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Proactive Prevention Rapid Mitigation

Reduced Financial Loss Improved Incident Response

Autoencoder Linear 
Discriminant 

Analysis (AE-LDA)
Goal



Problem 
Statement
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Challenges of detecting zero-day 
attacks

Limitations of existing solutions

Need for an adaptive, resilient, and 
real-time anomaly detection system
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Related Work

Knowledge-Based Techniques: 
Effective for known threats but 
often bypassed due to rigid 
patterns.
Rely on predefined rules or signatures to 
detect threats.
Limitations: Ineffective against new or 
unknown attacks due to rigidity.

Statistical-Based Techniques: 
Detect deviations but miss 
subtle and sophisticated attacks.

Detect deviations from normal network 
behaviour using statistical baselines.
Limitations: Can miss subtle or 
sophisticated attack patterns.

Machine Learning-Based 
Techniques: Adaptive but may 
suffer from generalization 
issues.
Use clustering or classification algorithms 
to detect abnormal traffic.
Limitations: May be overfit to training data 
or struggle with non-linear patterns.

Autoencoder-based methods are 
promising but require further 
refinement.

Deep learning models like autoencoders 
can learn normal behaviour and identify 
anomalies.
Limitations: Can generalize poorly without 
additional strategies like feature selection 
or classification.



Proposition solution:
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• Explainable AI-enhanced feature 
selection, 

• autoencoder-based anomaly 
detection, and 

• Linear Discriminant Analysis 
(LDA) for more comprehensive 
classification.

(AE-LDA)
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Workflow of Anomaly Detection
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Feature Selection:
Feature Groups Selection by Expert
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Autoencoder Structure:
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Linear Discriminant Analysis (LDA):

Definition: LDA is a dimensionality reduction technique that projects data onto a lower-dimensional space, 
maximizing class separability.

Goal: Find a linear combination of features that best separates two or more classes.

How It Works:
• Feature Separation: Projects data to a new axis where inter-class differences are maximized, and intra-class variance is minimized.
• Decision Rule: Uses a probabilistic decision rule to classify new observations based on the linear combination of features.

Application in Our Paper:
• Anomaly Classification: In our AE-LDA approach, LDA is used to classify detected anomalies into known attack types (e.g., DoS Hulk, ARP MitM).
• Training: Trained on labeled network traffic to differentiate between benign and malicious patterns.
• Integration: Complements autoencoder-based anomaly detection by providing a detailed classification of recognized attacks.

Key Advantages:
• Interpretability: Provides clear and interpretable decision boundaries.
• Efficiency: Works well with high-dimensional data while reducing computational complexity.
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Dataset and evaluation methodology
Datasets Overview:

• CICIDS2017: Provides a comprehensive set of network traffic data, including benign and multiple attack 
types (e.g., DoS Hulk, DoS Slowloris). Offers a mix of known and unknown threats for a well-rounded 
evaluation.

• Kitsune Dataset: Specializes in IoT network traffic and contains various attack scenarios like ARP MitM, SSDP 
Flood, and Active Wiretap. Used to benchmark zero-day attack detection capabilities.

Data Splitting Strategy:
• Training Set: For training the autoencoder, only benign data was used to accurately characterize normal 

traffic patterns.
• Test Set: Contains a balanced mix of benign and malicious traffic, including attacks, allowing a thorough 

evaluation of both known and unknown threats.

Approach Highlights:
• Autoencoder Ensemble: Trained on benign data to recognize standard traffic patterns.
• LDA Module: Separately trained on labeled traffic to distinguish different types of anomalies.



Experimental 
Evaluation
• Datasets: CICIDS2017 

and Kitsune
• Metrics: Accuracy, 

AUROC, Detection Time
• Setup: Trained the 

autoencoder on benign 
traffic and used LDA for 
anomaly classification.
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Results & Discussion
CICIDS2017 Results: AE-LDA achieved higher AUROC compared to other models like OCSVM and MemAE.
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Results & Discussion
Kitsune Results: AE-LDA excels at detecting ARP MitM, Video Injection, and Active Wiretap attacks.
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Conclusion
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Summary: AE-LDA 
significantly improves 

network anomaly detection 
by combining explainable 

AI with robust 
autoencoders and LDA.

Future Work: Refining the 
model to differentiate 

between faults and 
malicious anomalies, and 

predicting attacks based on 
network behavior patterns.



Questions 
and 

Discussion
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Thank you! 

For additional information please contact us:  

Fatemeh Stodt
fatemeh.stodt@etu.unistra.fr


