, the LV can be
confused with the LA, and so on. Accordingly, a good segmentation requires to cap-
ture the global information by dilated convolutions and to enhance contrast using
the GA module.

Finally, we tested our method on the AtriaSeg18 challenge with 5-fold cross-
validation and we obtained segmentation results for left atrium (see Fig. 4.13). We
got dice of 0.894 for localization and 0.904 for segmentation. Compared with the
results of localization, the segmentation results only obtained a mean improvement
of 1%. Therefore, our method is better on small dataset.

(a) Some localization results in one scan.

FIGURE 4.13: Localization and segmentation of our A0Net on Atri-
aSeg18.
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(b) Some segmentation results in one patient corresponding to (a). Red denotes the difference between
ground truth and prediction

FIGURE 4.13: Localization and segmentation of our A0Net on Atri-
aSeg18.

4.3 Conclusion

In this chapter, we propose a new single-minded attention network framework,
A0Net, and present a new hybrid loss for boundary-aware segmentation. A0Net is
able to prevent the interferences of surrounding similar tissues, while the hybrid loss
guides it at several levels. Both generate a better capture not only of large-scale in-
formation but also of fine structures to produce segmentations with nice boundaries.
The computation time of the entire pipeline is less than 2 seconds on Quadro P6000
GPU for an entire 3D volume and the proposed model size is about 122 MB, mak-
ing it usable for clinical practice. However, the proposed two-stage segmentation
method is not one end-to-end segmentation method, we need to train the localiza-
tion network and the segmentation network separately. Otherwise, the localization
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accuracy would affect the segmentation accuracy. Therefore, one end-to-end seg-
mentation is required.
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Chapter 5

End-to-end Segmentation Method

In the chapter 4, we have proposed two-stage method to segment heart, but it is not
end-to-end segmentation method. In this chapter, we want to replace the localization
of the chapter 4 with an attention module, in order to achieve end-to-end trainable
segmentation method to obtain higher segmentation accuracy.

5.1 Methodology

5.1.1 Architecture of Network
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FIGURE 5.1: Architecture of our networks.

We propose a new attention network (see Fig. 5.1) using ResNet-101 pretrained on
ImageNet [25] to compute feature maps. We discard its average pooling and fully
connected layers, and keep only the sub-network made of one convolution-based
and four residual-based “stages”. Since the resolution decreases at each stage, we
obtain a set of fine to coarse feature maps (with five levels of features).We add spe-
cialized convolutional layers (with a 3×3 kernel size) with K (e.g. K = 16) feature
maps placed at the end of four residual-based “stages”. They are concatenated to-
gether after up-convolutional layers. These last feature maps are combined with
each of the outputs of the specialized layers, and then fed into the attention module
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to generate the attention features. Finally, we concatenate the attention features with
the outputs of Conv1 and we fed them into the softmax layer.
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FIGURE 5.2: Attention Module. λ, λ′, β and β′ as hyperparame-
ters, which is trained like the convolutional kernel. They decrease

the weight of the unimportant feature maps.

5.1.2 Attention Module

As mentioned before, in a traditional segmentation model, the usual issue is that re-
ceptive fields are too small, which leads to poor contextual representations. Further-
more, the relationship between the different channels should be explored since each
channel map represents one feature-specific response. Therefore, improving the de-
pendencies among channel maps can lead to richer features. To solve these issues,
we use an attention module inspired by [26]. As shown in Fig. 5.2, F ∈ RC×W×H acts
as an input feature map for the attention module, where C, W, H are the channel,
the width and the height of the feature map respectively. The upper branch F is fed
into a convolutional, a Reshape and then a Transpose layers, resulting in a feature
map Fu

0 ∈ R(W×H)×C. In the second branch (consider the order from top to bottom),
the input feature map F follows the same operations minus the Transpose layer, re-
sulting in Fu

1 ∈ RC×(W×H). Then, the Multiply and the Softmax layers follow; they
are applied on Fu

0 and Fu
1 to obtain the spatial attention map Au ∈ R(W×H)×(W×H).

The input F is fed into a different convolutional layer in the third branch, and is then
multiplied by Au fed into the Transpose layer, resulting in Fu

2 . Therefore the output
Fu of the upper branch can be formulated as follows: Fu = λ× Fu

2 + β× F, where
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λ ∈ RC is initialized to [0,..,0], and β ∈ RC is initialized to [1,..,1]. The values λ and
β are used to gradually learn the importance of the spatial attention map.

In the lower branch, the attention module mainly focuses on the most important
channels. The channel attention map Al can be obtained by different combinations
of convolutional, Reshape and Transpose layers as shown at the bottom of Fig. 5.2.
Finally, the output Fl of the lowest branch can be defined as follows: Fl = λ′× Fl

2 +

β′× F, where λ′ ∈ RC is initialized to [0,..,0], and β′ ∈ RC is initialized to [1,..,1]. The
feature map Fl

2 denotes the results of the product of the input F with Al fed into a
convolutional passing through the transpose block. Therefore, the attention feature
map Fa is defined as:

Fa = Conv (Fu) + Conv
(

Fl
)

. (5.1)

Compared with [26], our proposed attention module is different with it. Firstly,the
final outputs of Position Attention Module (PAM) and Channel Attention Module
(CAM) are differently defined. In our method, as shown in Fig. 5.2, the final output
of PAM is defined as: Fu = λ× Fu

2 + β× F, where λ ∈ RC is initialized to [0,..,0],
and β ∈ RC is initialized to [1,..,1]. The values λ and β are used to gradually learn a
weight during the training process, therefore Fu

2 and F both are assigned more weight
for important feature maps, which highlights more important features. However, in
[26], the final output of PAM is only defined as: Fu = λ× Fu

2 + F, where λ is initial-
ized to [0,..,0], if only considering to assign more weight to Fu

2 , ignoring the effect of
F and assigning same weight to F, the redundant information of F will be transfered
directly the output of PAM, which will have an diminished effect on attention. CAM
is also like PAM that the final output is differently defined. Therefore, the improved
attention module (our attention module) pays more attention to the important fea-
ture. Secondly, for the CAM in [26], employing convolution layers before the input
of CAM, which leads to that the relationship between different channel maps has
been destroyed in advance, but we do not employ convolution layers to embed fea-
tures before computing relationships of two channels in our CAM module, which
can maintain relationship between different channel maps. Finally, [26] only is used
in the output of network, not adopted cascading operation because the feature map
of huge shape (H×W)×(H×W) in the PAM needs to huge GPU memory. However,
the higher-level feature maps as the input of attention module will lose more de-
tailed information of targets. Therefore, our network applies the improved attention
module to different cascades, which not only reduces the redundant use of informa-
tion, but also makes full use of different levels feature maps.

5.1.3 Hybrid Loss

The hybrid loss consists of two parts: region loss and boundary one. It is defined as:
`H = `R + `B, where `R denotes the region loss and `B denotes the boundary loss.
The region loss is same with the hybrid loss in section 4.1.4 of chapter 4. Based on
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the region loss, we add the boundary loss into the hybrid loss, which can optimize
the segmentation result. They are explained hereafter.

5.1.3.1 Region Loss

To obtain high quality regional segmentation, we define `R as a region loss: `R =

`CCE + `SSIM + `DC, where `CCE, `SSIM and `DC denote Categorical Cross Entropy
(CCE) loss [22], Structural Similarity (SSIM) loss [23] and Dice Coefficient (DC) loss [24]
respectively.

CCE [22] loss is commonly used for multi-class classification and segmentation.
It is defined as

`CCE = − ∑C
i=1 ∑H

a=1 ∑W
b=1 yi

(a,b) ln y∗i
(a,b), (5.2)

where C is the number of classes of each image, H and W are the height and width
of image, yi

(a,b) ∈ {0, 1} is the ground truth one-hot label of class i at position (a, b)
and y∗i

(a,b) is the predicted probability that (a, b) belongs to class i.
SSIM loss can assess image quality [23], and can be used to capture the structural

information, which will decrease the mis-segmentation rate of surrounding similar
tissues. Therefore, we integrated it into our training loss to learn the differences be-
tween the segmented domain and similar tissues around the segmented domain. Let
S and G be the predicted probability map and the ground truth mask respectively,
the SSIM loss function of S and G is defined as

`SSIM = 1 − (2µSµG + ε1)(2σSG + ε2)

(µ2
S + µ2

G + ε1)(σ2
S + σ2

G + ε2)
(5.3)

where µS, µG and σS, σG are the means and standard deviations of S and G respec-
tively, σSG is their covariance, ε1= 0.012 and ε2= 0.032 are used to avoid a division by
zero.

DC [24] loss is used to measure the similarity between two sets as defined in
Eq. 2.36. But for the multi-class segmentation task, Eq. 2.36 is not suitable due to the
class imbalance problem in such cases. Therefore, we extend the definition of the
DC loss to multiclass segmentation in the following manner:

dicei = (ε + 2 ∑Ni
n=1 yi

n y∗i
n) / (ε + ∑Ni

n=1 (y
i
n + y∗i

n)) (5.4)

`DC = 1 − ∑C
i=1 dicei/ (Ni + ε), (5.5)

where Ni denotes the numbers of class i and ε > 0 is a smooth factor.

5.1.3.2 Boundary Loss

The loss functions mentioned before are mainly for region segmentation, so we pro-
pose a multi-class boundary loss function based on Kervadec’s distance [27] to be
able to refine the segmentations. As shown in Fig. 5.3, ∆A denotes the difference
between the boundary Gi

B of the ground truth of class i and the boundary Si
B of the
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FIGURE 5.3: Illustration of calculating boundary loss

prediction of class i. When ∆A tends to zero, it means that the segmentation results
are becoming better around the boundaries. Therefore, for a given class i, when the
prediction and the ground truth are close enough, which is easily obtained thanks
to our regional loss, minimizing the difference between their boundaries can be ob-
tained by minimizing Kervadec’s distance [27]:

`i
B =

∫

∂Gi

∥∥y∂Si (p) − p
∥∥2 dp (5.6)

where ∂Gi and ∂Si denotes the boundaries of Gi
B and (binarized) Si

B and ‖·‖ de-
notes the L2 norm. When p is a point in ∂Gi, y∂Si(p) denotes the corresponding
point on boundary ∂Si along the direction normal to ∂Gi (see Fig. 5.3). It can be
shown [27] that minimizing `i

B is equivalent to minimize the area of the surface
∆Ai = (Gi

B\Si
B)
⋃
(Si

B\Gi
B) (see Fig. 5.3). Thus, our multi-class boundary loss natu-

rally follows:

`B =
C

∑
i=1

∫

∂Gi

∥∥y∂Si (p) − p
∥∥2 dp (5.7)

Fig. 4.7 shows the prediction results with different loss functions. Fig. 4.7(im-
age) and Fig. 4.7(GT) are the input image and its corresponding ground truth. For-
tunately, after several iterations of the network, segmentation results can be ob-
tained based on a single loss function such as CCE, SSIM and DC loss. However,
their segmentation results all have wrong segmentation connected to the region of
ground truth as shown in Fig. 4.7(c), 4.7(d), 4.7(e), which can not be removed in
post-processing.

According to Eq. 5.2, the CCE loss is calculated on a pixel-by-pixel basis (pixel-
wise level), therefore, it does not consider using the information of surrounding pix-
els. Although this helps to ensure the convergence of all pixels and obtain a rela-
tively good local optimum, the loss function will choose to give one neutral predic-
tion probability such as 0.5 at boundaries of the target in order to avoid large losses,
which often leads to ambiguities in the boundary. As shown in Fig. 4.7(c), compared
with Fig. 4.7(d) and Fig. 4.7(e), the segmentation results are fine structures, which
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also verifies that CCE loss makes all pixels converge.
When SSIM loss is used as the loss function of networks, a 7× 7 sliding window

is used on the image and its corresponding ground truth, and then the 7× 7 image
patch is taken out to calculate the SSIM loss, so the SSIM loss is computed based on
the patch-level. The SSIM loss makes up for the lack of CCE loss and fully considers
the surrounding information of each pixel. The SSIM loss assigns higher weights to
the pixels in the transition area between each class, so even if the prediction proba-
bility of each class is the same at the boundary, the loss around the boundary will be
higher. However, if the 7× 7 image patch belongs to the background region, the µG,
σG and σSG will be equal to zero, Eq. 5.3 is simplified as

`
background
SSIM = 1 − ε1ε2

(µ2
S + ε1)(σ2

S + ε2)
(5.8)

When the predicted probability map S is very close to the ground truth (back-
ground), `background

SSIM will be dropped sharply from 1 to 0, and then it does not con-
tribute to the training, so the network can neglect the background accuracy in the
beginning phase of the training process, which is very important for medical im-
ages with a large number of background areas. As shown in Fig. 4.7(d), there is
also one problem if using the SSIM loss as the loss function of network, the network
incorrectly predicts a small part of the segmentation results belonging to the back-
ground region, but this part is not connected to the ground truth. This phenomenon
can be well explained, because during the training process, the SIMM loss of each
class continues to decrease until its fluctuation range is minimal. At this time, the
background loss that is ignored from the beginning of the training becomes the dom-
inant, therefore, the network is easy to predict the wrong segmentation belonging to
the background region.

The calculation method of DC is different between the training phase and the
evaluation phase. For the evaluation phase, it is calculated based on 3D volume.
However, in the training phase, its calculation is slice-by-slice for medical images.
Because yi

n is ground truth one-hot label of class i and y∗i
n is corresponding predicted

probability map. yi
ny∗i

n denotes their difference map, which means calculating the
difference from a global perspective, so the DC loss is computed based on the map-
level. But it can be seen from Eq. 5.4 that the class that occupies a large area plays
a leading role for the loss, which is not good for medical images with a lot of back-
ground. Therefore, Eq. 5.5 is used to redistribute the weight of the loss of each class,
and finally make the segmentation result of each class more uniform.

The three loss functions mentioned above are all region-based. But the boundary
loss function is defined at Eq. 5.7, which takes the form of a distance metric on the
space of contours, not regions. For the problem of class imbalance, we can reduce
the problems related to region loss through boundary loss. As shown from Eq. 5.7,
the boundary loss mainly uses the integral on the difference area between ground
truth and the prediction, which also supplements the information for the region loss.
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Therefore, we use the respective advantages of the above four loss functions and
combine them to propose a new hybrid loss function. CCE loss pays attention to the
reasonable classification of all pixels. SSIM loss compensates for the ambiguity of
CCE loss at the boundary and gives the boundary a larger loss value. DC stands in
the overall perspective to guide the correctness of the general direction. As shown
in Fig. 4.7(h), through this region loss function, the wrong segmentation part is no
longer connected to the ground truth. Finally, the boundary loss refines details.

5.2 Experimental Results

5.2.1 Dataset Description

We evaluate our method on the MICCAI 2018 Atrial Segmentation Challenge 1 (Atri-
aSeg18). Its aim is to segment the left atrium. It contains 100 annotated 3D MRIs
from patients with atrial fibrillation. The pixel spacing of the MR images is 0.625×
0.625× 0.625 mm/pixel. The dataset includes two different image sizes: 88×576×
576 and 88×640×640.

5.2.2 Preprocessing

Fig. 5.5(a) shows the histograms of the original volumes have various shapes, ac-
cording to their histograms, after cropping each slice to 346×346 pixels as shown
in Fig. 5.4(c), we map the gray-level range to [0,255] by histogram equalization.
Fig. 5.5(b) shows the gray-level scale of each volume after histogram equalization
based on the 1/4 of the pixels in red region as shown in Fig. 5.4(a). The pre-processing
begins with a Gaussian normalization. Because ResNet-101 network’s input is an
RGB image, we propose to take advantage of the 3D information by stacking 3 suc-
cessive 2D frames: to segment the nth slice, we use the nth slice of the MR volume,
and its neighboring (n− 1)th and (n + 1)th slices, as green, red and blue channels,
respectively. This new image, named “3D-Like” image, enhances the boundaries of
objects, as shown in Fig. 5.4.

5.2.3 Postprocessing

We crop the initial volume of size 88×W×H into an image of size 88×w×h (where
W and H are the initial width and height of a slice). We keep only the greatest
connected component of the output segmentation and pad with zeros to get back a
T×W×H image.

1http://atriaseg2018.cardiacatlas.org/
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5.2.4 Implementation and Experimental Setup

We implemented our experiments on Keras/TensorFlow using a NVidia Quadro
P6000 GPU. We used the hybrid loss function, softmax to get a probability distri-
bution over classes, Adam optimizer (batchsize = 3, β1 = 0.9, β2 = 0.999, ε = 0.001,
lr = 0.01) and did not use learning rate decay. We trained the network during 30
epochs.

5.2.5 Evaluation Methods

Three metrics are used to evaluate our method: dice to evaluate the regions, and 95%
Hausdorff distance (95HD) and Average Hausdorff distance (AHD) to quantitatively
evaluate the boundaries.
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(a) Initial image

(b) n− 1 (c) n (d) n + 1

(e) “3D-Like”

FIGURE 5.4: Illustration of our “3D-Like” procedure. The red box
depicts the boundary of the cropped input image. Three successive

cropped slices (b-d) are used to build a “3D-Like” image (e).
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(b) Partial volume histograms

FIGURE 5.5: (a): The histograms of the original volumes have various
shapes; (b): to normalize the gray-level scale of each volume, we con-
sider the histogram of their central sub-volume (in orange; see also
Fig. 5.4(a)), which has the same dynamic than the oneof the left atrial

region given by the ground-truth (in green).
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5.2.6 Comparison with State-of-the-arts Methods

FIGURE 5.6: Evolution of the loss and accuracy with the number of
epochs.

Fig. 5.6 shows the evolution of the loss and accuracy with the number of epochs. For
the model accuracy, when the epoch reaches the fifth epoch, the training accuracy of
network have arrived 99%. For medical images, there is a lot of redundant informa-
tion in the image, so the accuracy can be higher in a short time. For the model loss,
the loss is drop sharply before fifth epoch, and there is little fluctuation around 0.025
after that.
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TABLE 5.1: Comparison of our method and other state-of-the-art ar-
chitectures using a 5 fold cross-validation.

Method Att. Module Hyb. Loss DC/% 95HD/mm AHD/mm

U-Net [53]
88.556(±2.586) 4.447(±0.996) 0.212(±0.077)

" 89.613(±2.257) 4.169(±0.960) 0.210(±0.118)

DANet [26]
84.229(±3.774) 6.145(±2.341) 0.514(±0.477)

" 87.584(±2.765) 4.903(±1.448) 0.280(±0.179)

Deeplabv3+ [139]
85.444(±3.079) 5.872(±2.345) 0.504(±0.614)

" 87.556(±1.155) 5.210(±1.087) 0.273(±0.074)

Our Method
90.774(±1.568) 3.312(±1.277) 0.158(±0.092)

" 91.326(±1.174) 3.097(±0.810) 0.143(±0.055)
" " 91.792(±1.065) 2.868(±0.667) 0.130(±0.042)

(a) Without attention module and hybrid loss

(b) With attention module

(c) With attention module and hybrid loss

FIGURE 5.7: Ablation study for our method; red color denotes highest
weight
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(a) Our Method

(b) U-Net [53]

(c) DANet [26]

(d) Deeplabv3+ [139]

FIGURE 5.8: Comparison of the proposed method and other state-of-
the-art architectures. The white pixels are the differences between the

prediction and the GT.

The experimental results obtained by several state-of-the-art segmentation net-
works are reported in Table 5.1. Compared to other networks proposed in the con-
text of medical image segmentation ,i.e., U-Net [53], DANet [26] and Deeplabv3+ [139],
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our network achieves a mean improvement of 3.236%, 7.563% and 6.348% (in terms
of DC), 1.579 mm, 3.277 mm and 3.004 mm (on 95HD) and 0.082 mm, 0.384 mm
and 0.374 mm (on AHD), respectively. For the proposed method, the improved
performance could be explained by the fact that the attention module and hybrid
loss. Fig. 5.7 shows the ablation study for our method. Compared Fig. 5.7(a) with
Fig. 5.7(b), the attention module imitates the human visual system to decrease the
impact of surrounding similar structures and obtain more detail informations about
left atrial (LA). It increases segmentation performance by 0.552% (DC), 0.215 mm
(95HD), and 0.015 mm (AHD), respectively as shown in Table 5.1. If combining hy-
brid loss with attention module, according to Fig. 5.7(c), the hybrid loss guides the
attention module to pay attention to regions and boundaries of LA, which makes
the red region closer to the boundary than Fig. 5.7(b). Fig. 5.8 shows the comparison
of the proposed method and other state-of-the-art architectures. The white pixels of
our method are the least in all state-of-the-art methods. Therefore, the proposed hy-
brid loss is applied to treat regions and boundaries of LA fairly during the training
process, yielding to better results for all the networks.

5.2.7 Ablation Study

To explain the advantages of the proposed hybrid loss, we conduct an ablation study.
We compare the segmentation results with and without hybrid loss (see Table 5.1).
Segmentation performance increases for DC, 95HD and AHD for the 4 architectures,
proving the benefits of the proposed hybrid loss.

We continue to test the hybrid loss on other datasets, and choose one multi-
class segmentation task such as the MICCAI Workshop on Whole-Heart and Great
Vessel Segmentation from 3D Cardiovascular MRI in Congenital Heart Disease2

(HVSMR16). The aim of HVSMR16 [71] is to segment myocardium and blood pool,
it provides 10 training cardiovascular magnetic resonance (CMR) scans. For each
patient, three kinds of images were provided: the full-volume axial images, the
cropped axial images around the heart and thoracic aorta, and the cropped short
axis reconstruction. In the current work, we only use the full-volume axial images.
The slice spacings of the full-volume axial images range from 0.65 mm/pixel to 1.15
mm/pixel, while in-plane resolution ranged from 0.73 mm/pixel to 1.15 mm/pixel.
The average sizes: 387×387×165 pixels.

For the HVSMR16 dataset, we resize with a fixed pixel-spacing (0.65mm) and
then crop to 250×384×384, finally, use z-score normalization before inputting the
network. We choose a previously proposed framework [19] as shown in Fig. 3.1 to
complete experiments. Table 5.2 shows the segmentation results using a 5 fold cross-
validation on HVSMR16 dataset. Compared without hybrid loss, adding the hy-
brid loss improves the segmentation accuracy of myocardium and blood pool from
75.15% to 78.36% and from 82.33% to 85.07% in term of dice, respectively.

2http://segchd.csail.mit.edu/index.html
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Ground truth Without hybrid loss With hybrid loss

FIGURE 5.9: The 3D view of segmentation results based on HVSMR16
dataset; red color denotes blood pool, green color denotes my-

ocardium
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Fig. 5.9 shows the 3D view of segmentation results based on HVSMR16 dataset.
We do not use post-precessing for the segmentation results, which is to give intu-
itive comparison. Compared without hybrid loss, the segmentation results that is
obtained by using hybrid loss are more complete for blood pool part.

TABLE 5.2: Segmentation results using a 5 fold cross-validation on
HVSMR16 dataset

Hybrid loss
DC/%

Myocardium Blood pool

75.15(±4.99) 82.33(±12.38)
" 78.36(±4.44) 85.07(±10.49)

Compared with the myocardium segmentation results of A0Net in Table. 4.3 of
chapter 4, the myocardium segmentation results decrease 4% by using the attention
network framework. The main reason is that the large model is applied to the too
small dataset (HVSMR16 only provides 10 patients), leading to severe overfitting.
The trainable parameters of the attention network framework exceed those of A0Net
by more than ten times.

5.3 Conclusion

In this chapter, we propose a novel attention network architecture, and a new hy-
brid loss. By using the attention module, the proposed network framework is able
to prevent the interferences between the surrounding similar tissues and to cap-
ture large-scale and thiner structures. We propose a hybrid loss function that fairly
treats regions and boundaries of objects, optimizes the convergence to the bound-
aries, while maintaining the segmentation precision of the regions. Compared to the
state-of-the-arts methods on the AtriaSeg18 challenge dataset, our segmentation re-
sults overcome the best one by an average of 2.179% in terms of DC and 1.3 mm on
95HD. After that, we continue to experiment on multi-class task based on HVSMR16
dataset, and then the performance of hybrid loss still remain good. therefore, our
method with attention module and hybrid loss is more robust. The computation
time of our pipeline is less than 4 seconds for an entire 3D volume of a heart.
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Part IV

Evaluation Methods of Fibrosis
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Chapter 6

Evaluation of Fibrosis

This chapter mainly describes two parts: 1) Based on the heart segmentation results
of chapter 4 and chapter 5, the fibrosis results are obtained by using one morphol-
ogy method. 2) One end-to-end deep learning approach is used in segmenting the
fibrosis.

6.1 Combine the deep learning and morphology method

FIGURE 6.1: Scheme of the proposed process. 1. Input MRI. 2. My-
ocardial contours. 3. LA wall. 4. Histogram. 5. 3SD threshold. 6.

Detection

Fig. 6.1 presents the expected workflow: segmentation of the heart volume leading
to the identification of the left atrial wall, analysis of the radiometry within the wall,
thresholding to quantify the fibrosis degree. The heart segmentation can be com-
pleted by the segmentation methods of chapter 4 and chapter 5. The analysis part
can rely on a mathematical morphology approach.
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Therefore, we continue to quantify the fibrosis degree based on the heart seg-
mentation results of chapter 5. The thickness of atrial walls is 2 to 4 mm, which is 2-
to 3-fold thinner than ventricular walls. The spatial resolution of AtriaSeg18 dataset1

is 0.625× 0.625 × 0.625 mm3. The AtriaSeg18 dataset provides the label of left atrial
(LA) cavity, so the heart segmentation results of chapter 5 is left atrial (LA) cavity
and the endocardial border is obtained. Next, the endocardial border is morpholog-
ically dilated (by 4 pixel layers, 2.5 mm) and then manually adjusted to create the
shell of the epicardial LA surface [28]. In a final step, the endocardial segmentation
is subtracted from the epicardial layer to define the wall segmentation as shown in
Fig 6.2.

FIGURE 6.2: Left atrial wall segmentation

After obtaining the wall segmentation, we assume that the image only includes
the left atrial A is defined as A = ES× I, where ES denotes the endocardial segmen-
tation result (binary image) and I denotes the gray image of heart. Then we calculate
the mean value M and the standard deviation SD of A > 0, and let threshold is set
to M + 3SD. Finally, the fibrosis is obtained by W > (M + 3SD) (W denotes that the
the image only includes the left atrial wall) as shown in Fig 6.3.

1https://atriaseg2018.cardiacatlas.org/
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FIGURE 6.3: 3D view of fibrosis and left atrial wall; red color denotes
fibrosis and green color denotes left atrial wall

Because the AtriaSeg18 dataset does not provide the label of scar, we continue
to test our method on Left Atrial and Scar Quantification & Segmentation Challenge
2 (LAScarQS2022) [29–31], and the LAScarQS2022 aims to segment the left atrium
and evaluates the scar. It includes two tasks (Task 1 and Task 2) and Task 1 contains
the scar data, so we only use the dataset of Task 1. Task 1 contains 60 annotated
3D MRIs from patients with atrial fibrillation for training and validating. The voxel
size of the MR images is different: 1.25× 1.25× 2.5 mm, 1.4× 1.4× 1.4 mm, and
1.3× 1.3× 4.0 mm. The dataset includes two different image sizes: 44×576×576
pixels and 44×640×640 pixels.

TABLE 6.1: Ablation study of SD on LAScarQS2022 dataset using a 5
fold cross-validation.

Different SD DC of scar

SD 0.328±0.035
2SD 0.305±0.067
3SD 0.062±0.038

The use of the threshold value for all patients is no feasible because the contrast
between normal and fibrotic myocardium in LGE-MRI of the left atrium depends on
multiple factors: patient heart rate and rhythm during MRI study, type and dosage

2https://zmiclab.github.io/projects/lascarqs22/
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FIGURE 6.4: Global overview of the proposed method.

of contrast agent, time between contrast administration and LGE-MRI scan, patient-
specific contrast clearance rate, choice of TI value for LGE scan, strength of the main
field of MRI scanner, patient body mass index (BMI), blood hematocrit, and oxy-
genation level [28]. Therefore, we continue to consider other methods. Next, we will
try deep learning method.

6.2 Deep learning method

6.2.1 Methodology

6.2.1.1 Overview of Network Architecture

We propose a hybrid network (see Fig. 6.4) using UNet [53] to the myocardial pathol-
ogy segmentation, which is consisted by five UNet frameworks. The main difference
between UNet1 and UNet2 is the filter number as shown in Table. 6.2: the filter num-
ber of UNet1 is [64 128 256 512 256 128 64] and the filter number of UNet2 is [8 16
32 64 32 16 8], but their framework is same, which consists of two parts as shown
in Fig. 6.5: a down-sampling part and an up-sampling part and fuses high-level fea-
tures and low-level features by a shortcut connection between the two parts. UNet1
is used to segment the normal tissue around myocardial pathology and obtain three
segmentation results on LV+RV, Myo, and WH, respectively. UNet2 is used to seg-
ment myocardial pathology by learning the relationship between the surrounding
normal tissue and myocardial pathology. Since the number of myocardial pathol-
ogy samples is much smaller than the number of normal tissues around it, com-
pared with UNet1, we reduce the filter number UNet2 in order to reduce the impact
of overfitting.



6.2. Deep learning method 103

TABLE 6.2: The structural configuration of UNet.

Layers Input size Operation kernel Stride Regularization Output size
UNet1 UNet2 UNet1 UNet2

Input image (240,240,2) (240,240,4) - - - - (240,240,2) (240,240,4)
C1 (240,240,2) (240,240,4) [Conv2d+relu]*2 3 1 L2 (240,240,64) (240,240,8)
C2 (240,240,64) (240,240,8) Maxpooling2d 2 - - (120,120,64) (120,120,8)
C3 (120,120,64) (120,120,8) [Conv2d+relu]*2 3 1 L2 (120,120,128) (120,120,16)
C4 (120,120,128) (120,120,16) Maxpooling2d 2 - - (60,60,128) (60,60,16)
C5 (60,60,128) (60,60,16) [Conv2d+relu]*2 3 1 L2 (60,60,256) (60,60,32)
C6 (60,60,256) (60,60,32) Maxpooling2d 2 - - (30,30,256) (30,30,32)
C7 (30,30,256) (30,30,32) [Conv2d+relu]*2+Dropout 3 1 L2 (30,30,512) (30,30,64)
C8 (30,30,512) (30,30,64) Maxpooling2d 2 - - (15,15,512) (15,15,64)
C9 (15,15,512) (15,15,64) [Conv2d+relu]*2+Dropout 3 1 L2 (15,15,1024) (15,15,128)
O1 (240,240,2) (240,240,2) Sigmoid - - - (240,240,1) (240,240,1)

FIGURE 6.5: Architecture of networks.

6.2.2 Experimental Results

Dataset Description. We evaluate our method on the myocardial pathology seg-
mentation combining multi-sequence CMR 3 (MyoPS 2020). Its aim is to myocardial
pathology segmentation. It contains 45 cases of multi-sequence CMR (25 cases for
training and 20 cases for testing). Each case refers to a patient with three sequence
CMR, i.e., LGE, T2 and balanced-Steady State Free Precession (bSSFP) CMR. The
LGE CMR sequence can visualize myocardial infarction. The T2-weighted CMR
shows the acute injury and ischemic regions. The bSSFP cine sequence captures car-
diac motions and presents clear boundaries. The slice spacings of multi-sequence
CMR volume range from 11.999 mm/pixel to 23.000 mm/pixel, while in-plane res-
olution ranged from 0.729 mm/pixel to 0.762 mm/pixel. The average sizes: 482×
479×4 pixels.

Preprocessing and Postprocessing. We cropped each slice to 240×240 pixels and
we do not use data augmentation. The pre-processing begins with a Gaussian nor-
malization. For post-processing, we pad with zeros to get back a initial width and
height of a slice.

Implementation and Experimental Setup. We implemented our experiments on
Keras/TensorFlow using a NVidia Quadro P6000 GPU. We used five different loss
functions for training the network and used sigmoid to get a probability distribution
of the left and right ventricle, myocardium, whole heart, scar and edema, and scar,
respectively (as shown in Fig. 4.1). Adam optimizer (batchsize = 1, β1 = 0.9, β2 =

3http://www.sdspeople.fudan.edu.cn/zhuangxiahai/0/MyoPS20/index.html
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TABLE 6.3: Evaluation results on 5-fold-cross-validation.

Patient 101-105 106-110 111-115 116-120 121-125 Average Test datasets

Edema 0.284 0.153 0.189 0.122 0.280 0.206 −
Scar 0.473 0.496 0.515 0.464 0.602 0.510 0.586
Myo 0.844 0.852 0.811 0.859 0.869 0.847 −

LV+RV 0.818 0.854 0.812 0.897 0.864 0.849 −
WH 0.925 0.937 0.876 0.918 0.959 0.923 −

0.999, ε = 0.001, lr = 0.0001) and did not use learning rate decay. We trained the
network during 300 epochs.

Training Step. First, we kept weight of UNet2 unchanged, which means UNet2
was not trained at the beginning, then we trained UNet1. After finished the train of
UNet1, we kept weight of UNet1 unchanged, then trained UNet2.

Evaluation Methods. One metric is used to evaluate our method: dice coefficient
(DC) to evaluate the regions of myocardial pathology.

6.2.2.1 Segmentation Results

As shown in Table. 6.3, we evaluate the proposed method with 5-fold-cross-validation.
We obtain a mean DC of 92.3% on WH, 84.9% on LV+RV, and 84.7% on Myo by
UNet1. Without using data augmentation, based on the original dataset, we ob-
tain a higher segmentation accuracy, which lays the foundation for the subsequent
segmentation of myocardial pathology. Finally, we obtain a mean DC of 20.6% on
edema, 51% on scar by UNet2. We used the trained network to predict the testset
(20 cases) and received the evaluation of our prediction results from the MyoPS2020
organizer: the mean DC of 58.6% on scar and the mean DC of 63.9% on scar and
edema.

As shown in Fig. 6.6, for the segmentation results of whole heart, left and right
ventricle, and myocardium, as the number of positive samples continues to decrease,
the segmentation accuracy is also decreasing, and false segmentation is mainly con-
centrated at the boundary, which is mainly because ambiguities often appear near
the boundaries of the target domains due to tissue similarities. For the segmentation
results of edema and scar, the poorly segmentation result is not only on the bound-
ary, but also in regions. In the original dataset, edem does not exist in many slices,
which further leads to a reduction in the effective dataset for edema, therefore, the
segmentation network is very difficult to segment edema.

6.2.2.2 Conclusion

In this chapter, we propose a way of reverse thinking, not to segment the myocar-
dial pathology directly, but to learn a relationship between the surrounding nor-
mal tissue and it by designing one stacked and parallel UNets with multi-output
framework. We evaluate the proposed method with 5-fold-cross-validation on the
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(a) Edema and scar (white color denotes scar)

(b) Ground truth of edema and scar

(c) Myocardium

(d) Left and right ventricle

(e) Whole heart

FIGURE 6.6: Segmentation results. Red color denotes false positive
and green color denotes false negative.

MICCAI 2020 myocardial pathology segmentation combining multi-sequence CMR
Challenge dataset (MyoPS 2020) and achieve a mean DC of 20.6%, 51% on edema
and scar, respectively. The computation time of the entire pipeline is less than 3 sec-
onds on Quadro P6000 GPU for an entire 3D volume, making it usable for clinical
practice. However, the segmentation accuracy of myocardial pathology is affected
by the segmentation accuracy of surrounding normal tissues.
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Part V

Conclusion
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Chapter 7

Conclusion and Perspectives

According to the World Health Organization (WHO), cardiovascular diseases (CVDs)
are the leading cause of death globally. Medical imaging becomes increasingly im-
portant for the diagnosis and treatments of CVDs. Medical imaging contains many
modalities such as computed tomography (CT), positron emission tomography (PET),
ultrasound (US) and magnetic resonance imaging (MRI) and so on. Comparing with
the others modalities, MRI has one great contrast between soft tissues and relatively
high spatial resolutions (this is why we choose the MRI dataset.). But there are some
difficulties for using MRI images to segment:

• there is a poor contrast between myocardium and surrounding structures;

• brightness due to blood flow;

• non-homogeneous partial volume due to limited MRI resolution;

• noise due to motion artifacts and heart dynamics;

• shape and intensity variability due to different patients and pathologies.

Therefore, based on the above difficulties, our research significance is derived.
In this thesis, we mainly use deep learning methods to solve related problems in
cardiac segmentation and evaluation of fibrosis.

7.1 Main results

Firstly, we explore the sensitivity of networks to noise for different preprocessing
methods in chapter 3, Through comparative experiments, it is concluded that the
standardization preprocessing method is the best for the output of the network.
Therefore, we choose this preprocessing method for the subsequent processing of
the dataset.

Secondly, we design novel network frameworks to segment heart in chapter 4
and chapter 5. The first proposed framework is one two-stage architecture, which
includes two parts that are one localization network and one segmentation network.
The localization network is used in localizing roughly the object position, which can
reduce the useless information (negative sample). The segmentation network is de-
voted to accurately segment the object. Due to the fact that many methods mainly
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focus on the region accuracy of the heart, more than to the quality of the boundaries,
we prensent one novel hybrid loss that combines Categorical Cross Entropy (CCE),
Structural Similarity (SSIM) and Dice Coefficient (DC) to study the transformation
relationship between the input image and the corresponding label in a three level
hierarchy (pixel-, patch- and map-level), which is helpful to improve segmentation
and recovery of the boundaries. We demonstrate the efficiency of our approach on
three public datasets in terms of regional and boundary segmentations. The second
proposed framework is one end-to-end architecture, which is an attention full con-
volutional network framework based on the ResNet-101 architecture and focuses on
boundaries as much as on regions. The additional attention module is added to have
the network pay more attention on regions and then to reduce the impact of the mis-
leading similarity of neighboring tissues. We also use a hybrid loss composed of a
region loss and a boundary loss to treat boundaries and regions at the same time.
We demonstrate the efficiency of the proposed approach on three public datasets.

Finally, in chapter 6, two different methods are used in evaluation of fibrosis. The
first method is that we combine the deep learning method with morphology. The left
atrial wall is obtained based on the segmentation results of chapter 5 by morpho-
logically dilating, and then thresholds to quantify the fibrosis degree. The second
method is that we provide one cascaded UNet framework and uses three different
modalities (the late gadolinium enhancement (LGE) CMR sequence,the balanced-
Steady State Free Precession (bSSFP) cine sequence and the T2-weighted CMR) to
complete the segmentation of the myocardium, scar and edema in the context of the
MICCAI 2020 myocardial pathology segmentation combining multi-sequence CMR
Challenge dataset (MyoPS 2020). We evaluate the proposed method with 5-fold-
cross-validation on the MyoPS 2020 dataset.

7.2 Future work

The work described in this PhD thesis provides many ways for further research.

7.2.1 Multi-modality and multi-task

Multi-modality:. The problem of overfitting is common in medical image segmen-
tation, because the dataset of medical images is small, maybe only contains a few
patients. However, it contains many modalities, and each modality contains differ-
ent information. Therefore, trying to utilize multi-modality information to segment
the heart is necessary as showed in fig.7.1.
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FIGURE 7.1: Multi-modality information. A single modality contains
only limited information, but the information of several modalities

can complement each other.

Multi-task:. For the same network framework, one multi-task such as classification
and segmentation task is implemented. These tasks will affect each other during the
training process, either positively or negatively. Therefore, trying to use multi-task
method to segment the heart is worth exploring. For example, adding the ground
truth of spatial constraint guides the segmentation network to study the transforma-
tion relationship between the input image and the corresponding label as showed in
fig.7.2.

FIGURE 7.2: Multi-task.

7.2.2 Hybrid loss

In the training phase, the loss function is an essential part, which guides the net-
work to learn the transformation relationship between the input image and the cor-
responding label. Therefore, it is very important to design a loss function that meets
the requirements of the task. However, only using one loss function in the network
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Ground truth

Without
hybrid loss

With hybrid
loss

FIGURE 7.3: Partial segmentation results based on the MRBrains18
dataset: in this dataset, there exists a serious imbalance between the
eight brain structures (different proportions). For the brain structures
with a small proportion (see the red circle), the hybrid loss strongly
helps to produce detailed segmentations; we say that the networks

learn to see more clearly in the input images.

is not enough, so designing one hybrid loss that combines different loss function is
required.

We have tested the proposed hybrid loss on other non-cardiac datasets, for exam-
ple, Grand Challenge on MR Brain Segmentation at MICCAI 20181 (MRBrainS2018).
The aim of MRBrainS2018 is to segment the 8 brain structure such as cortical gray
matter, basal ganglia, white matter, white matter lesions, cerebrospinal fluid in the
extracerebral space, ventricles, cerebellum and brain stem. It contains 30 MRI scans,
which provides contains three modalities such as T1-weighted, T1-weighted inver-
sion recovery and T2-FLAIR. Seven of them are released as the training dataset. An-
other 23 scans are kept unreleased for test dataset. The dataset includes same image
size: 48×240×240.

For the MRBrainS2018 dataset, we use z-score normalization as preprocessing.
Table 7.1 shows the segmentation results using a 7 fold cross-validation on MR-
BrainS2018 dataset. If adding the hybrid loss into the network, the segmentation
results of each brain structure are both improved. Corresponding to Fig. 7.3, The
partial segmentation results of brain are shown for with or without hybrid loss. Us-
ing hybrid loss in the network, more details are segmented by the network.

1https://mrbrains18.isi.uu.nl/
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TABLE 7.1: Segmentation results using a 7 fold cross-validation on
MRBrainS2018 dataset

Brain structure
Dice/%

Without hybrid loss With hybrid loss

Cortical gray matter 84.89 85.44
Basal ganglia 81.37 82.64
White matter 85.36 86.07

White matter lesions 31.08 40.20
CSF 81.98 82.35

Ventricles 91.89 92.86
Cerebellum 89.74 90.65
Brain stem 71.83 74.44

CSF denotes cerebrospinal fluid in the extracerebral space.

7.2.3 Attention method

In the training phase, too much redundant information is reused. Therefore, it is
necessary to add attention modules to the network to reduce the utilization of re-
dundant information. Designing dedicated attention modules for different tasks is
worth exploring.
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Abstract—In myocardium segmentation of cardiac magnetic
resonance images, ambiguities often appear near the boundaries
of the target domains due to tissue similarities. To address this
issue, we propose a new architecture, called FOANet, which
can be decomposed in three main steps: a localization step, a
Gaussian-based contrast enhancement step, and a segmentation
step. This architecture is supplied with a hybrid loss function
that guides the FOANet to study the transformation relationship
between the input image and the corresponding label in a three-
level hierarchy (pixel-, patch- and map-level), which is helpful
to improve segmentation and recovery of the boundaries. We
demonstrate the efficiency of our approach on two public datasets
in terms of regional and boundary segmentations.

I. INTRODUCTION

In order to accurately segment the myocardium in cardiac
magnetic resonance (MR) images, numerous methods have
been developed by world-wide researchers. Among these
methods, the most common method is atlas-based, which
offers good accuracy for myocardium segmentation, but often
looses efficiency due to heavy calculations with the regis-
tration algorithm. Recently, methods based on deep learning
are replacing the conventional methods in the field of my-
ocardium segmentation. For example, Zabihollahy et al. [1]
proposed a novel method to segment myocardium using a U-
Net convolutional neural network (CNN)-based model, and
the algorithm-generated results demonstrated its usefulness for
myocardium segmentation. Do et al. [2] proposed a network
architecture of Monte Carlo dropout (MCD) UNet for my-
ocardium segmentation, and the MCD was mainly applied to
measure a global score of model uncertainty without using
the reference segmentation, which was valuable for automatic
quality control at production. Dangi et al. [3] proposed a
multi-task learning (MTL)-based regularization of a CNN, and
used the rich information available in the distance map of the
segmentation mask as an auxiliary task for the myocardium
segmentation network. Since each pixel in the distance map
represented its distance from the closest object boundary,
which was more redundant and robust than the per-pixel image
label directly used for segmentation. Furthermore, the distance
map contained the shape and boundary information of the
object. Therefore, predicting the distance map, as an additional
task, was beneficial to enforce shape and boundary constraints
during the process of training.

However, there are many difficulties to segment my-
ocardium from cardiac MR images, for example, the presence
of poor contrast between the segmented tissue and surrounding
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Fig. 1: Global overview of the proposed method (FOANet).

structures, the brightness heterogeneities due to blood flow,
the shape and intensity variabilities of the structures across
patients and pathologies, and so on [4]. To decrease the effect
of blood flow and accurately segment the blood pool and
myocardium from cardiac MR, Qi et al. [5] proposed a multi-
scale feature fusion (MSFF) CNN with a new weighted dice
index loss function to segment myocardium, using MSFF
modules to obtain feature maps of different scale, and then
concatenating them through short and long skip connections in
the encoder and decoder path to capture more complete context
information and geometry structure for better segmentation. To
capture the valuable dynamics of heart motion, Zhang et al. [6]
proposed a method based on recurrent neural network (RNN),
in order to take the motion of the heart into consideration, and
extract myocardium-related image features at both the low-
and high resolution levels in consecutive frames of a cardiac
cycle. Faced with variability in contrast, appearance, orien-
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Fig. 2: Architecture of our networks. Part 1 and Part 2 correspond to the components of Net.1 and Net.2 of Fig. 1, respectively.
Because the role of Net.1 is only to roughly locate the target, using Part 1 instead of Part 2 can both reduce model parameters
and improve the speed of model prediction. N denotes the number of feature map

tation, and placement of the heart between patients, clinical
views, scanners, and protocols, Davis et al. [7] proposed a
fully automatic semantic segmentation method: Omega-Net
that included three steps to segment, first, roughly located
the object on the input image; second, learned the features
based on the obtained object during the first step, which is
used to predict the parameters needed to transform the input
image into a canonical orientation; and third, the transformed
image from the second step is used to finally segment. Despite
the fact that these methods continue to improve segmentation
accuracy, a large number of mis-segmentations still exist,
which is due to the fact that they mainly pay attention to
region accuracy, more than to the quality of the boundaries.
However, issues often occur at indistinguishable boundaries.
To maintain region accuracy without losing the boundary
quality, we propose a focus of attention architecture that we
call FOANet, and a new hybrid loss for region- and boundary-
aware segmentation. The main contributions of our work are:
— A novel region- and boundary-aware segmentation net-

work, FOANet, which consists of a localization and a
segmentation parts.

— A novel hybrid loss that combines Categorical Cross
Entropy (CCE), Structural Similarity (SSIM) and Dice
Coefficient (DC) to guide the training process at three
levels: pixel-level, patch-level, and map-level.

— A novel Focus of Attention (FOA) that decreases the
impact of surrounding similar tissues.

— A temporal-like method that lets the FOANet take advan-
tage of the temporal information by stacking 3 successive

2D frames.

II. METHODOLOGY

A. Overview of Network Architecture

The global overview of our FOANet consists of two parts
(localization and segmentation) as depicted in Fig. 1, and the
architecture of our networks in Fig. 2. The first part (the
“localization network”) is used to localize roughly the object
position. The second part is devoted to segment the object (the
“segmentation network”).

B. Localization Network

The localization network (Net.1) is depicted in Fig. 2.
The black dotted box Part 1 is dedicated to the localization
network, it can be replaced by Part 2 to become the segmen-
tation network (Net.2). For Net.1 and Net.2, the difference
concerns only Part 1 and Part 2 as shown in Fig. 2, while
the other components of the architecture are the same. Part 1
consists of one convolutional layers with 256 or 512. First,
we rely on the original VGG16 [8] network architecture,
pre-trained on millions of natural images of ImageNet for
image classification [9]. We then discard its fully connected
layers to keep only the sub-network made of five convolution-
based “stages” (the base network). Each stage is made of
two convolutional layers, a ReLU activation function, and a
max-pooling layer. Since the max-pooling layers decrease the
resolution of the input image, we obtain a set of fine to coarse
feature maps (with 5 levels of features). Inspired by the works
in [10, 11, 12, 13], we added specialized convolutional layers



(with a 3 × 3 kernel size) with K (e.g. K = 16) feature
maps after the up-convolutional layers placed at the end of
each stage. The outputs of the specialized layers show the
same resolution than the input image, and are concatenated
together. We add a 1×1 convolutional layer at the output of
the concatenation layer to linearly combine the fine to coarse
feature maps 1.

C. Segmentation Network

As mentioned above, we replace Part 1 of Net.1 with Part
2, which becomes the segmentation network (Net.2). Because
the role of Net.2 is mainly to obtain accurate segmentation
results, we use Part 2 that is more complicated than Part 1
in Fig. 2. It can capture the global information and decrease
the effect of surrounding similar tissues. Part 2 consists of
three convolutional layers with 256 or 512 dilated (dilation =
2) [14] 3×3 filters, and one layer of concatenation.

D. Hybrid Loss

To obtain high quality regional segmentation and nice
boundaries, we define ℓ as a hybrid loss: ℓ = ℓCCE+ℓSSIM+ℓDC,
where ℓCCE, ℓSSIM and ℓDC respectively denote CCE loss [15],
SSIM loss [16] and DC loss [17] respectively.

CCE [15] loss is commonly used for multi-class classifica-
tion and segmentation. It is defined as:

ℓCCE = − ∑C
i=1

∑H
a=1

∑W
b=1 yi

(a,b) ln y∗i(a,b), (1)

where C is the number of classes of each image, H and W are
the height and width of image, yi

(a,b) ∈ {0, 1} is the ground
truth one-hot label of class i in the position (a, b) and y∗i(a,b)
is the predicted probability of class i.

SSIM loss can assess image quality [16], and can be used to
capture the structural information, which will decrease the mis-
segmentation rate of surrounding similar tissues. Therefore,
we integrated it into our training loss to learn the differences
between the segmented domain and similar tissues around the
segmented domain. Let S and G be the predicted probability
map and the ground truth mask respectively, the SSIM of S
and G is defined as:

ℓSSIM = 1 − (2µSµG + C1)(2σSG + C2)

(µ2
S + µ2

G + C1)(σ2
S + σ2

G + C2)
, (2)

where µS, µG and σS, σG are the mean and standard deviations
of S and G respectively, σSG is their covariance, C1= 0.012

and C2= 0.032 are used to avoid a division by zero.
DC [17] loss is used to measure the similarity between two

sets as defined in Eq. 3. But for the multi-class segmentation
task, Eq. 3 is not suitable due to the class imbalance problem
in such cases. Therefore, we extend the definition of the DC
loss to multiclass segmentation in the following manner:

dicei = (ǫ + 2
∑Ni

n=1 yi
n y∗in) / (ǫ +

∑Ni

n=1 (yi
n + y∗in)) (3)

ℓDC = 1 − ∑C
i=1 dicei/ (Ni + ǫ), (4)

1Note that we designed our network’s architecture to work with any input
shape.

(a) Original image (b) FOA

(c) After locating (d) ωFOA (e) FOA after locating

Fig. 3: Focus of attention (FOA).

where Ni denotes the numbers of class i and ǫ is a smooth
factor.

E. Focus of Attention

The image of Fig. 3a is from the MICCAI 2019 left ventricle
(LV) Full Quantification Challenge dataset2 (LVQuan19) [18,
19]. The red box denotes the object domain, here the LV. There
are a large number of similar tissues around it, highlighted by
the blue ellipses. Even after a localization procedure, these
tissues are still present. To decrease the impact of similar
tissues on segmentation results, we built on the biological
visual system, which concentrates on certain image regions
requiring detailed analysis [20]. We define the FOA as:
IFOA(a, b) = I(a, b)ωFOA(a, b), where I(a, b) denotes the
image intensity at location (a, b) and ωFOA(a, b) is a Gaussian
weighted function defined by

ωFOA(a, b) = α exp( −|(a, b) − (a∗, b∗)|2 / δ2 ), (5)

where (a∗, b∗) denotes the object center, α is a normalization
constant, δ is a scale parameter.

If we used IFOA(a, b) on each original image, we would
probably miss the object of interest. Therefore, we must first
localize the domain of interest; then we use IFOA(a, b) to focus
on the object. This methodology is depicted in Fig. 3e, where
similar tissues are less visible when compared to Fig. 3c.

III. EXPERIMENTAL RESULTS

A. Dataset Description

We evaluated our method on two datasets: LVQuan19
and Multi-Modality Whole Heart Segmentation 3 (MM-
WHS2017). The aim of LVQuan19 is to segment the my-
ocardium of the left ventricle and estimate a set of clinical
significant LV indices such as regional wall thicknesses, cavity
dimensions, and cardiac phase and so on. It contains the
processed SAX MR sequences of 56 patients. For each patient,
20 temporal frames are given and cover a whole cardiac cycle.

2https://lvquan19.github.io
3http://www.sdspeople.fudan.edu.cn/zhuangxiahai/0/mmwhs17/index.html



All ground truth (GT) values of the LV indices are provided for
every single frame. The pixel spacings of the MR images range
from 0.6836 mm/pixel to 1.5625 mm/pixel, with mean values
of 1.1809 mm/pixel. The LV dataset includes two different
image sizes: 256×256 or 512×512 pixels. MM-WHS2017 [21]
aims to segment 7 substructures of the whole heart. Although
it contains 20 cardiac MRI and 20 CT images, we only use the
MRI modality. The slice spacings of MRI volume range from
0.899 mm/pixel to 1.60 mm/pixel, while in-plane resolution
ranged from 0.78 mm/pixel to 1.2 mm/pixel. The average
sizes: 324×325×171 pixels.

B. Preprocessings

Since the VGG-16 network’s input is an RGB image, we
propose to take advantage of the temporal information by
stacking 3 successive 2D frames: to segment the nth slice,
we use the nth slice of the MR volume, and its neighboring
(n−1)th and (n+1)th slices, as green, red and blue channels,
respectively. This new image, named “temporal-like” image,
enhances the area of motions, here the heart, as shown in
Fig. 4.

Let us remind what we call Gauss normalization: for each
(2D+t)-image I corresponding to a given patient, we compute
I := (I − µ)/σ where µ is the mean of I and σ its standard
deviation (σ is assumed not to be equal to zero). There are
then two different pre-processing steps as depicted in Fig. 1.

1) The first pre-processing (see Prepro.1 in Fig. 1) begins
with a Gauss normalization. Then, for each n, we created the
width×height×3 pseudo-color (“temporal-like”) image where
R, G, B correspond respectively to the n − 1, n, n + 1 frames
and we concatenate them (we do not detail the cases n = 1
and n = nend, the first and last slice of the volume, because
of lack of space).

2) The second pre-processing (Prepro.2 in Fig. 1) follows
five steps: (1) data augmentation using rotations and flips for
the LVQuan19 dataset (only for the training phase), but it is not
used on the MM-WHS2017 dataset, (2) resizing with a fixed
pixel-spacing (0.65mm), (3) FOA, (4) Gauss normalization,
and (5) pseudo-color concatenated image like above. Such a
use of a pseudo-color image in the context of 3D medical
imaging has been proven effective in [22] to segment brain
structures and in [23] to extract white matter hyperintensities
in brain volumes.

C. Postprocessing

Let us assume that we crop an initial volume of T frames
of size T ×W ×H into an image of size T ×w×h (where
the crop is due to the localization procedure, and W and H
are the initial width and height of a slice). After Prepro.2 we
obtain a T ×w×h×3 image. Then we filter the ouput of the
segmentation network, of size T ×w×h, by keeping only the
greatest connected component, in order to get back the initial
pixel-spacing. Finally, we add a padding of zeros to get back
a T ×W ×H image.

(a) Slice n− 1. (b) Slice n. (c) Slice n+ 1.

(d) RGB concatenation at n.

Fig. 4: Illustration of our “temporal-like” procedure.

D. Implementation and Experimental Setup

We implemented our experiments on Keras/TensorFlow
using a NVidia Quadro P6000 GPU. For the localization
network, we used the multinomial logistic loss function for
a one-of-many classification task, passing real-valued pre-
dictions through a softmax to get a probability distribution
over classes. We used an Adam optimizer (batchsize = 1,
β1 = 0.9, β2 = 0.999, ε = 0.001, lr = 0.002) and we did
not use learning rate decay. We trained the network during 10
epochs. For this step, we merged all the classes into the object
class to obtain a binary segmentation. For the segmentation
network, we used the same optimizer and parameters detailed
previously. We used the hybrid loss as loss function. For
this task, we considered three different classes (background,
myocardium, cavity) for LVQuan19 and eight different classes
(background, myocardium, left atrium, left ventricle, right
atrium, right ventricle, ascending aorta and pulmonary artery)
for MM-WHS2017.

E. Evaluation Methods

Three measures are used to evaluate our method: DC given
in Eq. 3, 95% in the Hausdorff distance (95HD) [24] and
Boundary of Dice Coefficient (BDC) to quantitatively evaluate
the boundaries. As many diseases appear in the myocardium
wall, we chose to quantitatively evaluate the precision of the
segmentation on boundaries.

For the BDC evaluation method, given a segmentation map
M , we first convert the class i to a binary mask, M i

bm. Then,
we obtain the mask of class i of its one pixel wide boundary
by conducting an XOR(M i

bm, M i
erd) operation where M i

erd is
the eroded binary mask of M i

bm. The same method is used to
get the GT mask boundaries, M i

g . Then the DC is calculated
on the boundaries of the GT and segmentation masks to obtain
the BDC.



TABLE I: Ablation study; Dice values are for the myocardium.

Ablation Configurations DC 95HD BDC

Architecture
a: B. + ℓCCE 0.842 3.186 0.269
b: B. + L. + ℓCCE [13] 0.867 2.209 0.281
c: BLP + ℓCCE 0.877 2.019 0.303

Loss d: BLP + ℓSSIM 0.873 2.094 0.297
e: BLP + ℓDC 0.871 2.193 0.295

FOA (our) i: BLP + FOA + ℓCSD 0.879 1.826 0.306
UNet [25] - 0.862 3.976 0.291

“B.” means “baseline” (Net.1) [26, 27]; “L.” means “localiza-
tion”; “P2.” means “Part 2”(Net.2); “BLP” means “baseline +
localization + Part2”.
Note: ℓCSD = ℓCCE + ℓSSIM + ℓDC

image ℓCCE (c) ℓSSIM (d)

GT ℓDC (e) FOA (i)

Fig. 5: The comparative results trained with our FOANet on
different losses.

Fig. 6: Box plots of dice scores for the 56 patients. The red
dotted line represents the average value, and a, b, c, etc. on
the abscissa correspond to the methods of Tbl. I

Fig. 7: Box plots of 95HD for the 56 patients. The red dotted
line represents the average value, and a, b, c, etc. on the
abscissa correspond to Tbl. I

F. Ablation Study

To validate the influence of each component used in our
method, we conducted the ablation study that includes three
parts (architecture, loss and FOA) on the LVQuan19 dataset
with 5-fold cross-validation. Results are shown in Tbl. I.
Architecture ablation: To demonstrate the effects of our
FOANet, we compared the results of our method with other
related frameworks. We took a network used in our previous
works [26, 27] as baseline network (Net.1). First, we added a
localization module (as shown in Fig. 1) based on the baseline;
with this module, we obtained a mean improvement of 1.89%
in terms of DC, 0.9772 on 95HD, which meant that reducing
the proportion of the background in the image is beneficial
to improve segmentation accuracy. This architecture was the
one we presented for the Challenge LVQUAN19 [13]. Further,
we added the Part 2 module, so Net.1 was changed to Net.2
(Baseline+Part2) as shown in Fig. 2. We learned from our
comparison results that, when using dilated convolution and
capturing the global information in the feature maps of high
level, we could refine the segmentation results, which meant
further improvement of 1.70% in terms of DC, 0.1893 on
95HD. Loss ablation: To prove the effects of our hybrid loss,
we conducted comparative experiments over different losses
based on our method. The results in Tbl. I illustrate that the
proposed hybrid loss helps to improve the performance, and,
compared with other combinations, that loss function based on
three-level hierarchy (pixel-, patch- and map-level) can fully
guide the network to study the transformation relationship
between the input image and the corresponding label. FOA
ablation: As shown in Fig. 5, without FOA, the surrounding
similar tissues are mis-segmented, meaning that the segmen-
tation results are disturbed by these similar tissues, and mis-



TABLE II: Comparison of our method and other challengers
on the MM-WHS2017 MRI training dataset for segmenting
the myocardium.

Method DC (train) DC (test) Computation time Data
augmentation

Our (best) 0.851 ? < 2s No
Best [28] 0.796 0.781 < 2min No
Second-best [29] 0.752 0.778 - Yes
UB2 [30] ? 0.811 ? Yes

segmented parts are connected to the ground truth, which is
very difficult to remove. Therefore, by using our FOA module,
we decrease the impact of the surrounding similar tissues, and
the segmentation results are better.

Statistical analysis Fig. 6 shows the box plots of the
evaluation on different framework configurations for dice
scores. Compared with others configurations, the segmentation
results obtained by our method (configuration:i) have a small
standard deviation, which shows that our method is more
stable on region segmentation. Fig. 7 shows the box plots of
the evaluation for 95HD. Compared with others configurations,
based on the median quantile of box plots and the average of
56 patients, most of the values of our method are low, which
shows that our method optimizes the boundary quality.

Fig. 8 shows several localization and segmentation results
of our FOANet on LVQuan19. Fig. 8a indicates that we
started with finding the smallest rectangular box for each slice
of the patient’s heart, ensuring that each box contained the
segmentation object. Then we found the biggest rectangular
box on the basis of these smallest rectangular boxes; and based
on its shape, we cropped a new 3D volume from the original
3D volume as shown in the segmentation module of Fig. 1.
Thanks to the localization results of Fig. 8a, we knew that the
object was contained in/by the box, which greatly increased
the proportion of objects in the image and reduced class
imbalance. Fig. 8b compares ground truth and prediction, and
we can see that the differences mainly are near the boundaries.

G. Comparison with State-of-the-Art Methods

We continued to test our method on the MM-WHS2017
challenge with 5-fold cross-validation and we obtained seg-
mentation results for each class. As we focus in this article
on the myocardium segmentation, we will only present our
results for this structure. For the comparison with state-of-the-
art methods, we choose to compare our results with the results
of the first and second prizes of the challenge, who respectively
get dices of 0.87 and 0.863 in average for all classes. We
reported their results on the training and on the testing sets.
We also add a comparison with a late submission on the testing
set only (scores on the training set are not available), having
the best actual score of the challenge [30, 31]. As shown
in Tbl. II, compared with the first and second prizes of the
MM-WHS2017 challenge, without using data augmentation,
our method outperformed them for the segmentation of the
myocardium of the left ventricle. Furthermore, our method
needs less time to compute the prediction, which further

(a) Some localizations of the LV (in blue) of the 9th patient. The red dotted
box denotes that we extend next to the box by a size equal to 10 pixels to
ensure that the whole LV is included into the bounding box.

(b) Different comparisions between ground truth and prediction
corresponding to (a); yellow denotes the difference.

Fig. 8: Localization and segmentation of our FOANet on
LVQuan19.

validates the results in LVQuan19. We are still waiting for
the quantitative results on the testing dataset to be able to
compare our method fairly with [30]. Fig. 9 shows some
localization and segmentation results. Concerning the whole
heart segmentation, the class imbalance causes a lot of damage
without the localization module, because the seven structures
of the heart do not always appear at the same time in a slice
of the same 3D volume of a same patient. Without the FOA
module and Part 2, the network can confuse one class with
another: the RA can be confused with the RV, the LV can
be confused with the LA, and so on. Accordingly, a good
segmentation requires to capture the global information by



(a) Some localization results in one patient.

(b) Seven structures of the whole heart. Myo: myocardium, LA: left atrium,
LV: left ventricle, RA: right atrium, RV: right ventricle, AO: ascending aorta,
PA: pulmonary artery.

(c) Some segmentation results in one patient corresponding to (a).

Fig. 9: Localization and segmentation of our FOANet on MM-
WHS2017.

dilated convolutions and to enhance contrast using the FOA
module.

IV. CONCLUSION

In this paper, we propose a new focus of attention net-
work framework, FOANet, and present a new hybrid loss for
boundary-aware segmentation. FOANet is able to prevent the
interferences of surrounding similar tissues, while the hybrid
loss guides it at several levels. Both generate a better capture
not only of large-scale information but also of fine structures to
produce segmentations with nice boundaries. The computation
time of the entire pipeline is less than 2 seconds for an entire
3D volume, making it usable for clinical practice. In our future
work, we will continue to study the impact of the hybrid
loss by weighting differently the segmentation loss and the
boundary loss. Furthermore, we will add constraints on shapes
in the network.
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Abstract—Atrial fibrillation is the most common heart rhythm
disease. Due to a lack of understanding in matter of underlying
atrial structures, current treatments are still not satisfying.
Recently, with the popularity of deep learning, many segmen-
tation methods based on fully convolutional networks have
been proposed to analyze atrial structures, especially from late
gadolinium-enhanced magnetic resonance imaging. However, two
problems still occur: 1) segmentation results include the atrial-
like background; 2) boundaries are very hard to segment. Most
segmentation approaches design a specific network that mainly
focuses on the regions, to the detriment of the boundaries.
Therefore, this paper proposes an attention full convolutional
network framework based on the ResNet-101 architecture, which
focuses on boundaries as much as on regions. The additional
attention module is added to have the network pay more attention
on regions and then to reduce the impact of the misleading
similarity of neighboring tissues. We also use a hybrid loss
composed of a region loss and a boundary loss to treat boundaries
and regions at the same time. We demonstrate the efficiency of
the proposed approach on the MICCAI 2018 Atrial Segmentation
Challenge public dataset.

I. INTRODUCTION

Segmentation of left atrium in 3D late gadolinium-enhanced
magnetic resonance (LGE-MR) images with high precision is
a key step for atrial fibrillation (AF) ablation. Although a lot of
research has been made on the automation of this task, manual
annotations are still commonly used in the medical community,
which is highly time-consuming and is subject to inter- and
intra-observer variabilities [1]. With the recent development of
convolutional neural networks (CNNs), remarkable progress
has been made in matter of automatic segmentation [2].
However, the heterogeneity of the features corresponding to
a same label may introduce intra-class inconsistencies and
affect the accuracy of the segmentation [3]. Although the full
convolutional network (FCN) [4] or U-Net [5] architectures
can make up for the spatial resolution loss to a certain extent,
it performs poorly on small parts of objects. The main issues
are then the lack of precision regarding the boundaries of the
segmented objects and the loss of small objects and small
parts of objects. Therefore, in this paper, we consider two
challenging problems applyied on cardiac imaging: 1) how to
enlarge the receptive field of a CNN and improve the segmen-
tation accuracy on small parts of objects; 2) how to balance
the importance of the regions and the boundaries of objects.
Many challenging problems are linked with cardiac imaging:
poor contrast between the segmented domain and surrounding
structures, heterogeneities in matter of brightness due to the

blood flow, non-homogeneous partial volume effects due to
limited cardiac magnetic resonance (CMR) resolution (1.5T,
3.0T, etc.), and so on [6]. Most of the proposed network frame-
works are based on FCN or on U-Net. They use upsampling
layers and combine the feature maps from lower to higher
resolutions. Many extensions to these networks have been
proposed already: Chen [7] proposes a shape-aware multi-
view autoencoder (thanks to some modifications to the original
U-Net) to achieve high segmentation performance on cardiac
magnetic resonance (MR) image segmentation; Khened [8]
proposes DenseNet, based on FCNs, for cardiac segmentation
and tries to overcome the feature map explosion, but still fails
at the boundaries. In fact, the most used loss functions for
segmentation network such as dice or cross-entropy (CE) are
based on regional integrals, which are convenient for training
deep neural networks [9]. However, the CE has well-known
drawbacks in the context of highly unbalanced problems, and
dice losses may undergo diffculties when dealing with very
small structures, and are both region-based. Some methods
incorporated boundary information into the loss function.
Shen [10] proposes a multi-task FCN architecture where the
boundary information is directly incorporated into the loss
function, improving its results of segmentation. Kervadec [9]
designs one novel boundary loss, and combines it with the
standard regional losses, improving the boundary accuracy
without losing the region one. Su [11] and Qin [12] propose a
novel boundary-aware network, using the hybrid loss to help
the network focus on region segmentation without neglecting
boundaries. These kind of losses improve the boundary quality
but not the differenciation between similar objects or small
objects segmentation.

To enlarge the receptive field to segment small objects,
Yu [13] proposes what he calls dilated convolutions. By
combining them with deep residual networks [14], he intro-
duces dilated residual networks [15]. Wang [16] proposes a
multi-path dilated residual network based on Mask-RCNN
model [17], and solves the problem of information loss of
small objects in deep neural networks. Liu [18] proposes a
context embedding object detection network capturing both
details and context information to boost the performance on
small object detection. However, dilated convolutions often
lead to gridding artifacts [13]. Attention plays an important
role in human perception [19, 20, 21]. An important property
of the human visual system is to not process a whole scene at
once. Instead, humans exploit a sequence of partial glimpses
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Fig. 1: Architecture of our network.

and selectively focus on salient parts in order to capture the
visual structure in a better way [22, 23]. For this reason, at-
tention modules have been developed: they focus on important
regions, filter irrelevant information, and make up the limited
receptive field of CNNs. They get good performance on
segmentation tasks [24, 25, 26, 27]. For example, Zhang [24]
proposes an efficient multi-scale feature interaction mechanism
with attention, paying more attention to the important regions
of objects, capturing more detail information, and so improv-
ing segmentation accuracy on small objects. Attention modules
are also used for cardiac segmentation. Zhou [28] designed a
cross-modal attention module between the encoder and the
decoder, which leverages the correlated information between
modalities to benefit the cross-modal cardiac segmentation.
Based on 3D U-Net [29], Li [30] designed an attention module
based on hierarchical aggregation to force the network to focus
on the left atrium. Zhang [31] designed three types of attention
modules (spatial, channel, and region) achieving good segmen-
tation results on ventricles. Tong [32] presents an interleaved
attention mechanism, improving the performance of cardiac
MRI segmentation when applied to recurrent FCNs. Wei [33]
proposes a spatial constrained channel attention module to
pay more attention to the left ventricle and to decrease the
impact of surrounding similar tissues. This approach leads to
an effective segmentation of multiply connected domains but
do not take the boundaries into account.

Facing these difficulties, we propose a novel attention FCN
framework that focuses on the region of interest and is region-
and boundary-aware. The main contributions of our work are:
1) a novel attention network framework based on the pre-
trained Resnet-101 with attention module, which can improve
the segmentation accuracy on small parts of objects; 2) a novel
hybrid loss that considers regions and boundaries of objects
equally by combining region loss with boundary loss.

II. METHODOLOGY

A. Overview of Network Architecture

We propose a new attention network (see Fig. 1) using
ResNet-101 pretrained on ImageNet [34] to compute feature
maps. We discard its average pooling and fully connected lay-
ers, and keep only the sub-network made of one convolution-
based and four residual-based “stages”. Since the resolution
decreases at each stage, we obtain a set of fine to coarse
feature maps (with five levels of features).We add specialized
convolutional layers (with a 3×3 kernel size) with K (e.g.
K = 16) feature maps placed at the end of four residual-
based “stages”. They are concatenated together after up-
convolutional layers. These last feature maps are combined
with each of the outputs of the specialized layers, and then
fed into the attention module to generate the attention features.
Finally, we concatenate the attention features with the outputs
of Conv1 and we fed them into the softmax layer.

Attention Module. As mentioned before, in a traditional
segmentation model, the usual issue is that receptive fields
are too small, which leads to poor contextual representations.
Furthermore, the relationship between the different channels
should be explored since each channel map represents one
feature-specific response. Therefore, improving the depen-
dencies among channel maps can lead to richer features.
To solve these issues, we use an attention module inspired
by [3]. As shown in Fig. 2, F ∈ RC×W×H acts as an input
feature map for the attention module, where C, W, H are
the channel, the width and the height of the feature map
respectively. The upper branch F is fed into a convolutional,
a Reshape and then a Transpose layers, resulting in a feature
map Fu

0 ∈ R(W×H)×C . In the second branch (consider the
order from top to bottom), the input feature map F follows
the same operations minus the Transpose layer, resulting in
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Fu
1 ∈ RC×(W×H). Then, the Multiply and the Softmax layers

follow; they are applied on Fu
0 and Fu

1 to obtain the spatial
attention map Au ∈ R(W×H)×(W×H). The input F is fed into
a different convolutional layer in the third branch, and is then
multiplied by Au fed into the Transpose layer, resulting in Fu

2 .
Therefore the output Fu of the upper branch can be formulated
as follows:

Fu = λ × Fu
2 + β × F, (1)

where λ ∈ RC is initialized to [0,..,0], and β ∈ RC is
initialized to [1,..,1]. The values λ and β are used to gradually
learn the importance of the spatial attention map.

In the lower branch, the attention module mainly focuses
on the most important channels. The channel attention map
Al can be obtained by different combinations of convolutional,
Reshape and Transpose layers as shown at the bottom of Fig. 2.
Finally, the output Fl of the lowest branch can be defined as
follows: Fl = λ′×Fl

2+β′×F, where λ′ ∈ RC is initialized to
[0,..,0], and β′ ∈ RC is initialized to [1,..,1]. The feature map
Fl

2 denotes the results of the product of the input F with Al

fed into a convolutional passing through the transpose block.
Therefore, the attention feature map Fa is defined as:

Fa = Conv (Fu) + Conv
(
Fl
)
. (2)

Compared to [3], we make learnable the coefficient beta
multiplying F in the channel and position attention modules
(Eq. 1) so that the improved attention modules focus more on
important features. Furthermore, we do not use a convolution
layer before the channel attention module like in [3], so we do

not destroy the relationships between channel maps. Finally,
we apply one attention module for each scale explaining that
we have four attention modules, contrary to [3] where the
attention modules are only used at the output of the network.

B. Hybrid Loss

Most of medical segmentation methods directly use Cat-
egorical Cross Entropy[35] (CCE) or Dice Coefficient [36]
(DC) losses. Models trained with CCE loss usually have low
confidence in differentiating boundary pixels, leading to blurry
boundaries. DC were proposed for biased training sets but are
not specifically designed for capturing fine structures.

In our framework, we combine four losses: the dice loss,
the cross-entropy (CE) loss, the structure similarity (SSIM)
loss [37], and our self-made boundary loss. When used alone,
the dice and CE losses have respectively shown issues in
capturing fine structures and in segmenting correctly boundary
pixels. Combined together with in addition the SSIM loss
(used to reduce the impact of the misleading similarities of
neighboring tissues), we obtain an efficient region loss. By
adding to it our own boundary loss, we are then able to refine
the segmentation which converges to the boundaries.

Our hybrid loss consists of two parts: region loss and
boundary one. It is defined as: ℓH = ℓR + ℓB, where ℓR
denotes the region loss and ℓB denotes the boundary loss. They
are explained hereafter.

Region Loss.
To obtain high quality regional segmentation, we define

ℓR as a region loss: ℓR = ℓCCE + ℓSSIM + ℓDC, where ℓCCE,
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Fig. 3: Illustration of our “3D-Like” procedure. The red box depicts the boundary of the cropped input image. Three successive
cropped slices (b-d) are used to build a “3D-Like” image (e).

ℓSSIM and ℓDC denote Categorical Cross Entropy (CCE) loss ,
Structural Similarity (SSIM) loss and Dice Coefficient (DC)
loss respectively.

CCE [35] loss is commonly used for multi-class clas-
sification and segmentation. It is defined as ℓCCE =
− ∑C

i=1

∑H
a=1

∑W
b=1 yi

(a,b) ln y∗i(a,b), where C is the num-
ber of classes of each image, H and W are the height and
width of image, yi

(a,b) ∈ {0, 1} is the ground truth one-hot
label of class i at position (a, b) and y∗i(a,b) is the predicted
probability that (a, b) belongs to class i.

SSIM [37] loss can assess image quality [37], and can
be used to capture the structural information, which will
decrease the mis-segmentation rate of surrounding similar
tissues. Therefore, we integrated it into our training loss
to learn the differences between the segmented domain and
similar tissues around the segmented domain. Let S and G
be the predicted probability map and the ground truth mask
respectively, the SSIM loss function of S and G is defined as
ℓSSIM = 1 − ((2µSµG+ε1)(2σSG+ε2)) / ((µ2

S+µ2
G+ε1)(σ

2
S +

σ2
G+ε2)), where µS, µG and σS, σG are the means and standard

deviations of S and G respectively, σSG is their covariance, ε1=
0.012 and ε2= 0.032 are used to avoid a division by zero.

DC [36] loss is used to measure the similarity between two
sets as defined in Eq. 2. But for the multi-class segmentation
task, Eq. 2 is not suitable due to the class imbalance problem
in such cases. Therefore, we extend the definition of the DC
loss to multiclass segmentation in the following manner:

dicei = (ǫ + 2
∑Ni

n=1 yi
n y∗in) / (ǫ +

∑Ni

n=1 (yi
n + y∗in)) (3)

ℓDC = 1 − ∑C
i=1 dicei/ (Ni + ǫ), (4)

where Ni denotes the numbers of class i and ǫ > 0 is a smooth

Fig. 4: Illustration of calculating boundary loss.

factor.

Boundary Loss.
The loss functions mentioned before are mainly for region

segmentation, so we propose a boundary loss function to
optimize the segmentation result. As shown in Fig. 4, ∆A
denotes the difference between the boundary Gi

B of the ground
truth of class i and the boundary Si

B of the prediction of class
i. When ∆A tends to zero, it means that the segmentation
results are becoming better around the boundaries. Therefore
the boundary loss is defined as

ℓB =

C∑

i

∫

Gi
B

∥∥Si
B (a′, b′) − Gi

B (a, b)
∥∥2

d (a, b), (5)

where Gi
B (a, b) is a point on boundary Gi

B and Si
B (a′, b′)

denotes the corresponding point on boundary Si
B, along the

direction normal to Gi
B, i.e., Si

B (a′, b′) is the intersection of
Si

B and the line that is normal to Gi
B at position (a′, b′) (see

Fig. 4 for an illustration), ‖·‖denotes the L2 norm.

III. EXPERIMENTAL RESULTS

Dataset Description. We evaluate our method on the MIC-
CAI 2018 Atrial Segmentation Challenge 1 (AtriaSeg18). Its
aim is to segment the left atrium. It contains 100 annotated 3D
MRIs from patients with atrial fibrillation. The pixel spacing
of the MR images is 0.625 x 0.625 x 0.625 mm/pixel. The
dataset includes two different image sizes: 88×576×576 and
88×640×640.

Preprocessing. We cropped each slice to 346×346 pixels as
shown in Fig. 3a. The pre-processing begins with a Gaussian
normalization. Because ResNet-101 network’s input is an RGB
image, we propose to take advantage of the 3D information by
stacking 3 successive 2D frames, as presented in our previous
works [38, 39]: to segment the nth slice, we use the nth slice
of the MR volume, and its neighboring (n−1)th and (n+1)th

slices, as green, red and blue channels, respectively. This new
image, named “3D-Like” image, enhances the boundaries of
objects, as shown in Fig. 3.

1http://atriaseg2018.cardiacatlas.org/



Postprocessing. We crop the initial volume of size 88×W×H
into an image of size 88×w×h (where W and H are the
initial width and height of a slice). We keep only the greatest
connected component of the output segmentation and pad with
zeros to get back a T ×W ×H image.

Implementation and Experimental Setup. We implemented
our experiments on Keras/TensorFlow using a NVidia Quadro
P6000 GPU. We used the hybrid loss function, softmax to
get a probability distribution over classes, Adam optimizer
(batchsize = 3, β1 = 0.9, β2 = 0.999, ε = 0.001, lr = 0.01)
and did not use learning rate decay. We trained the network
during 30 epochs.

Evaluation Methods. Three metrics are used to evaluate
our method: dice to evaluate the regions, and 95% Hausdorff
distance (95HD) and Average Hausdorff distance (AHD) to
quantitatively evaluate the boundaries.

Comparison with State-of-the-arts Methods. The experi-
mental results obtained by several state-of-the-art segmenta-
tion networks are reported in Table I. Compared to other net-
works proposed in the context of medical image segmentation
,i.e., U-Net [5], DANet [3] and Deeplabv3+ [40], our network
achieves a mean improvement of 3.236%, 7.563% and 6.348%
(in terms of DC), 1.579 mm, 3.277 mm and 3.004 mm (on
95HD) and 0.082 mm, 0.384 mm and 0.374 mm (on AHD),
respectively. The attention module increases segmentation
performance by 0.552% (DC), 0.215 mm (95HD), and 0.015
mm (AHD), respectively as shown in Table I.

Ablation Study. To explain the advantages of the proposed
hybrid loss, we conduct an ablation study. We compare the
segmentation results with and without hybrid loss (see Table I).
Segmentation performance increases for DC, 95HD and AHD
for the 4 architectures, proving the benefits of the proposed
hybrid loss.

IV. CONCLUSION

In this paper, we propose a novel attention network architec-
ture, and a new hybrid loss. Unlike a traditional FCN, we first
add multi-layer features to keep as much details as possible,
then we concatenate them with level features, and input them
in the attention modules to obtain the attentional features. By
using the attention module, the proposed network framework
is able to prevent the interferences between the surrounding
similar tissues and to capture large-scale and thiner structures.
We propose a hybrid loss function that fairly treats regions
and boundaries of objects, optimizes the convergence to the
boundaries, while maintaining the segmentation precision of
the regions. Compared to the state-of-the-arts methods on
the AtriaSeg18 challenge dataset, our segmentation results
overcome the best one by an average of 2.179% in terms of DC
and 1.3 mm on 95HD. Taking into account regions as well as
boundaries in our loss permits to have a segmentation more
precise, especially at the boundaries. Moreover, our method
with attention module and hybrid loss is more robust. The

(a) Our Method (b) U-Net [5]

(c) DANet [3] (d) Deeplabv3+ [40]

Fig. 5: Comparison of the proposed method and other state-
of-the-art architectures. The white pixels are the differences
between the prediction and the GT.

computation time of our pipeline is less than 4 seconds for
an entire 3D volume of a heart. As future works, we plan
to continue to study the impact of the hybrid loss when the
region of interest and the background are imbalanced. We plan
also to add shape constraints to the predicted boundary of the
LA in the attention module. The final aim is to be able to
accurately segment LA wall to diagnose fibrosis.
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[29] Ö. Çiçek, A. Abdulkadir, S. S. Lienkamp, T. Brox, and
O. Ronneberger, “3D U-Net: Learning dense volumetric seg-
mentation from sparse annotation,” in Proc. of IEEE Intl.
Conf. on Medical Image Computing and Computer Assisted
Intervention (MICCAI), ser. LNCS, vol. 9901. Springer,
2016, pp. 424–432.

[30] C. Li, Q. Tong, X. Liao, W. Si, Y. Sun, Q. Wang, and P.-
A. Heng, “Attention based hierarchical aggregation network
for 3D left atrial segmentation,” ser. LNCS, vol. 11395.
Springer, 2018, pp. 255–264.

[31] T. Zhang, A. Li, M. Wang, X. Wu, and B. Qiu, “Multiple
attention fully convolutional network for automated ventricle
segmentation in cardiac magnetic resonance imaging,” Jour-
nal of Medical Imaging and Health Informatics, vol. 9, no. 5,
pp. 1037–1045, 2019.

[32] Q. Tong, C. Li, W. Si, X. Liao, Y. Tong, Z. Yuan, and P. A.
Heng, “RIANet: Recurrent interleaved attention network for
cardiac MRI segmentation,” Comp. in Bio. and Med., vol.
109, pp. 290–302, 2019.

[33] H. Wei, W. Xue, and D. Ni, “Left ventricle segmentation
and quantification with attention-enhanced segmentation and
shape correction,” in Proc. of the Intl. Symp. on Image Com-
puting and Digital Medicine, 2019, pp. 226–230.

[34] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-
Fei, “Imagenet: A large-scale hierarchical image database,”
in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2009, pp. 248–255.

[35] Z. Zhang and M. Sabuncu, “Generalized cross entropy loss
for training deep neural networks with noisy labels,” in Proc.
of the Intl. Conf. on Neural Information Processing Systems
(NIPS), 2018, pp. 8792–8802.

[36] L. R. Dice, “Measures of the amount of ecologic association
between species,” Ecology, vol. 26, no. 3, pp. 297–302, 1945.

[37] Z. Wang, E. P. Simoncelli, and A. C. Bovik, “Multi-scale
structural similarity for image quality assessment,” in Proc.
of the 37th Asilomar Conference on Signals, Systems and
Computers, vol. 2, 2003, pp. 1398–1402.
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Abstract. In the field of medical imaging, many different image modal-
ities contain different information, helping practitionners to make diag-
nostic, follow-up, etc. To better analyze images, mixing multi-modalities
information has become a trend. This paper provides one cascaded UNet
framework and uses three different modalities (the late gadolinium en-
hancement (LGE) CMR sequence,the balanced- Steady State Free Pre-
cession (bSSFP) cine sequence and the T2-weighted CMR) to complete
the segmentation of the myocardium, scar and edema in the context of
the MICCAI 2020 myocardial pathology segmentation combining multi-
sequence CMR Challenge dataset (MyoPS 2020). We evaluate the pro-
posed method with 5-fold-cross-validation on the MyoPS 2020 dataset.

Keywords: Deep Learning · Myocardial Pathology · Segmentation ·
UNet.

1 Introduction

The assessment of myocardial viability is essential for diagnosis and follow-up of
patients suffering from myocardial infarction (MI) [17, 16]. However, many differ-
ent images modalities in the field of medical imaging are available and are com-
plementary. Late gadolinium enhancement (LGE) cardiac magnetic resonance
(CMR) sequence which visualizes MI, T2-weighted CMR (imaging the acute in-
jury and ischemic regions) and balanced-Steady State Free Precession (bSSFP)
cine sequence (which captures cardiac motions and presents clear boundaries)
are examples of such imaging modalities. Therefore, making a better use of the
information in these different modalities has become a research focus. In recent
years, many semi-automated and automated methods have been proposed for
multi-modal medical image segmentation using deep learning-based methods,
such as convolutional neural networks (CNNs) [8] and fully convolutional net-
works (FCNs) [9] especially the U-Net architecture [11]. For example, Guo [3, 4]
proposed a conceptual image fusion architecture for supervised biomedical image
analysis. They designed and implemented an image segmentation system based
on deep CNNs to contour the lesions of soft tissue sarcomas using multimodal
images by fusing the information derived from different modalities.
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Fig. 1: Myocardial pathology, the picture is from MyoPS2020 challenge 1.

Although we can use multi-modal information to improve the myocardial
pathology segmentation, class imbalance remains a problem to tackle. Network
overfitting is common in the field of medical imagingbecause of the relatively
small size of handled datasets. Data augmentation is classically used in the pre-
processing stage to overcome this limitation, and weighted loss functions are
designed. For example, Zhao et al. [15, 10] used data augmentation by rotating
and flipping the heart segmentations to reduce the impact of overfitting. Zhao
et al. [14] proposed an automated data augmentation method for synthesizing
labeled medical images, which provided significant improvements over state-of-
the-art methods for one-shot biomedical image segmentation. Sudre et al. [13]
proposed the generalized dice to solve the problem of highly unbalanced segmen-
tations. Abraham et al. [1] proposed a generalized focal loss function based on
the Tversky index to address the issue of data imbalance in medical image seg-
mentation. Examples of data augmentation methods to overcome this issue can
be found in [2, 12, 6, 5, 7]. However, datasets obtained through data augmenta-
tion are strongly correlated with the original datasets, Therefore, the proportion
of negative samples remains significantly larger than the proportion of positive
samples after data augmentation. Thus, data augmentation does not reduces the
risk of overfitting. For the proposed improved loss function can effectively reduce
the issues of class imbalance, it does not fundamentally address the problems
caused by the lack of datasets.

Therefore, in this paper, in order to segment myocardial pathology (see
Fig. 1), we begin with a segmentation of the anatomical tissue (left ventricle
(LV), right ventricle (RV), whole heart (WH), myocardium (myo)) around it,
and then let the network learn a relationship between these segmentation re-
sults to obtain the myocardial pathology. Compared with direct segmentation
of myocardial pathology, the effect of class imbalance can be reduced by the
segmentation of surrounding anatomical tissues, because it helps the network to
focus on the small lesions regarding to the surrounding tissues.

2 Methodology

2.1 Overview of Network Architecture

We propose a hybrid network (see Fig. 2) using 5 UNet [11] to segment myocar-
dial pathology. Our network is composed of three UNet named UNet1 and two
named UNet2. The main difference between UNet1 and UNet2 is number of
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Fig. 2: Global overview of the proposed method.

Table 1: The structural configuration of UNet.

Layers
Input size

Operation Kernel Stride Regul.
Output size

UNet1 UNet2 UNet1 UNet2
Input image (240,240,2) (240,240,4) - - - - (240,240,2) (240,240,4)

C1 (240,240,2) (240,240,4) [Conv2d+relu]*2 3 1 L2 (240,240,64) (240,240,8)
C2 (240,240,64) (240,240,8) Maxpooling2d 2 - - (120,120,64) (120,120,8)
C3 (120,120,64) (120,120,8) [Conv2d+relu]*2 3 1 L2 (120,120,128) (120,120,16)
C4 (120,120,128) (120,120,16) Maxpooling2d 2 - - (60,60,128) (60,60,16)
C5 (60,60,128) (60,60,16) [Conv2d+relu]*2 3 1 L2 (60,60,256) (60,60,32)
C6 (60,60,256) (60,60,32) Maxpooling2d 2 - - (30,30,256) (30,30,32)
C7 (30,30,256) (30,30,32) [Conv2d+relu]*2+Dropout 3 1 L2 (30,30,512) (30,30,64)
C8 (30,30,512) (30,30,64) Maxpooling2d 2 - - (15,15,512) (15,15,64)
C9 (15,15,512) (15,15,64) [Conv2d+relu]*2+Dropout 3 1 L2 (15,15,1024) (15,15,128)
O1 (240,240,2) (240,240,2) Sigmoid - - - (240,240,1) (240,240,1)

filters as shown in Table. 1: the number of filters of UNet1 is [64 128 256 512 256
128 64] and the number of filters of UNet2 is [8 16 32 64 32 16 8]. Their frame-
work is same. It consists of the classical two parts of the UNet network as shown
in Fig. 3: a down-sampling part and an up-sampling part, and shortcut connec-
tions between the two parts to fuse high-level features and low-level features.
UNet1 is used to segment the anatomical tissue around myocardial pathology
and obtain three segmentation results: LV+RV, Myo, and WH. UNet2 is used
to segment myocardial pathology by learning the relationships between the sur-
rounding anatomical tissue and the pathological ones. Since the lesions are very
small and unbalanced, we reduce the number of filters of UNet2 in order to
reduce the impact of overfitting.

3 Experimental Results

Dataset Description. We evaluate our method on the myocardial pathology
segmentation combining multi-sequence CMR 2 dataset (MyoPS 2020). Its aim is
to segment myocardial pathology, especially scar (infarcted) and edema regions.

2 http://www.sdspeople.fudan.edu.cn/zhuangxiahai/0/MyoPS20/index.html
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Fig. 3: Architecture of networks.

It contains 45 cases of multi-sequence CMR (25 cases for training and 20 cases
for testing). Each case refers to a patient with three sequence CMR, i.e., LGE,
T2 and bSSFP CMR. The slice spacings of multi-sequence CMR volume range
from 11.999 mm/pixel to 23.000 mm/pixel, while in-plane resolution ranged from
0.729 mm/pixel to 0.762 mm/pixel. The average sizes: 482×479×4 pixels.

Preprocessing and Postprocessing. We cropped each slice to 240× 240
pixels and we do not use data augmentation. The pre-processing begins with a
Gaussian normalization. For post-processing, we pad with zeros to get back a
initial width and height of a slice.

Implementation and Experimental Setup. We implemented our experi-
ments on Keras/TensorFlow using a NVidia Quadro P6000 GPU. We used five
different loss functions for training the network and used sigmoid to get a prob-
ability distribution of the left and right ventricle, myocardium, whole heart, scar
and edema, and scar, respectively (as shown in Fig. 2). Adam optimizer (batch-
size = 1, β1 = 0.9, β2 = 0.999, ε = 0.001, lr = 0.0001) and did not use learning
rate decay. We trained the network during 300 epochs.

Training Step. First, we kept weight of UNet2 unchanged, which means
UNet2 was not trained at the beginning, then we trained UNet1. After finished
the train of UNet1, we kept weight of UNet1 unchanged, then trained UNet2.

Evaluation Methods. One metric is used to evaluate our method: dice coef-
ficient (DC) to evaluate the regions of myocardial pathology.

3.1 Segmentation Results

As shown in Table. 2, we evaluate the proposed method with 5-fold-cross-validation.
We obtain a mean DC of 92.3% on WH, 84.9% on LV+RV, and 84.7% on Myo
by UNet1. Without using data augmentation, based on the original dataset,
we obtain a higher segmentation accuracy, which lays the foundation for the
subsequent segmentation of myocardial pathology. Finally, we obtain a mean
DC of 20.6% on edema, 51% on scar by UNet2. We used the trained network
to predict the testset (20 cases) and received the evaluation of our prediction
results from the MyoPS2020 organizer: the mean DC of 58.6% on scar and the
mean DC of 63.9% on scar and edema.
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Table 2: Evaluation results on 5-fold-cross-validation.

Patient 101-105 106-110 111-115 116-120 121-125 Average Test datasets
Edema 0.284 0.153 0.189 0.122 0.280 0.206 −
Scar 0.473 0.496 0.515 0.464 0.602 0.510 0.586
Myo 0.844 0.852 0.811 0.859 0.869 0.847 −

LV+RV 0.818 0.854 0.812 0.897 0.864 0.849 −
WH 0.925 0.937 0.876 0.918 0.959 0.923 −

As shown in Fig. 4, for the segmentation results of whole heart, left and
right ventricle, and myocardium, as the number of positive samples continues to
decrease, the segmentation accuracy is also decreasing, and false segmentation is
mainly concentrated at the boundary, which is mainly because ambiguities often
appear near the boundaries of the target domains due to tissue similarities. For
the segmentation results of edema and scar, the poorly segmentation result is not
only on the boundary, but also in regions. In the original dataset, edema does not
exist in many slices, which further leads to a reduction in the effective dataset for
edema, therefore, the segmentation network is very difficult to segment edema.

4 Conclusion

In this paper, we propose a way of reverse thinking, not to segment the myocar-
dial pathology directly, but to learn a relationship between the surrounding nor-
mal tissue and it by designing one stacked and parallel UNets with multi-output
framework. We evaluate the proposed method with 5-fold-cross-validation on
the MICCAI 2020 myocardial pathology segmentation combining multi-sequence
CMR Challenge dataset (MyoPS 2020) and achieve a mean DC of 20.6%, 51% on
edema and scar,respectively. The computation time of the entire pipeline is less
than 3 seconds for an entire 3D volume, making it usable for clinical practice.
However, the segmentation accuracy of myocardial pathology is affected by the
segmentation accuracy of surrounding normal tissues. Therefore, in our future
work, we will continue to study the relationship between the surrounding nor-
mal tissue and myocardial pathology and improve the segmentation accuracy of
surrounding normal tissues.
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(b) Edema and scar. Scar is in white. Top = segmentation, bottom = Ground Truth

(d) Myocardium. Top = segmentation, bottom = Ground Truth

(f) Left and right ventricle. Top = segmentation, bottom = Ground Truth

(h) Whole heart. Top = segmentation, bottom = Ground Truth

Fig. 4: Qualitative segmentation results.
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Abstract. Automatic segmentation of the left ventricle (LV) of a living human
heart in a magnetic resonance (MR) image (2D+t) allows to measure some clin-
ical significant indices like the regional wall thicknesses (RWT), cavity dimen-
sions, cavity and myocardium areas, and cardiac phase. Here, we propose a novel
framework made of a sequence of two fully convolutional networks (FCN). The
first is a modified temporal-like VGG16 (the “localization network”) and is used
to localize roughly the LV (filled-in) epicardium position in each MR volume. The
second FCN is a modified temporal-like VGG16 too, but devoted to segment the
LV myocardium and cavity (the “segmentation network”). We evaluate the pro-
posed method with 5-fold-cross-validation on the MICCAI 2019 LV Full Quan-
tification Challenge dataset. For the network used to localize the epicardium, we
obtain an average dice index of 0.8953 on validation set. For the segmentation
network, we obtain an average dice index of 0.8664 on validation set (there, data
augmentation is used). The mean absolute error (MAE) of average cavity and
myocardium areas, dimensions, RWT are 114.77 mm2; 0.9220 mm; 0.9185 mm
respectively. The computation time of the pipeline is less than 2 seconds for an
entire 3D volume. The error rate of phase classification is 7.6364%, which in-
dicates that the proposed approach has a promising performance to estimate all
these parameters.

Keywords: Deep learning · VGG · Left ventricle quantification · Segmentation
· Fully convolutional network.

1 Introduction

Left ventricle (LV) full quantification is critical to evaluate cardiac functionality and
diagnose cardiac diseases. Full quantification aims to simultaneously quantify all LV
indices, including the two areas of the LV (the area of its cavity and the area of its my-
ocardium), six RWT’s (along different directions and at different positions), three LV
dimensions (along different directions), and the cardiac phase (diastole or systole) [1,
2], as shown in Fig. 1. However, the LV full quantification is challenging: LV samples
are variable, not only because the samples can be obtained from different hospital, but
also because some of them are not concerned by cardiac diseases. It is also challeng-
ing because there are complex correlations between the LV indices. For example, the
cavity area has a direct influence on the three LV dimensions and the cardiac phase.



The MICCAI 2019 Challenge on Left Ventricle Full Quantification1 (LVQuan19) is an
extension of the one of 2018 2 with the difference that now the original data is given
without preprocessing for training and testing phases, to be closer to clinical reality.

We propose then in this paper a two-stage temporal-like FCN framework that seg-
ments and estimates the parameters of interest in 2D+t sequences of the MR image of
a LV. First, in each temporal frame, we localize the greatest connected component de-
tected by the localization network, we dilate it using a size equal to 10 pixels, and we
compute the corresponding bounding box. This results in a sequence of cropped LV’s
(that we will abusively call cropped volume). Second, we use these cropped volumes
to train the LV segmentation network. The procedure is depicted in Fig. 2. Finally, the
segmentation results are used for the LV full quantification.

The pipeline is based on our previous works [3, 4] but with a new step: we added
one localization network before the segmentation network. Compared with [5], our lo-
calization precision is higher, because we localize the entire LV region (the filled-in
epicardium) instead of the center of the bounding box containing the LV structure.
Compared with [6], our method is quicker and do not have memory limit problems. To
take advantages of time information, we use 3 successive 2D frames (n−1, n, n+1) at
time n as inputs in the localization and in the segmentation networks, yielding to better
results than the traditional approach which used only the information at time n for the
nth slice.

We evaluated the proposed method using the dataset provided by LVQuan19 with
5-fold-cross-validation. Experiments with (very) limited training data have shown that
our model has a stable performance. We added pre-processing and post-processing steps
to enhance and refine our results.

Fig. 1. Illustration of LV indices, including (a) the cavity area and the myocardium area, (b) three
LV dimensions, (c) six regional wall thicknesses and (d) the cardiac phase (diastole or systole).

The plan is the following: we detail our methodology in Section 2, we detail our
experiments in Section 3, and then Section 4 concludes.



Fig. 2. Global overview of the proposed method.

2 Methodology

2.1 Dataset description

LV dataset used for this work was provided by the LVQuan19 challenge. It contains
56 patients processed SAX MR sequences. For each patient, 20 temporal frames are
given and correspond to a whole cardiac cycle. All ground truth (GT) values of the LV
indices are provided for every single frame. The pixel spacings of the MR images range
from 0.6836 mm/pixel to 1.5625 mm/pixel, with mean values of 1.1809 mm/pixel. LV
dataset includes two different image sizes: 256× 256 or 512× 512 pixels.

2.2 Preprocessings

Let us recall what we call Gauss normalization: for the (2D+t)-image I corresponding
to a given patient, we compute I := I−µ

σ where µ is the mean of I and σ its standard
deviation (σ is assumed not to be equal to zero). There are then two different pre-
processing steps as depicted in Fig. 2.

– The first pre-processing (see preprocessing1 in Fig. 2) begins with a Gauss nor-
malization. When we treat training data, we crop the initial slices into a 256× 256
image to optimize the dice of the network (we do not do this for test datasets). Then
we concatenate them for each n into a 256 × 256 × 3 pseudo-color image where
R,G,B correspond respectively to n−1, n, n+1 (we do not detail the cases n = 1
and n = 20 because of a lack of space).

– The second pre-processing (preprocessing2 in Fig. 2) is in four steps: (1) data aug-
mentation using rotations and flips, (2) resizing with a fixed inter-pixel spacing
(0.65mm), (3) Gauss normalization, and (4) we concatenate into a pseudo-color
image like above.

1 https://lvquan19.github.io
2 https://lvquan18.github.io



(a) n− 1 (b) n (c) n+ 1 (d) concatenation

Fig. 3. Illustration of our “temporal-like” procedure.

Because the VGG-16 network’s input is an RGB image, we propose to take advantage of
the temporal information by stacking 3 successive 2D frames: to segment the nth slice,
we use the nth slice of the MR volume, and its neighboring (n − 1)th and (n + 1)th

slices, as green, red and blue channels, respectively. This new image, named “temporal-
like” image, enhances the area of motions, here the heart, as shown in Fig. 3.

2.3 Network architecture

Fig. 4. Architecture of our networks.

The localization and the segmentation networks have the same architecture (see
Fig. 4). First we downloaded the pre-trained original VGG16 [7] network architecture.
We recall that this network has been pre-trained on millions of natural images of Im-
ageNet for image classification [8]. Second, we discard its fully connected layers and
this way we keep only the sub-network made of five convolution-based “stages” (the
base network). Each stage is made of two convolutional layers, a ReLU activation func-
tion, and a max-pooling layer. Since the max-pooling layers decrease the resolution of
the input image, we obtain a set of fine to coarse feature maps (with 5 levels of fea-
tures). Inspired by the work in [9, 10], we added specialized convolutional layers (with



a 3× 3 kernel size) with K (e.g. K = 16) feature maps after the up-convolutional lay-
ers placed at the end of each stage. The outputs of the specialized layers have then the
same resolution as the input image, and are then concatenated together. We add a 1× 1
convolutional layer at the output of the concatenation layer to linearly combine the fine
to coarse feature maps. This complete network provides the final segmentation result.3

2.4 Postprocessing

Let us assume that we input the 20 cropped temporal slices of a patient into an image
of size 20 × width × height (where the crop is due to the localization procedure) in
preprocessing2 to obtain a 20 × width × height × 3 image. We filter then the ouput
of size 20× width× height by keeping only the greatest connected component in the
segmented (2D + t)-image, and we compute the inverse interpolation on the x and y
axes to get back the initial inter-pixel spacing. Finally, we add a zero-valued border to
get back a 20× 256× 256 or a 20× 512× 512 image (depending on the shape of the
input).

2.5 Evaluation Methods

The LV quantification as defined in LVquan19 relies on 11 parameters: the areas of
the LV cavity and the myocardium, 3 dimensions of the cavity and 6 measurements of
the wall thickness. We measure the areas (see Fig. 1 (a)) by computing the number of
pixels in the segmented regions corresponding to the LV cavity and the myocardium.
To measure the three cavity dimension values (dim1, dim2, dim3) (see Fig. 1 (b)), we
proceed this way: because our final segmentation results is the LV myocardium, we first
extracted the LV cavity from the segmentation results. We then compute the boundary
of the LV cavity and calculate the distances between the points of the boundary and
the centroid of the LV cavity along the integral angles θ ∈ [−30, 30[ (in degrees).
Finally, we average these distances. We do this for the six separated regions of the wall.
Finally, we compute the mean dimensions for each pair of opposite regions and we
obtain (dim1, dim2, dim3). To measure the RWT’s values, we first find the boundaries
of epicardium and endocardium respectively, and we compute the distances between the
points on the boundary of epicardium and the points on the boundary of endocardium
along the same integral angles as before where zero corresponds to the normal. Finally,
we compute the mean among 60 distance values for each region. To classify the phase
as systolic or diastolic, we use a simple method: we detect the time nmax when the
cavity is maximal, and nmin when the cavity is minimal. Assuming that we have the
case nmin > nmax, then for each time n ∈ [nmax, nmin], we label the image as systolic
phase, and otherwise it is a diastolic phase. We do the converse when we have nmax <
nmin.

3 Experiments

We implemented our experiments on Keras/TensorFlow using a NVidia Quadro P6000
GPU. We used the multinomial logistic loss function for a one-of-many classification

3 Note that we designed our network’s architecture to work with any input shape.



task, passing real-valued predictions through a softmax to get a probability distribution
over classes. For the localization network, we used an Adam optimizer (batchsize=4,
β1=0.9, β2=0.999, epsilon=0.001, lr = 0.002) and we did not use learning rate de-
cay. We trained the network during 10 epochs. We recall that we used the filled-in
epicardium connected component given in the GT as the ”ones” of the output of our
network. For the segmentation network, we used the same optimizer and the same pa-
rameters but we changed the batchsize to 1. Also, we considered three different classes4

in the given GT: the background (0), the myocardum (1), the cavity (2) (we merge then
0 and 2 after the segmentation). This way, we obtained better results than using only the
wall of the LV.

3.1 Results

We tested our method with 3- and 5-fold-cross-validations on the challenge dataset. An
example of bounding box is depicted in red (we did not do any dilation here) in Fig. 5.
We obtain an average dice index of 0.8953 on validation set. In practice, we extend next
the box by a size equal to 10 pixels to ensure that the whole LV is included into the
bounding box.

Fig. 5. Some localizations (in red) of the LV (in blue) of the 9th patient.

For the segmentation, we compared ResNet50 with VGG16 as feature extraction on
3-fold-cross-validation (18, 19, 19) (see Fig. 6). VGG16 is then more efficient to detect
boundaries than ResNet50 in our application.

Fig. 6. Segmentation results (ResNet50-FCN on the left side vs. VGG16-FCN on the right side)
for one same patient. The yellow color shows the false negatives.

Table 1 presents the average results for the two compared methods. The 11 indices
of LV full quantification and dice using the VGG16-FCN are better than when we use

4 From a technical point of view, we proceeded to a classification more than to a segmentation.



Table 1. Average results of compared methods on 3-fold-cross-validation. Values are shown as
mean absolute error.

Dataset Method
Cavity

Areas(mm2)
Myocardium
Areas(mm2)

Dims(mm) RWT(mm) Phase
Error(%)

Dice
(%)dim1 dim2 dim3 average IS I IL AL A AS average

Validating data
ResNet50-FCN 279.32 284.84 1.8359 1.6320 1.7767 1.7482 1.2106 1.3059 1.7157 1.6225 1.3303 1.2437 1.4048 15.1267 79.20
VGG16-FCN
(our method) 88.84 157.01 0.9799 1.0691 0.9443 0.9978 0.8320 0.9173 1.1190 1.1124 0.8895 0.8408 0.9518 8.0311 86.04

the ResNet50-FCN. For these reasons, we used the VGG16-FCN for the segmentation
of the LV.

To verify the stability of our algorithm, we evaluated the proposed method with
5-fold-cross-validation (11, 11, 11, 11, 12). In Table 2, the average results are showed.
Compared with 3-fold-cross-validation, the average areas error is improved from 122.93
mm2 to 114.77 mm2, the average dims error is improved from 0.9978 mm to 0.9220
mm, the average RWT error is improved from 0.9518 mm to 0.9185 mm, the aver-
age phase error is improved from 8.0311% to 7.6364% and the dice is improved from
86.04% to 86.64%.

Table 2. Average results on 5-fold-cross-validation. Values are shown as mean absolute error.

Dataset
Cavity

Areas(mm2)
Myocardium
Areas(mm2))

Dims(mm) RWT(mm) Phase
Error(%)

Dice
(%)dim1 dim2 dim3 average IS I IL AL A AS average

Validating data 94.31 135.23 0.9067 0.9792 0.8801 0.9220 0.8362 0.9147 1.0798 1.0560 0.8270 0.7973 0.9185 7.6364 86.64
Testing data 226.80 577.50 6.4934 3.8814 3.9835 4.7861 4.2693 1.8585 2.0570 1.9129 1.6441 3.6039 2.5576 9.83 -

In Table 2, we also reported the results on test dataset given by the organizers of
LVQuan19. The test dataset was composed of processed SAX MR sequences of 30
patients. For each patient, only the SAX image sequences of 20 frames were provided
(no GT).

Fig. 7. Some segmentation results on the 5th patient of test dataset.

In Fig. 7, the segmentation results on fifth patient of test dataset are showed, the
yellow ring denotes the segmentation results.

4 Conclusion

In this paper, we propose to use a modified VGG16 to proceed to pixelwise image seg-
mentation, in particular to segment the wall of the heart LV in temporal MR images. The



proposed method provides promising results at the same time in matter of localization
and segmentation, and leads to realistic physical measures of clinical values relative to
the human heart. Our perspective is to try to better segment the boundary of the wall
of the LV, either by increasing the weights relative to the boundary regions in the loss
function, or by separating the boundary and the interior of the wall into two classes
during the classification procedure.

Acknowledgements We thank the organizers of the MICCAI 2019 LV Full Quantifi-
cation Challenge for providing the LV dataset, NVidia for giving us a Quadro P6000
GPU for this research, and the financial support from China Scholarship Council (CSC,
File No.201806290010)

References

1. Xue, W. F., Brahm, G., Pandey, S., Leung, S., Li, S.: Full left ventricle quantification via deep
multitask relationships learning. Med. Image Anal. 43, 54–65 (2018).

2. Xue, W. F., Lum, A., Mercado, A., Landis, M., Warringto, J., Li, S.: Full quantification
of left ventricle via deep multitask learning network respecting intra-and inter-task re-
latedness. In: Descoteaux, M.Maier-Hein, L., Franz, A., Jannin, P., Collins, P.,Duchesne,
S. (eds.) MICCAI 2017. LNCS, vol. 10435, pp. 276–284. Springer, Cham (2017).
https://doi.org/10.1007/978–3–319–66179–7 32
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atrial segmentation in a few seconds using fully convolutional network and transfer learn-
ing, In: Pop, M., Sermesant M.,Zhao J. C., Li, S., McLeod, K., Young, A., Rhode, K.,
Mansi, T. (eds.) STACOM 2018. LNCS, vol. 11395, pp. 339–347. Springer, Cham (2018).
https://doi.org/10.1007/978–3–030–12029–0 37

5. Payer, C.,Stern, D., Bischof, H., Carlinet, E., Urschler, M.: Multi-label Whole Heart
Segmentation Using CNNs and Anatomical Label Configurations, In: Pop M., Serme-
sant, M., Jodoin, P. M., Lalande, A., Zhuang, X. H., Yang, G., Young, A., Bernard,
O.(eds.) STACOM 2017. LNCS, vol. 10663, pp. 190–198. Springer, Cham (2017).
https://doi.org/10.1007/978–3–319–75541–0 20

6. Wang, C. J., MacGillivray, T., Macnaught, G., Yang, G., Newby, D.: A two-stage 3D Unet
framework for multi-class segmentation on full resolution image. CoRR abs/1804.04341
(2018)

7. Simonyan, K., Zisserman A.: Very deep convolutional networks for large-scale image recog-
nition. CoRR abs/1409.1556 (2014)

8. Krizhevsky, A., Sutskever, I., Hinton G. E.: ImageNet classification with deep convolutional
neural networks. Advances in neural information processing systems, pp. 1097–1105, 2012

9. Long J., Shelhamer E., Darrell T.: Fully convolutional networks for semantic segmentation.
Proc. of CVPR, pp.3431–3440. IEEE, Boston (2015).
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