Node Compromising Detection to avoid Poisoning Attacks in IoT Networks

Ph.D. Student : Floribert KATEMBO VUSEGHESA

Supervisors : Fadila BENTAYEB et Mohamed-Lamine MESSAI

ERIC Laboratory, Lyon University, France

- 1. Introduction
- 2. Our approch: NoComP
- 3. Evaluation
- 4. Conclusion

The method

Evaluation

Context

IoT networks ?

- Collection, analysis and sharing data in real-time
- Aid to decision-making
- Improving efficiency in various fields

Problems

Target of various types of attack

- Physical Attacks
- Node compromise attacks
- Black / grey hole attacks
- Sybil attacks
- Clone attacks, …

Evaluation

Conclusion

A model of IoT networks

Example of an IoT system model incorporating a compromised node detection technique.

The threat model

- We suppose that an attacker can capture and compromise IoT nodes within the network
- He/she injects manipulated values into the sensed data transmitted by compromised nodes

Evaluation

Overview of the method

Method name is NoComP (*Node Compromising detection*) with 3 main stages :

- 1. Model initialization
- 2. Data analysis
- 3. Node compromising detection

Evaluation

Conclusion

Overview of the method

Flowchart of NoComP

Choice of algorithm : MLP-Multilayer Perceptron

MLPs are powerful deep learning models that can be used for a variety of machine learning tasks

Ability to efficently manage complex, high-dimensional data

- Ability to learn complex data representations using multiple layers of hidden neurons
- Flexibility that allows them to be used for different types of supervised learning tasks

F.K Vuseghesa – Seminar on IT security – Paris – June 21st, 2024

11/25

Evaluation

Architecture of the neural network used

3 layers are connected to each other: input layer (64 neurons), hidden layer (32 neurons), output layer (1 neuron)

This model follows a sequential architecture in which data passes from the input layer to the output layer via hidden layers, without any upward connections

MLP architecture

Datasets used :

1. Temperature data from OpenML

- A real IoT network made up of devices that record temperature
- This dataset contains 5 columns and 97606 rows of data

Introduction	The method	Evaluation	Conclusion
	00000		

- 2. Humidity data
- This data was collected by AWS IoT services
- The dataset contains telemetry data
- The dataset contains 9 columns and 405184 rows of data

Implementation and testing

- Create a python script to train the model on the two types of data
- Compromised IoT nodes are selected randomly
- They send false data to poison the database

The efficiency

- Choice of metrics: ROC-AUC, Precision, F1-Score
- Balance to be struck between true and false positives and also between true and false negatives

00000 000000 000000 00	Introduction	The method	Evaluation	Conclusion
			00000	

The efficiency

Types of data	ROC-AUC	Precision	F1-Score	Efficiency%
Poisoned	0.76	0.59	0.58	64.3
Cleaned	0.50	0.95	0.98	80.6

Comparison of scores before and after the elimination of compromised nodes from the model trained on temperature data

000000 000000	
00000 000000 000000	

The efficiency

Types of data	ROC-AUC	Precision	F1-Score	Efficiency%
Poisoned	0.74	0.59	0.58	63.6
Cleaned	0.50	0.92	0.96	79.3

Comparison of scores before and after the elimination of compromised nodes of the model trained on the humidity

The accuracy

- Training accuracy measures the model's precision on training data
- Validation accuracy measures the accuracy of the model on a validation dataset, which is separate from the training dataset.

The accuracy

(a) On poisoned temperature data.

(b) On Cleaned temperature data.

20/25

The accuracy

(c) On Poisoned humidity data

(d) On Cleaned humidity data

21/25

Summary of existing and proposed methods :

Authors	Algorithms	Types of data	Efficiency %	Accuracy %
Baracaldo et al.(2018)	SVM	MNIST	65	83
Chiba et al.(2021)	SVM	MNIST, IoT	65	89
F.K. Vuseghesa (NoComP)	Neural Network	loT	80	93

Performance comparison between existing and proposed methods.

Conclusion

NoComP : a method to detect compromised nodes within IoT networks

Goal : to enhance the security of IoT systems by identifying compromised nodes to avoid poisoning attacks

- Introduction
 The method
 Evaluation
 Conclusion

 ○○○○○
 ○○○○○○○
 ●○
 - Comparison : NoComP improves the detection efficiency of poisoned data and the accuracy of the model by over 93% after detecting and deleting compromised nodes
 - Future work : Evaluation of NoComP by testing it on a broader range of IoT datasets and comprehensive comparison with more existing methods

. . .

Thank you for your attention!

