

1/25

[Graphs](#page-1-0) [Abnormality](#page-8-0) [Application](#page-16-0) [Ongoing & Future Works](#page-21-0) [References](#page-25-0)
0000000 00000000 00000 00000 0000

SECKIOT

 OQ

 $A \equiv 1 + 4 \pmod{4} \Rightarrow A \equiv 1 + 4 \pmod{2} \Rightarrow B$

Testing Abnormality of a Sequence of Graphs: Application to Cybersecurity

C. Boinay¹, C. Biernacki², C. Preda³, F. Foyer⁴

 1 Seckiot & Inria, 2 Inria & U. Lille, 3 U. Lille & Inria 4 Seckiot

Juin 2024

Inzia-

1 [Graphs in OT](#page-1-0)

2 [Testing graph abnormality](#page-8-0)

3 [Application to laboratory data](#page-16-0)

[Graphs](#page-1-0) [Abnormality](#page-8-0) [Application](#page-16-0) [Ongoing & Future Works](#page-21-0) [References](#page-25-0)

COOOOO OOOOOOOOO OOOOOO OOOOO OOOO

 $\mathbf{E} = \mathbf{A} \oplus \mathbf{A} + \mathbf{A$

 OQ

Operational Technology (OT)

- Part of modern critical infrastructures such as water treatment plants, oil refineries, power grids, and nuclear and thermal power plants
- Composed of heterogeneous and complex components: sensors and actuators, programmable logic controllers, supervisory control and data acquisition and human-machine interface

It is thus essential, but also challenging, to preserve OT from malicious actions (attacks)

Multiplication of the attacks since Stuxnet

Stuxnet has shown that isolation of the network isn't enough to prevent attack

 $A \equiv 1 + 4 \pmod{4} \Rightarrow A \equiv 1 + 4 \pmod{2} \Rightarrow B$

Standard approaches to detect an attack

- Solutions in IT (Information Technology) not sufficient to stop OT attacks (Raman, Ahmed et Mathur [2021\)](#page-26-0)
- Firms use attacks history signature-based methods (Umer et al. [2022\)](#page-27-0), but
	- What happens with a novel type of attack?
	- What happens if the signature is not well-chosen?
- **Anomaly detection is the most efficient to stop a new attack** since it can detect deviation of the normal behaviour (Raman, Ahmed et Mathur [2021\)](#page-26-0)

Thus we focus on signature-free anomaly detection...

イロト イ部ト イ君ト イ君ト 一番

A way to see anomalies in the network: the graph

According to Neil et al. [2013,](#page-26-1) an attack in a network don't happen in isolation, but implies an increase of communication between multiple endpoints. Modeling the network with a graph ables to see such anomalies.

Typical behaviour are:

- Exploration of the attacker: a star in the graph
- Lateral movement: a directed path in the graph

Possible modeling:

```
a node = an IP address
```
a a packet sent $=$ an edge

[Graphs](#page-1-0) [Abnormality](#page-8-0) [Application](#page-16-0) [Ongoing & Future Works](#page-21-0) [References](#page-25-0)

0000000 00000000 00000 00000 0000

K ロ ▶ K 御 ▶ K 重 ▶

 $Q \cap R$

Illustrating star and path

Normal graph (left), graph with a path (middle), graph with a star (right)

Graph anomaly detection in cybersecurity, a sparkling subject

- \blacksquare OT: up to our knowledge, no graph anomaly detection
- \blacksquare IT: graphs have been already used, for instance:
	- Calls of binary functions (Cohen, Yger et Rossi [Nov 2021\)](#page-25-1)
	- Stream of messages sent between IP adresses (in classification see Xiao et al. [2020](#page-27-1) ; Abou Rida, Parrend et Amhaz [2021,](#page-25-2) in unsupervised learning with community detection, auto-encoder, scan statistics and edge streaming based on node embedding through random walk (see Ding et al. [2012](#page-25-3) ; Neil et al. [2013 ;](#page-26-1) Leichtnam et al. [2020,](#page-25-4) Paudel et Huang [2022\)](#page-26-2)
- But only one statistical work to test if there is an anomaly (Neil et al. [2013\)](#page-26-1), otherwise poor statistical framework. . .

1 [Graphs in OT](#page-1-0)

2 [Testing graph abnormality](#page-8-0)

3 [Application to laboratory data](#page-16-0)

Our data: dynamical graphs of counting

- \blacksquare N IP addresses communicate over a time $[0, T]$ at different times $t \in [0, T]$ by sending messages
- $[0, T] = \bigcup_{i=1}^{n} I_i$ divided into *n* intervals of equal length Δ_t
- \blacksquare Only the number of messages is recorded for each I_i
- The aggregated data is $\mathcal{G} = (\mathcal{G}_i)_{1 \leq i \leq n}$ where $\mathcal{G}_i = (\mathcal{N}, \mathcal{E}_i)$ with the set of nodes $\mathcal{N} = \{1, \ldots, N\}$ and \mathcal{E}_i the list of (possibly duplicated) edges which send messages during I_i
- **Equivalently to the** G_i **s, we can construct the adjacency** matrices X^i s such that $\forall 1\leq k,l\leq \mathit{N}, X^i_{k,l}$ is the number of messages sent by the IP address k to the IP address l

[Graphs](#page-1-0) **[Abnormality](#page-8-0)** [Application](#page-16-0) [Ongoing & Future Works](#page-21-0) [References](#page-25-0)
0000000 000000 00000 00000 0000

Justifying aggregation

Aggregating a Markov chain implies a quick loss of dependence between the aggregated time series. Independence of the aggregated values implies the independence of the dynamical graphs of counting,simplifying then the analysis.

Aggregating the communication over Δ_T ables to detect the increase of communication, specifically to the dynamicity $\Delta_{\mathcal{T}}$

Aggregating the instantaneous graphs ables to see the paths and the star in the same aggregated graph (agnostic representation).

Our solution for testing abnormality of a graph

We assume that the normal graphs are independent and identically distributed.

- 1 Learn a normal behaviour (distribution \mathbb{P}_0) over a sequence of graphs $\mathbf{G} = (\mathcal{G}_i)_{1 \leq i \leq n}$ with a flexible family F of probability distributions such that $\mathbb{P}_0 \in \mathcal{F}$
- 2 Test if a new graph G_i has the normal behaviour $(i \geq n+1)$

$$
\left\{\begin{array}{c}H_0: \mathcal{G}_i \sim \mathbb{P}_0\\H_1: \mathcal{G}_i \not\sim \mathbb{P}_0\end{array}\right.
$$

Test Statistics

Compute the distribution of the log-likelihood L_0 of the distribution \mathbb{P}_0 to get a pvalue of $L_0(\mathcal{G}_i)$

[Graphs](#page-1-0) **[Abnormality](#page-8-0)** [Application](#page-16-0) [Ongoing & Future Works](#page-21-0) [References](#page-25-0)
0000000 00000**000** 00000 00000 0000

KORK EX KEY A BY A BY A GAR

Choosing between different competitors

Retain the distribution family $\mathcal F$ which products the greater power for a given alternative distribution \mathbb{P}_1 $(i > n)$

 H_1 : $\mathcal{G}_i \sim \mathbb{P}_1$

The distribution \mathbb{P}_1 represents a kind of attack, thus different scenarios to be tested. . .

 $2Q$

A generic candidate: the Stochastic Bloc Model What is the Stochastic Bloc Model?

A mixture of probability of K latent classes

A clustering model on graphs with K clusters

Why the Stochastic Bloc Model?

- \blacksquare The state space is the graph: a generic approach to detect anomalies
- We think that any probability of graphs can be approached by a Stochastic Bloc Model by increasing the number of classes K as continuous density functions can be approximated by finite mixture of Normal (Nguyen et al. [2020\)](#page-26-3)

How to compute the Stochastic Bloc Model on multiple graphs?

- We assume the independence of the graphs given the partition
- We have done an adaptation of the Variational Expectation Maximization algorithm (VEM, Mariadassou, Robin et Vacher $\mathbf{A} \equiv \mathbf{A} + \mathbf{B} + \math$ $_{15/25}$ [2010\)](#page-26-4) to multiple graphs

An efficient computation of the Variational Expectation Maximization

Problem:

- The VEM may be inefficient as it is slow and it can find local maxima
- Spectral methods have been used to initialize the VEM in the undirected and unvalued case (Lei et Rinaldo [2015\)](#page-25-5)

Our solution:

Initialize with a Singular Value Decomposition: as the partition based on the Singular Value Decomposition has been shown to converge to the SBM in the directed and unvalued case (Sussman et al. [2012\)](#page-27-2), we demonstrate through experimentations, that it converges efficiently also to the SBM in the directed and valued case

1 [Graphs in OT](#page-1-0)

2 [Testing graph abnormality](#page-8-0)

3 [Application to laboratory data](#page-16-0)

 $A \equiv 1 + 4 \pmod{4} \Rightarrow A \equiv 1 + 4 \pmod{2} \Rightarrow B$

 Ω

Laboratory Data

- A laboratory of Seckiot
- 6 hours aggregated into $\Delta_{\mathcal{T}}=1$ minute
- 5 hours of benign traffic followed by 9 attacks
- **13 IP addresses**

Careful: a test is performed on a controlled system, test on more complex data would be done in the future.

[Graphs](#page-1-0) [Abnormality](#page-8-0) **[Application](#page-16-0)** [Ongoing & Future Works](#page-21-0) [References](#page-25-0)
0000000 00000000 00000 0000 0000

KORK EX KEY A BY A BY A GAR

Interpretability of the abnormality

Two other statistics of test:

Degree-out

Log-likelihood of the edges

 \rightarrow We learn the distribution of such statistics over the learning dataset and compute the pvalues of each degree-out and log-likelihood of edges

Detection of the attacks and interpretability

[Graphs](#page-1-0) [Abnormality](#page-8-0) **[Application](#page-16-0)** [Ongoing & Future Works](#page-21-0) [References](#page-25-0)
0000000 00000000 00000 0000

Analysis of the result

True positives on the test set

- \blacksquare Some attacks have a low pvalue for the statistic log-likelihood of the graph
- With further analysis, we can say that abnormal nodes or edges are rightfully detected
- \blacksquare For each attack, there is at least one true positive of one of the three statistics

False Positive Rate for each of the statistics on the validation set:

- Log-likelihood of the graph: 0% ($\alpha = 0.027\%$)
- **Degree-out:** 0% ($\alpha = 0.027\%$)
- Log-likelihood of the edges: 0% ($\alpha = 0.027\%$)

1 [Graphs in OT](#page-1-0)

2 [Testing graph abnormality](#page-8-0)

3 [Application to laboratory data](#page-16-0)

[Graphs](#page-1-0) [Abnormality](#page-8-0) [Application](#page-16-0) **[Ongoing & Future Works](#page-21-0)** [References](#page-25-0)
0000000 00000000 00000 **0000** 0000

 $\mathbf{E} = \mathbf{A} \oplus \mathbf{A} + \mathbf{A$

A changing set of nodes over time

Problem: in various situations, the IP addresses can change, new equipments are installed, internet IP addresses appear or disappear in the network

Solution: the SBM can be adapted to this case through the missing value setting. A node which disappears is said to be missing. A node appearing was said to be missing. The test doesn't change.

- Search for the rightful time step of aggregation: try different values of split Δ_t . An attack might not be seen for any Δ_t
	- Interpretability of the classes: what is the link between the VLAN and the clusters of IP addresses

KORK EX KEY A BY A BY A GAR

[Graphs](#page-1-0) [Abnormality](#page-8-0) [Application](#page-16-0) **[Ongoing & Future Works](#page-21-0)** [References](#page-25-0)
00000000 00000000 00000 0000 000**0**

イロト イ母 トイミト イミト ニヨー りんぺ

Thank you for your attention

25/25

 Ω

F Mariadassou, Mahendra, Stéphane Robin et Corinne Vacher (2010). "Uncovering latent structure in valued graphs : A variational approach". In : The Annals of Applied Statistics 4.2, p. 715-742. doi : [10.1214/10-AOAS361](https://doi.org/10.1214/10-AOAS361). url : <https://doi.org/10.1214/10-AOAS361>. 記 Neil, Joshua et al. (2013). "Scan Statistics for the Online Detection of Locally Anomalous Subgraphs". In : Technometrics 55.4, p. 403-414. doi : [10.1080/00401706.2013.822830](https://doi.org/10.1080/00401706.2013.822830). eprint : <https://doi.org/10.1080/00401706.2013.822830>. url : <https://doi.org/10.1080/00401706.2013.822830>. Ħ Nguyen, T. Tin et al. (jan. 2020). "Approximation by finite mixtures of continuous density functions that vanish at infinity". In : Cogent Mathematics amp ; Statistics 7.1. Sous la dir. de Lishan Liu, p. 1750861. issn : 2574-2558. doi : [10.1080/25742558.2020.1750861](https://doi.org/10.1080/25742558.2020.1750861). url : <http://dx.doi.org/10.1080/25742558.2020.1750861>. F Paudel, Ramesh et H. Howie Huang (2022). "Pikachu : Temporal Walk Based Dynamic Graph Embedding for Network Anomaly Detection". In : NOMS 2022-2022 IEEE/IFIP Network Operations and Management Symposium, p. 1-7. doi : [10.1109/NOMS54207.2022.9789921](https://doi.org/10.1109/NOMS54207.2022.9789921). F Raman, Gauthama, Chuadhry Mujeeb Ahmed et Aditya Mathur (2021). "Machine learning for intrusion detection in industrial control systems : challenges and lessons from experimental evaluation". In : IEEE Transactions on Industrial Informatics. doi : [10.1186/s42400-021-00095-5](https://doi.org/10.1186/s42400-021-00095-5). イロト イ押 トイヨ トイヨト

[Graphs](#page-1-0) [Abnormality](#page-8-0) [Application](#page-16-0) [Ongoing & Future Works](#page-21-0) [References](#page-25-0)
0000000 00000000 00000 00000 0000

 4 ロ) 4 $\overline{7}$) 4 $\overline{2}$) 4 $\overline{2}$)

 Ω

Sussman, Daniel L. et al. (2012).

A consistent adjacency spectral embedding for stochastic blockmodel graphs.

arXiv : [1108.2228 \[id='stat.ML' full](https://arxiv.org/abs/1108.2228) $_{n}$ ame $=^{\prime}$ MachineLearning $^{\prime}$ is $_{a}$ ctive $=$ Truealt_name = Nonein_archive =' stat' is_general = [Falsedescription](https://arxiv.org/abs/1108.2228) =' [Coversmachinelearningpapers](https://arxiv.org/abs/1108.2228)(supervised, unsupervised, semi − supervisedlearning, graphicalmodels, reinforcementlearning, bandits, highdimensionalinferer

Umer, Muhammad Azmi et al. (2022). "Machine learning for intrusion detection in industrial control systems : Applications, challenges, and recommendations". In : International Journal of Critical Infrastructure Protection, p. 100516. issn : 1874-5482. doi : [https://doi.org/10.1016/j.ijcip.2022.100516](https://doi.org/https://doi.org/10.1016/j.ijcip.2022.100516). url : <https://www.sciencedirect.com/science/article/pii/S1874548222000087>.

Xiao, Qingsai et al. (2020). "Towards Network Anomaly Detection Using Graph Embedding". In : Computational Science – ICCS 2020 12140, p. 156-169.