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Context

BIG DATA:

How to manage an ever increasing
amount of data ?

A >4 A.I. CHALLENGES :
= QO l‘ e Scalability
-

e Explainability

e Time robustness




Context
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Network are changing environment
Attacks are very diverse evolving
targets



State of the art

RELATED WORKS FOR ANOMALY DETECTION SURVEY COMPARISON

Year — | Before 2020 2020 - 2021 From 2022
E —_— —
— : . S
= - o 9 = - - 2 g o )
= = = — > - =i = = c =
Papers o ] < = 5 2 = = = B =5

Category = § = e = :g ot - ) 3 53
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Attack detection v X X X v X v v X v X
Graph based v v v v X v v X v X v
Scalability X X v X X v X X X X X
Dynamicity v v v v X v v X X X v
Time constraint X: X X ¥ X X X X X X X
Time Robustness X X: X X X X X X v v X
Community v v e v X v v X X X v
e Community based approach don’t consider metrics except modularity used for community detection
e Most of the works don’t consider scalability
e None considerer constraints of time such as the one in data stream analysis
e More recent works considered concept drift but have no substantial answer




State of the art : GNN

[15] H. Kim, B. S. Lee, W.-Y. Shin, and S. Lim, “Graph anomaly detection

with graph neural networks: Current status and challenges,” IEEE
Access, 2022.

e Very popular
e Work with graph structure

e Can construct a graph structure from euclidean
data -> Embedded prediction to a vector.

Node Classification Link Prediction Graph Classification




Problems

e How to keep a scalable approach ?
e How to be robust to evolution of attacker model ?
e Can explainability be retained ?

e How could poisoning be avoided ?

e Concept drift robustness ?




Datasets : UGR16

e Background data gathered from march to august 2016
e Simulated attacks from the last week of july and august in the

background data ( DoS and Port Scan)
e Re-inserted some attacks detected using anomaly detection (Spam and Botnet)
e Some unnoticed attacks may still be labelled as background

Date time Duration Source IP  Destination IP Son;r:ret Destina;igrr: Protocol Flag Fomi;gizg ToS Packets Bytes Label
e 2l 00 143728137 42.219.158.161 53 43192 UDP A.. 0 0 1 214 background
R 00 42219154119  14372.8.137 60185 53  UDP A.. 0 0 1 72 background
o2l 00 42219154107  143.72.8.137 48598 53  UDP A.. 0 0 1 77 background
Gt 00 4221915498  143.72.8137 51465 53  UDP A.. 0 0 1 63 background
2010 92t 0.0 43.164.49.177 42.219.155.26 80 37934 TCP A.F 0o 0 1 52 background




Datasets : UGR16
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Datasets : Kitsune

D
Att.ack Attack Name Tool Description: The attacker ... Violation | Vector | # Packets Tu'ne
Type [min.]
0OS Scan Norien ...scans the network for ho.?rs, and their ?szrating systems, to C 1 1.697.851 | 522
i , reveal po_s..sznble _vul}nerabzlme"s.
Fariing SFuzz ...searches for .\-ulnerabzlmes in the camera s ue_b servers by C 3 2244139 | 855
sending random commands to their cgis.
Video Injection | Video Jack ...injects a recorded video clip into a live video stream. C I 1 2472401 | 334
Man in the ' i e h T, ol ! iy ,
Viiddle ARP MitM Ettercap ...intercepts all LAN traffic via an ARP poisoning attack. C 1 2,504,267 | 28.2
: 2 Raspberry | ...intercepts all LAN traffic via active wiretap (network bridge) s
3 1T 2 2
AAriive Wicetap PI 3B covertly installed on an exposed cable. = = g
SSDP Flood D ...overloads the DI.fR b\ causing cameras to spam the server X 1 4077266 | 408
with UPnP advertisements.
Dema'l of SYN DoS Fipiig3 ...disables a camera’s video stream A 1 2771276 | 528
Service by overloading its web server.
SSI: . THC ...disables a camera’s video stream by sending many SSL & 1 6.084492 | 656
Renegotiation renegotiation packets to the camera.
Botnet PR _..infects IoT with the Mirai malware by exploiting default
Malware Mirai Telnet credentials, and then scans for new vulnerable victims network. Gl X 764137 | 1189

Formatted for ML
Lot of “efficient” features but ....

Y. Mirsky, T. Doitshman, Y. Elovici, and A. Shabtai, “Kitsune: An ensemble of autoencoders for online network intrusion detection,” in The Network and Distributed System Security Symposium (NDSS) 2018




Datasets : Kitsune
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Graph community

Groups of nodes more
connected to each others
than to the other nodes of
the graph.

In general a graph partition
‘ is obtained by maximizing
the modularity.

Size; Number of nodes in community 2
Vau @ The number of nodes in the graph
Mall ¢, 2
i Z r“m Stze 5
= Mod — Cov e
Min : The number of edge with both vertex in same com- e
munity
*‘ ,all : |hC l‘lUl‘l]bCl' of Cdgt‘ in the gmph [9] H. S. Pattanayak, H. K. Verma, and A. L. Sangal, “Community detection metrics and algorithms in social networks,” in 2018 First
Cov = A Ii" International Conference on Secure Cyber Computing and Communication (ICSCCC) 2018, pp. 483—489.
My
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Why Graph community ?

Intense number of
communications from the
attacker to the target,

like port scanning 1to1

or DoS by flooding.

13



Why Graph community ?

Intense number of
communications from the
attacker to the target,

like port scanning 1to1

or DoS by flooding.
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Why Graph community ?

Typically similar to the
behavior of a Man in
the Middle type of
attack

15



Why Graph community ?

Typically similar to the
behavior of a Man in the
‘ Middle type of attack
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Why Graph community metrics ?

A simple
clustering
on UGR16
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Why Graph community metrics ?

A simpl
cI:Is::al:i::g OOOOQ
on UGR16 e®

Most of the attacks
are in there 1!

- 18



?

ty metrics

Why Graph commun

Modularity based
community detection



Why Graph community metrics ?

Attacks are a majority in
specific communities ®

@

20



Why Graph community metrics ?

Feature
selection,Correlation
elemination,
importance of

Concepts
Importance
Range

Categorial/Numerical

temporality, spatiality
%

decision Global, local,

Significative
numerical
difference

between
individual _

~

Ordinality 1
To process the
Complexit ——»  feature
= ~—____~ /0:base feature
Level — »| 1: simple derivate
T e feature
Discrimination distance
\ between

\
\_ negativesand /
~._positives _

Features are an important aspect if not
the most important in anomalies
detection.

You need to keep only relevant features
They need to discriminate positive and
negative

They need to be computable in your study

case




Why dynamic community metrics ?

Example :

e Few nodes
or .
e Few edges
can have high impact on
community values 3

We define Stability as a value of 5 B
distance between 2 state of the $1/2
same community.




Results : XGBoost F1-score comparison
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Results: Importance gain
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Results : Scalability
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Results : Scalability - UGR16

Training and prediction time by Classifier

Time
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esults : Scalability - Kitsune
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Results : Performance comparison

.

Precision Recall Balance Accurracy F1-Score Boniaaling
Datasets Attacks Baseline DGC Baseline DGC Baseline DGC Baseline DGC
Nerisbotnet 0,6875 0,8457 0,6409 0,5381 0,6442 0,6919 0,6634 0,6577
Scanll 0,8133 0,9988 0,7426 0,9905 0,7779 0,9947 0,7763 0,9947
UGR16 ([Scan44 0,9239 0,9992 0,9332 0,9956 0,9286 0,9974 0,9286 0,9974| Bagging
Spam 0,9608 0,9814 0,927 0,8924 0,9439 0,9369 0,9436 0,9348
DoS 0,9359 0,9998 0,9943 1 0,9651 0,9999 0,9642 0,9999
DoS 0,9882 0,7849 0,9995 0,587 0,9943 0,6859 0,9943 0,6716| Xgboost
SSL_Renegotiation 0,3571 0,6984 0,3694 0,8371 0,3632 0,7678 0,3631 0,7615|CART
Mirai_botnet 0,9994 0,9973 0,9986 0,9765 0,999 0,9869 0,999 0,9868|Bagging
Active_Wiretap 0,7286 0,9435 0,6178 0,8971 0,6732 0,9203 0,6686 0,9197
Kitsune Video_injection 0,946 0 0,999 0 0,9725 0 0,9718 0
ARP_MiTM 0,9516 0,9167 0,9982 0,9758 0,9748 0,9463 0,9743 0,9454
SSDP_Flood 0,7554 0,8064 0,6261 1 0,6907 0,9031 0,6847 0,8928| Xgboost
Os_Scan 0,4964 1 0,4931 0,0026 0,4948 0,0052 0,4948 0,5013| CART
Fuzzing 0,9085 0,6037 0,9004 0,9095 0,9045 0,7566 0,9045 0,7257| Xgbhoost
e For UGR16, DGC use both base features and dgc features

For Kitsune, DGC use only graph features

Grinsztajn, Léo, Edouard Oyallon, and Gaél Varoquaux. "Why do tree-based models still outperform deep learning on typical
tabular data?." Advances in neural information processing systems 35 (2022): 507-520.
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Results : Optimisation ?

Performance evolution depending on the model used

variable

— TNR

= TPR

= Precision

=~ Recall

~— F1_score

—— Accuracy

~— Balanced_accuracy
MCC

0.29

0.995

value

0.985

output_no_select output_lasso

Model

e Simple lasso for features selection

output_randomGsearch

e RandomSearch for hyperparameter tuning




Graph Processing for Machine Learning

Algorithm 1 Community propagation algorithm

Require: (71,2 {Two graphs}
Require: ¢y, Cgn {List of centers in G1 and G2}
Require: Indexy € Gl = Indexy € G2
1: Center_W here < || {Void list for center position }
2 Not_in + |Cen
i: for 1 € Oy do

i i1 e (7] then

5 Center_Where Ui.community € G
6 else

7 Center_Where ) Not_in

8 Not_in «+ Nol_in + |

. end if

1 end for

11: for N € G2 do

122 N.old_community < N.community

13:  N.community + N.community € Center_W here
14: end for

Ensure: (2 {G2 is updated with propagated communitics}

https://github.com/Ire-security-systems-team/gpml

Better accessibility for
graph data for about any
dataset

Dynamic community
specific algorithm

General tool for
visualisation of network
data for machine learning


https://github.com/lre-security-systems-team/gpml

Next steps

Concept drift :

The characteristics of the target you are trying to

detect are changing with passing time and this

target is itself in an environment that is evolving
with passing time

a @ I
Feature 1 = x
Feature 2 =y
Feature 3 =2z 5 attapk
Can bite
N /

Feature 1 =w
Feature 2 =y ,
Feature 3=nz | 'S"! att_ack
Don't bite
\_ J




Next steps

We can decide to make rules :

f @
Feature 1 = x
Feature 2 =y
|s attack
Feat 3=
eatre z Can bite

\_

~

)

:|> Feature 3 = z then is attack




Next steps

The problem is that at any point in time :

~

a @
Feature 1 = x
Feature 2 =y
Feature 3=z Is attapk
Can bite
\_
a @
Feature 1 =w
Feature 2 =y ,
Feature 3 = nz Isn't attgck
Don’t bite

-

)
~

—

)

—

Feature 3 =2 is attack

a @ I
Feature 1 = x
Feature 2 =y
Feature 3 = nz Is atta_ck
Can bite
\_ J
a @ I
Feature 1 =w
Feature 2 =y ,
Feature 3 =2z St attgck
Don’t bite
\_ J




Next steps

Then what we are looking for :

4 @ I
Feature 1 = x
Feature 2 =y
Feature 3=z 5 attapk
Can bite
\_ /
4 @ I
Feature 1 =w
Feature 2 =y ,
Feature 3=nz | 'S"! attgck/
Don’t bite
N /

are features
that may not
be visible on
data at first
glance but are
property of
attack models




Conclusion

Getting good features is very important to detection !

Graph community metrics seems relevant to the
detection of cyber attacks

Dynamic graph community metrics have shown to be
highly important features to detection

In particular some metrics have shown to be relevant
for different datasets and type of attacks

An approach which fulfill the constraint of scalability
has been set up
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