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Operational Technology (OT)

Part of modern critical infrastructures such as water treatment
plants, oil refineries, power grids, and nuclear and thermal
power plants
Composed of heterogeneous and complex components: sensors
and actuators, programmable logic controllers, supervisory
control and data acquisition and human-machine interface

It is thus essential, but also challenging, to preserve OT from
malicious actions (attacks)
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Attacks in OT: Stuxnet as a game-changer

More and more attacks

2010 2023

2010
Stuxnet: 1st attack of an industrial system (Iranian nuclear power plant)

Multiplication of the attacks since Stuxnet
Stuxnet has shown that isolation of the network isn’t
enough to prevent attack
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Standard approaches to detect an attack

Solutions in IT (Information Technology) not sufficient to stop
OT attacks (Raman, Ahmed et Mathur 2021)
Firms use attacks history signature-based methods (Umer
et al. 2022), but

What happens with a novel type of attack?
What happens if the signature is not well-chosen?

Anomaly detection is the most efficient to stop a new attack
since it can detect deviation of the normal behaviour (Raman,
Ahmed et Mathur 2021)

Thus we focus on signature-free anomaly detection. . .

5/25



Graphs Abnormality Application Ongoing & Future Works References

A way to see anomalies in the network: the graph

According to Neil et al. 2013, an attack in a network don’t happen
in isolation, but implies an increase of communication between
multiple endpoints. Modeling the network with a graph ables to see
such anomalies.
Typical behaviour are:

Exploration of the attacker: a star in the graph
Lateral movement: a directed path in the graph

Possible modeling:
a node = an IP address
a packet sent = an edge
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Illustrating star and path

Normal graph (left), graph with a path (middle), graph with a star (right)
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Graph anomaly detection in cybersecurity, a sparkling
subject

OT: up to our knowledge, no graph anomaly detection
IT: graphs have been already used, for instance:

Calls of binary functions (Cohen, Yger et Rossi Nov 2021)
Stream of messages sent between IP adresses (in classification
see Xiao et al. 2020 ; Abou Rida, Parrend et Amhaz 2021, in
unsupervised learning with community detection, auto-encoder,
scan statistics and edge streaming based on node embedding
through random walk (see Ding et al. 2012 ; Neil et al. 2013 ;
Leichtnam et al. 2020, Paudel et Huang 2022)

But only one statistical work to test if there is an anomaly
(Neil et al. 2013), otherwise poor statistical framework. . .
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Our data: dynamical graphs of counting

N IP addresses communicate over a time [0,T ] at different
times t ∈ [0,T ] by sending messages
[0,T ] = ∪n

i=1Ii divided into n intervals of equal length ∆t

Only the number of messages is recorded for each Ii

The aggregated data is GGG = (Gi )1≤i≤n where Gi = (N , Ei )
with the set of nodes N = {1, . . . ,N} and Ei the list of
(possibly duplicated) edges which send messages during Ii

Equivalently to the Gi s, we can construct the adjacency
matrices X i s such that ∀1 ≤ k , l ≤ N,X i

k,l is the number of
messages sent by the IP address k to the IP address l
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Justifying aggregation

Aggregating a Markov chain implies a quick loss of dependence
between the aggregated time series. Independence of the
aggregated values implies the independence of the dynamical
graphs of counting,simplifying then the analysis.

Aggregating the communication over ∆T ables to detect the
increase of communication, specifically to the dynamicity ∆T

Aggregating the instantaneous graphs ables to see the paths and
the star in the same aggregated graph (agnostic representation).
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Big picture

For a time step ∆t

Which distribution in the network space?
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Our solution for testing abnormality of a graph

We assume that the normal graphs are independent and identically
distributed.

1 Learn a normal behaviour (distribution P0) over a sequence of
graphs GGG = (Gi )1≤i≤n with a flexible family F of probability
distributions such that P0 ∈ F

2 Test if a new graph Gi has the normal behaviour (i ≥ n + 1){
H0 : Gi ∼ P0
H1 : Gi ∼/ P0

Test Statistics
Compute the distribution of the log-likelihood L0 of the
distribution P0 to get a pvalue of L0(Gi )
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Choosing between different competitors

Retain the distribution family F which products the greater power
for a given alternative distribution P1 (i > n)

H1 : Gi ∼ P1

The distribution P1 represents a kind of attack, thus different
scenarios to be tested. . .
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A generic candidate: the Stochastic Bloc Model
What is the Stochastic Bloc Model?

A mixture of probability of K latent classes
A clustering model on graphs with K clusters

Why the Stochastic Bloc Model?
The state space is the graph: a generic approach to detect
anomalies
We think that any probability of graphs can be approached by
a Stochastic Bloc Model by increasing the number of classes
K as continuous density functions can be approximated by
finite mixture of Normal (Nguyen et al. 2020)

How to compute the Stochastic Bloc Model on multiple
graphs?

We assume the independence of the graphs given the partition
We have done an adaptation of the Variational Expectation
Maximization algorithm (VEM, Mariadassou, Robin et Vacher
2010) to multiple graphs
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An efficient computation of the Variational Expectation
Maximization

Problem:
The VEM may be inefficient as it is slow and it can find local
maxima
Spectral methods have been used to initialize the VEM in the
undirected and unvalued case (Lei et Rinaldo 2015)

Our solution:
Initialize with a Singular Value Decomposition: as the partition
based on the Singular Value Decomposition has been shown to
converge to the SBM in the directed and unvalued case
(Sussman et al. 2012), we demonstrate through
experimentations, that it converges efficiently also to the SBM
in the directed and valued case
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Laboratory Data

A laboratory of Seckiot
6 hours aggregated into ∆T = 1 minute
5 hours of benign traffic followed by 9 attacks
13 IP addresses

Careful: a test is performed on a controlled system, test on
more complex data would be done in the future.

18/25



Graphs Abnormality Application Ongoing & Future Works References

Interpretability of the abnormality

Two other statistics of test:
Degree-out
Log-likelihood of the edges

→ We learn the distribution of such statistics over the learning
dataset and compute the pvalues of each degree-out and
log-likelihood of edges
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Detection of the attacks and interpretability

Attack pvalue of L0

Abnormal
nodes (α =
0.027%)

Abnormal
edges (α =
0.027%)

ping sweep 12.66% 1 12
ARP scan 9.5% 0 6

overwrite registers 0% 2 6
get PLC info 11% 2 2
replay authent 0% 2 2

scan port modbus 9.9 % 1 6
man in the middle 1.8% 1 0

restart PLC 0% 1 2
stop PLC 9.9 % 2 2
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Analysis of the result

True positives on the test set
Some attacks have a low pvalue for the statistic
log-likelihood of the graph
With further analysis, we can say that abnormal nodes or
edges are rightfully detected
For each attack, there is at least one true positive of one of
the three statistics

False Positive Rate for each of the statistics on the
validation set:

Log-likelihood of the graph: 0% (α = 0.027%)

Degree-out: 0% (α = 0.027%)

Log-likelihood of the edges: 0% (α = 0.027%)
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A changing set of nodes over time

Problem: in various situations, the IP addresses can change, new
equipments are installed, internet IP addresses appear or disappear
in the network

Solution: the SBM can be adapted to this case through the missing
value setting. A node which disappears is said to be missing. A
node appearing was said to be missing. The test doesn’t change.
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Ongoing works

Search for the rightful time step of aggregation: try different
values of split ∆t . An attack might not be seen for any ∆t

Interpretability of the classes: what is the link between the
VLAN and the clusters of IP addresses
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Thank you for your attention
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