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Context

BIG DATA :

How to manage an ever increasing 
amount of data ?

A.I. CHALLENGES : 

● Scalability

● Explainability

● Time robustness
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Context

Network are changing environment
Attacks are very diverse evolving 
targets
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State of the art

● Community based approach don’t consider metrics except modularity used for community detection
● Most of the works don’t consider scalability
● None considerer constraints of time such as the one in data stream analysis
● More recent works considered concept drift but have no substantial answer
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State of the art : GNN

● Very popular 
● Work with graph structure
● Can construct a graph structure from euclidean 

data -> Embedded prediction to a vector.

[15] H. Kim, B. S. Lee, W.-Y. Shin, and S. Lim, “Graph anomaly detection
with graph neural networks: Current status and challenges,” IEEE
Access, 2022.
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Problems

● How to keep a scalable approach ?

● How to be robust to evolution of attacker model ?

● Can explainability be retained ?

● How could poisoning be avoided ?

● Concept drift robustness ?
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Datasets : UGR16

● Background data gathered from march to august 2016
● Simulated attacks from the last week of july and august in the

background data ( DoS and Port Scan)
● Re-inserted some attacks detected using anomaly detection (Spam and Botnet) 
● Some unnoticed attacks may still be labelled as background
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Datasets : UGR16
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Datasets : Kitsune

Y. Mirsky, T. Doitshman, Y. Elovici, and A. Shabtai, “Kitsune: An ensemble of autoencoders for online network intrusion detection,” in The Network and Distributed System Security Symposium (NDSS) 2018

Formatted for ML
Lot of “efficient” features but ….
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Datasets : Kitsune



Graph community

Groups of nodes more 
connected to each others 
than to the other nodes of 
the graph.

In general a graph partition 
is obtained by maximizing 
the modularity.

=

=

[9] H. S. Pattanayak, H. K. Verma, and A. L. Sangal, “Community detection metrics and algorithms in social networks,” in 2018 First 

International Conference on Secure Cyber Computing and Communication (ICSCCC) 2018, pp. 483–489.
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Why Graph community ?

13

Intense number of 
communications from the 
attacker to the target,
like port scanning 1to1
or DoS by flooding.
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Intense number of 
communications from the 
attacker to the target,
like port scanning 1to1
or DoS by flooding.



Why Graph community ?
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Typically similar to the 
behavior of a Man in 
the Middle type of 
attack



Why Graph community ?
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Typically similar to the 
behavior of a Man in the 
Middle type of attack



Why Graph community metrics ?

A simple 
clustering
on UGR16
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Why Graph community metrics ?



Modularity based 
community detection
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Why Graph community metrics ?



Modularity based 
community detection

Attacks are a majority in 
specific communities
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Why Graph community metrics ?
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Why Graph community metrics ?

● Features are an important aspect if not 

the most important in anomalies 

detection.

● You need to keep only relevant features

● They need to discriminate positive and 

negative

● They need to be computable in your study 

case

21
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Why dynamic community metrics ?
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● Few nodes
or

● Few edges
can have high impact on 
community values

We define Stability as a value of 
distance between 2 state of the 
same community.
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Results : XGBoost F1-score comparison

UGR16

Kitsune
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Results: Importance gain

UGR16 Kitsune
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Results : Scalability
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Results : Scalability - UGR16

Baseline
Dynamic graph 
communities
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Results : Scalability - Kitsune

Baseline
Dynamic graph 
communities
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Results : Performance comparison

● For UGR16, DGC use both base features and dgc features
● For Kitsune, DGC use only graph features

Grinsztajn, Léo, Edouard Oyallon, and Gaël Varoquaux. "Why do tree-based models still outperform deep learning on typical 
tabular data?." Advances in neural information processing systems 35 (2022): 507-520.
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Results : Optimisation ?

● Simple lasso for features selection

● RandomSearch for hyperparameter tuning 
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Graph Processing for Machine Learning

● Better accessibility for 
graph data for about any 
dataset

● Dynamic community 
specific algorithm

● General tool for 
visualisation of network 
data for machine learning

https://github.com/lre-security-systems-team/gpml

https://github.com/lre-security-systems-team/gpml
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Next steps

Concept drift :

The characteristics of the target you are trying to 
detect are changing with passing time and this 
target is itself in an environment that is evolving 
with passing time

Is attack
Can bite

Feature 1 = x
Feature 2 = y
Feature 3 = z Isn’t attack

Don’t bite

Feature 1 = w
Feature 2 = y
Feature 3 = nz



32

Next steps

We can decide to make rules :

Is attack
Can bite

Feature 1 = x
Feature 2 = y
Feature 3 = z

Feature 3 = z then is attack
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Next steps

The problem is that at any point in time :

Is attack
Can bite

Feature 1 = x
Feature 2 = y
Feature 3 = z

Isn’t attack
Don’t bite

Feature 1 = w
Feature 2 = y
Feature 3 = nz

Is attack
Can bite

Feature 1 = x
Feature 2 = y
Feature 3 = nz

Isn’t attack
Don’t bite

Feature 1 = w
Feature 2 = y
Feature 3 = z

Feature 3 = z then is attack
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Next steps

Then what we are looking for :

Is attack
Can bite

Feature 1 = x
Feature 2 = y
Feature 3 = z

Isn’t attack
Don’t bite

Feature 1 = w
Feature 2 = y
Feature 3 = nz

are features 
that may not 
be visible on 
data at first 
glance but are 
property of 
attack models
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Conclusion

Getting good features is very important to detection !

Graph community metrics seems relevant to the 
detection of cyber attacks

Dynamic graph community metrics have shown to be 
highly important features to detection

In particular some metrics have shown to be relevant 
for different datasets and type of attacks

An approach which fulfill the constraint of scalability 
has been set up



Thank you !
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