

IMT Atlantique Bretagne-Pays de la Loire École Mines-Télécom

Real-time AI Based Power Assisted Malware Predictor

Supervisors:

*Yehya Nasser, **Mohammed Nassar, *Marc-Oliver Pahl, and *Samir Saoudi. PhD Student:

Mohammed Mezaouli

* IMT ATLANTIQUE ** University of New Haven

1

Planning

> Context

➤ State of the art

> PhD Objective

Methodology And Results

Context

- Industry 4.0 is based on connected computers to make decisions using AI, ML. Those industries may be affected by malware. Those Malware can cause data loses, decreasing productivity or causing financial loses. Malware can also cause disaster if it impacts the nuclear, water treatment industries.
- Malware is a harmful software, which can access (corrupt/ change) to important information such as:
 - 1. Personal
 - 2. Financial
 - 3. Corporate

Context

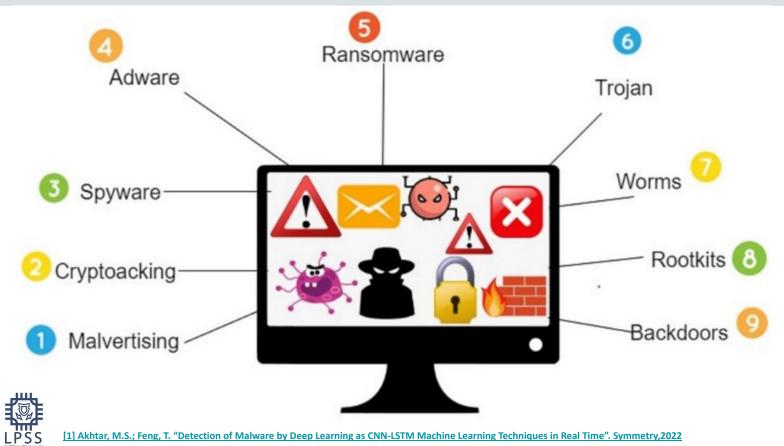
➤ Mirai Botnet:

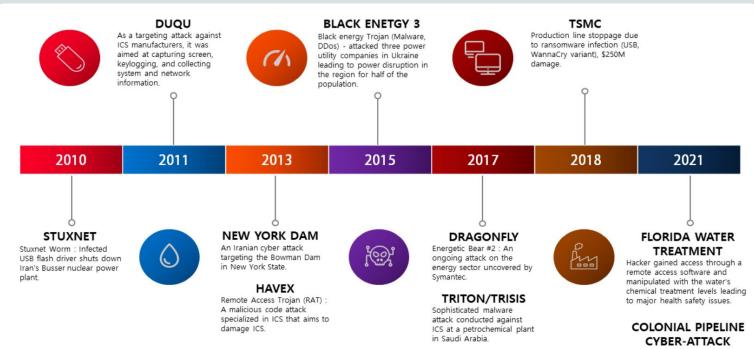
<u>Description</u>: One of the most infamous IoT malware, Mirai, turns networked devices running outdated versions of Linux into remotely controlled bots that can be used as part of a botnet in large-scale network attacks. <u>Impact</u>: In 2016, Mirai was responsible for some of the largest DDoS attacks, significantly disrupting internet services.

➤ <u>Ransomware:</u>

<u>Description</u>: Ransomware targeting IoT devices can lock users out of their systems or devices until a ransom is paid.

<u>Impact</u>: For instance, ransomware attacks on smart medical devices can have severe consequences, potentially endangering patients' lives.


- > <u>Spyware</u>
- Worms and Viruses


Malware Types[1]

MT Atlantique

Bretagne-Pays de la Loire École Mines-Télécom

Timeline of international industrial cyber attacks [1]

Ransomware Infection Pays \$5 Million and Increases Gasoline Prices.

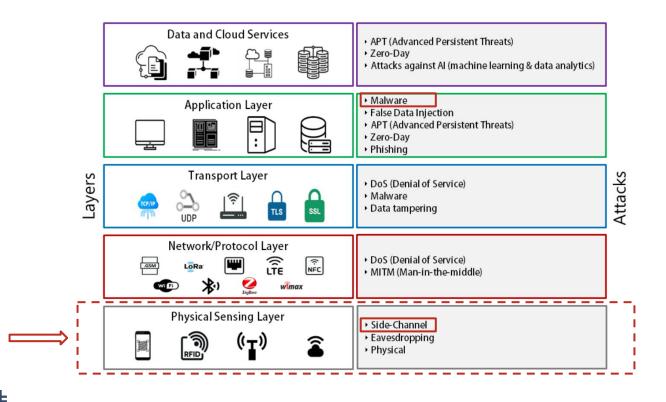
Planning

- > Context
- ➤ State of the art
- > PhD Objective
- Methodology And Results

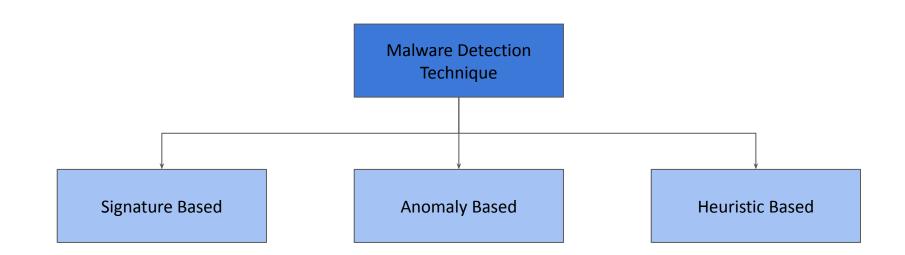
Hardware Performance Counters [1]

Counter Name	Purpose	
Cycle Counter	Increment after each CPU cycle	
Load And Store Counter	Increment each time a load and store instruction is executed	
Instruction Cycle Counter	Increment on each additional cycle required to execute a multi-cycle instruction	
Exception Counter	Increments on each entry or return from an exception	
Fold Instruction Counter	Increment on zero cycles instructions like If-Then and some NOPs	
Sleep Counter	Increment on cycles associated with power saving mode	

State of the art


Detection by	Paper name	
HPC + AI + Hardware Architecture	Ozsoy, "Hardware-Based Malware Detection Using Low-Level Architectural Features". IEEE Transactions on Computers. 2016	
	Zhou, "Hardware Performance Counters Can Detect Malware: Myth or Fact?". Association for Computing Machinery. 2018	
HPC + AI	Sayadi, "Customized Machine Learning-Based Hardware-Assisted Malware Detection in Embedded Devices". IEEE International Conference On Trust. 2018	
	Pan, "Hardware-Assisted Malware Detection using Machine Learning". Design, Automation & Test in Europe Conference & Exhibition (DATE). 2021	
EM + AI Pham, "Obfuscation Revealed: Leveraging Electromagnetic Signals for Obfuscated Malware Cla Association for Computing Machinery. 2021		
Power + Al	Hernandez Jimenez, "Malware Detection Using Power Consumption and Network Traffic Data". 2nd International Conference on Data Intelligence and Security (ICDIS). 2019	
INT Atlantique Bretagne-Pays de la Loire Eccel Mines Fretecom	9	

Malware Detection by Power Consumption [1]



Smartfactory cyberattack structure diagram [1]

Malware detection Technique [1]

Planning

- > Context
- ➤ State of the art

> PhD Objective

Methodology And Results

RAI-PAMP Project Objective

Power Consumption

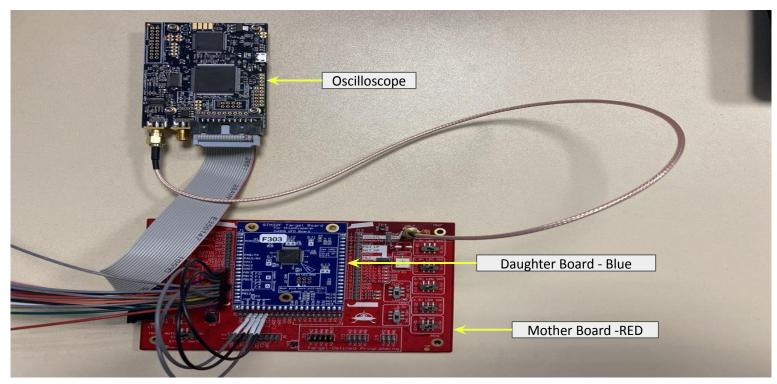
Real-time AI Based Power Assisted Malware Predictor

Al Real-Time Model

Malware Detection

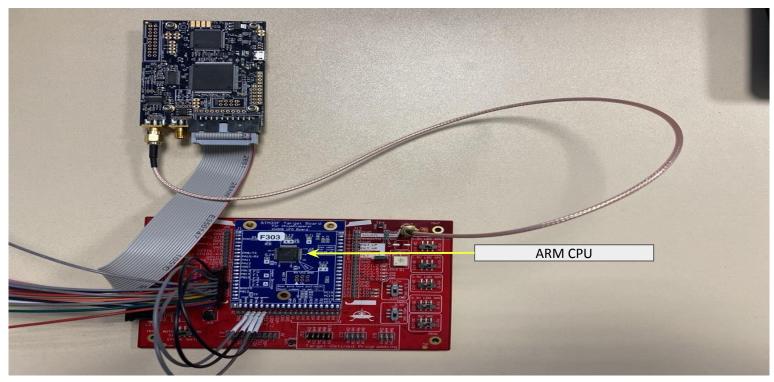
Planning

- > Context
- ➤ State of the art
- > PhD Objective
- Methodology And Results

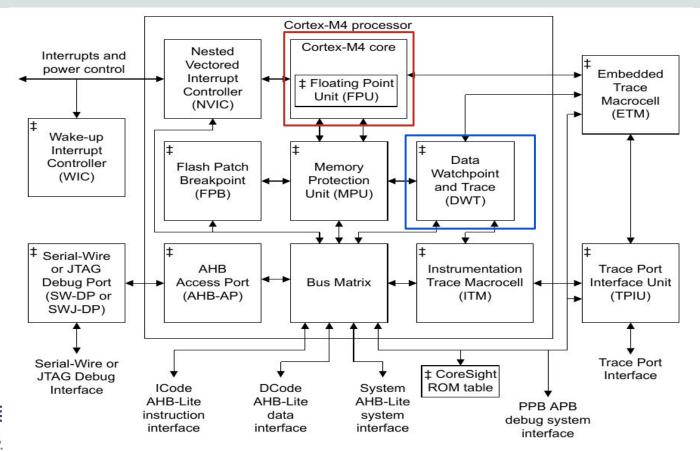


Methodology :

- 1. Data Collection
- 2. Data Analyses
- 3. Feature Selection
- 4. Model Selection

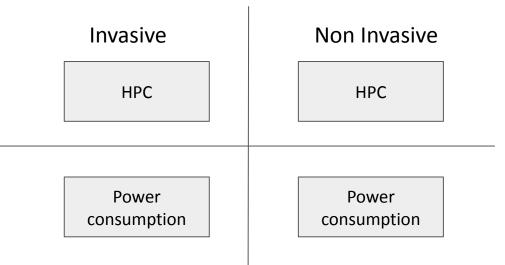


CW 308 With STM32F303



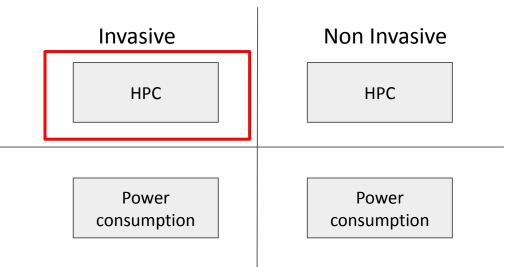
ARM CPU

ARM Cortex-M4 CPU Block Diagram


Hardware Performance Counters [1]

Counter Name	Purpose	
Cycle Counter	Increment after each CPU cycle	
Load And Store Counter	Increment each time a load and store instruction is executed	
Instruction Cycle Counter	Increment on each additional cycle required to execute a multi-cycle instruction	
Exception Counter	Increments on each entry or return from an exception	
Fold Instruction Counter	Increment on zero cycles instructions like If-Then and some NOPs	
Sleep Counter	Increment on cycles associated with power saving mode	

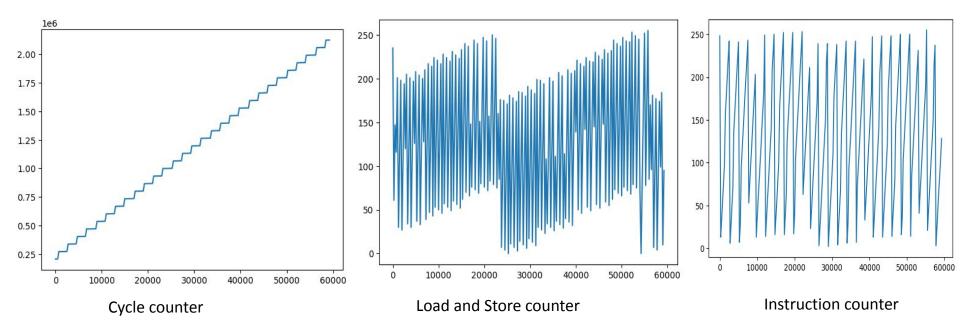
Methodology


Invasive : With interruptions Non Invasive : Without interruptions

Methodology

Invasive : With interruptions Non Invasive : Without interruptions

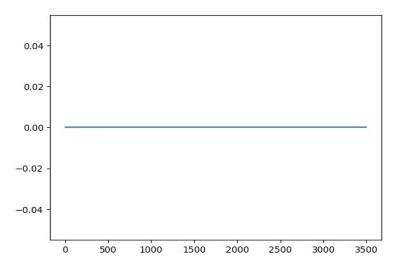
Counter results with interruption (Invasive)


- Bubble Sort

Bubble Sort						
	Timestamps/Cycl			Instruction cycle	Exception	
	es	Cycle counter	Load and Store	counter	counter	Fold Counter
	0	207409	235	248	0	0
	250	207659	61	13	0	0
	500	207909	147	33	0	0
	750	272159	116	55	0	0
	1000	272409	201	76	0	0
	1250	272659	30	97	0	0
	1500	272909	112	158	0	0
	1750	273159	198	178	0	0
	2000	273409	27	200	0	0
	2250	273659	109	222	0	0
	2500	273909	194	242	0	0
	2750	338159	120	6	0	0
	3000	338409	205	26	0	0
	3250	338659	34	49	0	0
5	3750	338909	116	70	0	0

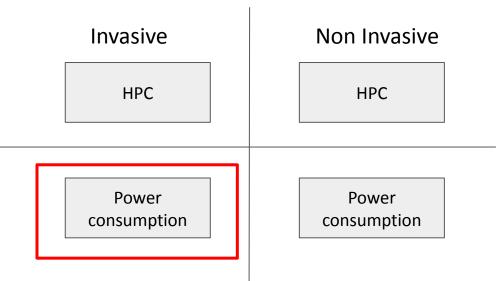
Counter results with interruption (Invasive)

- Bubble Sort

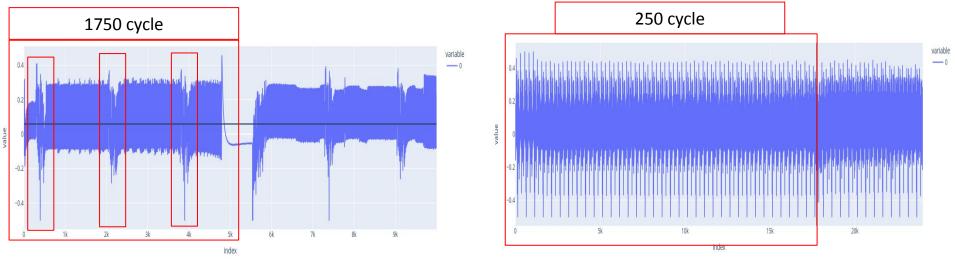


Counter results with interruption (Invasive)

- Bubble Sort

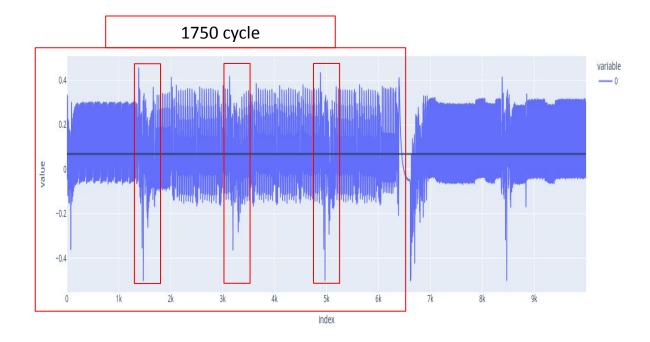

For both Exception & FOLD counter

Methodology


Invasive : With interruptions Non Invasive : Without interruptions

Power Consumption (Invasive)

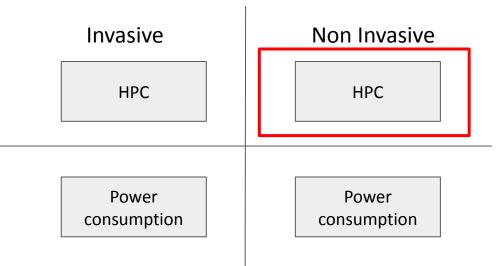
- Solution Section 2.1. Using CW-lite with a trigger, we can set a point at which we begin to measure the power of our system.
- > We set our sampling rate equal to CPU frequency so we take a sample after each cycle.
- > Adding to that a Cycle Counter measurement to have an extract window for our power measurement



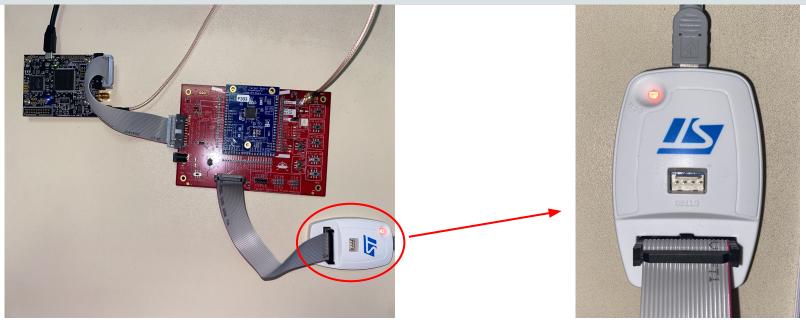
Bubble Sort WorkLoad / Fcpu = 8MHZ / CYC = 4302 /iteration 30

Bubble Sort WorkLoad / Fcpu = 8MHZ / CYC = 17748 /iteration 30

Power Consumption (Invasive)

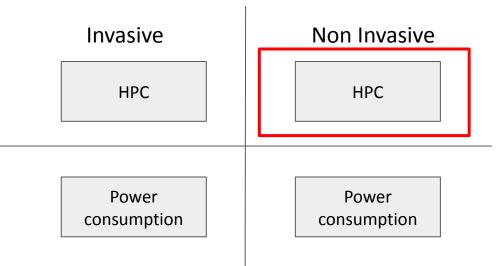


Matrix WorkLoad / Fcpu = 8MHZ/ CYC = 5804/iteration 10


Methodology

Invasive : With interruptions Non Invasive : Without interruptions

Non Invasive Method (Without interruption)


Testbed

ST-Link V2 debugger

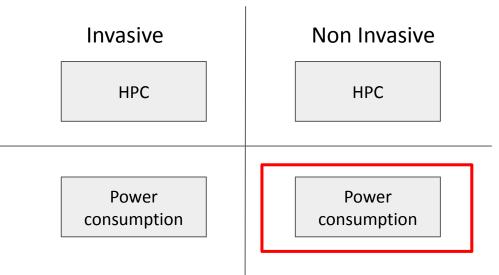
Methodology

Invasive : With interruptions Non Invasive : Without interruptions

Methodology (Without interruption)

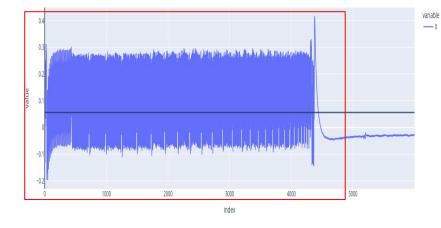
Name	Start Address	Гуре	
CYC	0xE0001004	Unsigned 32-bit	
LSU	0xE0001014	Unsigned 8-bit	•
CPI	0xE0001008	Unsigned 8-bit	•]•
FOLD	0xE0001018	Unsigned 8-bit	•] •
EXC	0xE000100C	Unsigned 8-bit	

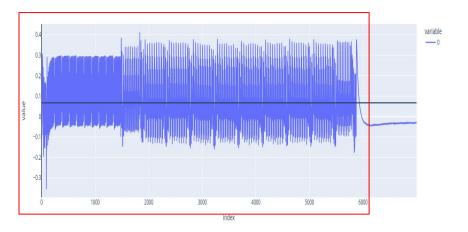
Acquisition parameters


Sampling frequency	▼ Custom (in Hz) : 8000000	
O Acquisition mode	✓ direct	
• Trigger start mode	off	~
@ Trigger name	СҮС	~
ズ Trigger threshold	30000	

STM32 Cube Monitor

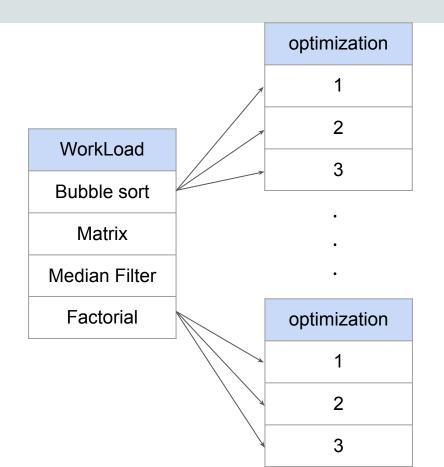
Methodology


Invasive : With interruptions Non Invasive : Without interruptions

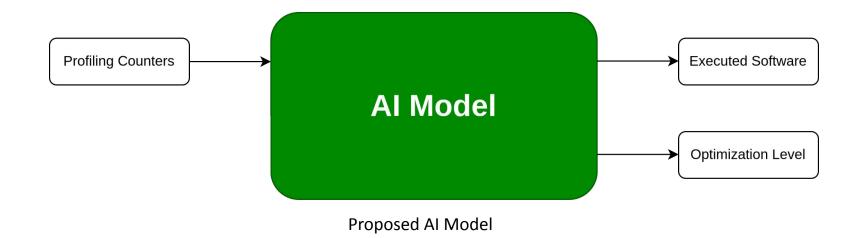


Power Consumption (Without interruption)

- Solution Section 2.1. Using CW-lite with a trigger, we can set a point at which we begin to measure the power of our system.
- > We set our sampling rate equal to CPU frequency so we take a sample after each cycle.
- > Adding to that a Cycle Counter measurement to have an extract window for our power measurement


Bubble Sort WorkLoad / Fcpu = 8MHZ / Mean 527.0163 / CYC = 4302 /iteration 30

Matrix WorkLoad / Fcpu = 8MHZ/Mean 528.5005/ CYC = 5804/iteration 10



AI Classification

Workload classification using Profiling Counters

Used Model : MLP , SVM

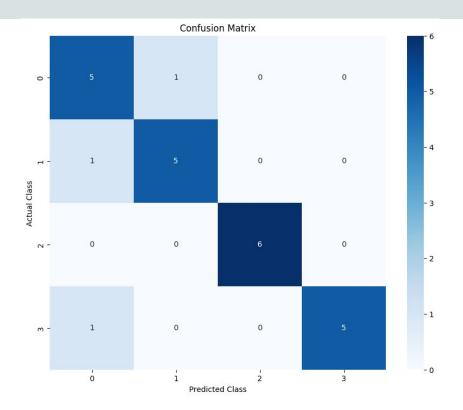
Preliminary Results

Model	Training Accuracy	Validation Accuracy
MLP	58 - 66	62.5
SVM	/	70

AI Classification

WorkLoad		
Bubble sort		
Matrix		
Median Filter		
Factorial		

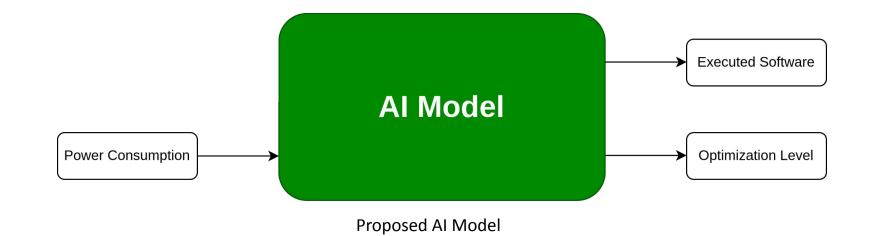
Workload classification using Profiling Counters



Proposed AI Model

Used Model : MLP , SVM

Preliminary Results



Preliminary Results

Model	Training Accuracy	Validation Accuracy
MLP	91	87.5
SVM	/	75

Workload classification using Power Consumption

Used Model : CNN + LSTM

Thanks for your intention

