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▪ Future works
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Cybersecurity against attacks



Graph represents a networks
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Identify patterns

Decompose different patterns

Understand the network



State-of-the-Art

- Noble, J., Adams, N.: Real-time dynamic network anomaly detection. IEEE Intelligent Systems 33(2), 5–18 (2018)

- Hariharan, A., Gupta, A., Pal, T.: Camlpad: Cybersecurity autonomous machine

learning platform for anomaly detection. In: Future of Information and Communication Conference. pp. 705–720. Springer (2020)

- Bowman, B., Huang, H.H.: Towards next-generation cybersecurity with graph ai.

ACM SIGOPS Operating Systems Review 55(1), 61–67 (2021)

- Weifeng Liu, Sichao Fu, Yicong Zhou, Zheng-Jun Zha, and Liqiang Nie. Human activity

recognition by manifold regularization based dynamic graph convolutional networks.

Neurocomputing, 444:217–225, 2021.
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Statistical Approaches ML Approaches GCN Approaches

A real-time

network anomaly-detector 

(ReTiNA)

Traditional systems use 

elementary statistics

techniques and are often 

inaccurate

CAMLPAD model

anomalies are assigned an outlier 

score

ML-based techniques are supervised

algorithms

In network security, there are not 

much labeled data to train efficient 

classifiers

One of the best choice for graph data 

learning tasks

The Dynamic Graph

Neural Networks (DGNNs) are known 

to be an interesting tool to detect

anomalies in complex dynamic 

graphs



Why Spectral graph analysis?
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Spectral graph analysis
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Mathematical 

techniques 

Analyze graph properties

Studying the spectrum of 

the Laplacian Matrix

Feature extraction

λ0 λ1 λ𝑛
…



What type of matrix used?
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The most commonly used matrix in spectral graph analysis is 

the Laplacian matrix.

Laplacian 
Matrix

Why Laplacian rather than other 

matrixes?

❖ Better spectral properties

❖ More robust to changes in the graph structure. 

❖ The spectrum of the Laplacian matrix are used in 

various applications of spectral graph analysis, 

such as clustering, community detection, and 

graph partitioning.

Laplacian Matrix

𝐿 = 𝐷 − 𝐴

𝐿 = − =

𝐴𝑖,𝑗 ≔ ቊ
1 𝑖𝑓 𝑖 ≠ 𝑗  and 𝑣𝑖  ~ 𝑣𝑗

0 otherwise



What is a spectrum?

Chung, F. R. (1997). Spectral graph theory (Vol. 92). American Mathematical Soc. 10

the spectrum refers to the set of eigenvalues of the 

Laplacian matrix.

Spectrum

Eigenvalues

λ0 λ1 λ𝑛
…



Spectrum Interesting eigenvalues

- De Abreu, N. M. M. (2007). Old and new results on algebraic connectivity of graphs. Linear algebra and its 

applications, 423(1), 53-73.

- Bauer, F., Jost, J.: Bipartite and neighborhood graphs and the spectrum of the

normalized graph laplacian. arXiv preprint arXiv:0910.3118 (2009) 11

Zero eigenvalues
Algebraic 

connectivity

Largest 

eigenvalues



Spectrum Interesting EV - Example
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Research Question

How can we benefit from 

spectral graph analysis to 

identify and detect 

cyberattacks over the 

network? Spectral

Graph

Analysis



Methodology
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…

N-star graphs

Evolution 1

…

Evolution 2

… …

Evolution n

…

𝐿𝑔 𝐿𝑔 𝐿𝑔

𝛬𝐿 𝛬𝐿 𝛬𝐿

µ1 , µ2 , µ3, µ4 µ1 , µ2 , µ3, µ4 µ1 , µ2 , µ3, µ4

Weighted edge

Where w~10 normal

W>10 suspicious



Dynamic Metrics
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Connectedness Metric 1

• Increases when interconnections occur in the network.

FloodingMetric 2

• This metric is influenced by the occurrence of connections as well as the weight of 
those connections.

WiringnessMetric 3

• It always increases when connections occur and its slope across time depends on 
the packets sizes.

AsymmetryMetric 4

• It corresponds to the number of variations of Λ(t) and the symmetry of the graph



Metric 1 - Connectedness

20/06/2024 Chung, F. R. (1997). Spectral graph theory (Vol. 92). American Mathematical Soc. 16

number of zeros in the spectrum.

lim
Ζ(𝑡)→∞

𝜇1 = 𝑒−1

lim
Ζ(𝑡)→1

𝜇1 = 1



Metric 2 - Flooding

De Abreu, N. M. M. (2007). Old and new results on algebraic connectivity of graphs. Linear algebra and its applications, 423(1), 53-73. 17

𝒩 is the number of servers/hubs
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Metric 3 - Wiringness

20/06/2024 Bauer, F., Jost, J.: Bipartite and neighborhood graphs and the spectrum of the normalized graph laplacian. arXiv preprint arXiv:0910.3118 (2009) 18
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Metric 4 - Asymmetry

20/06/2024 Towards attack detection in traffic data based on spectral graph analysis 19

with ε = 10-12

Identical patterns/symmetry

Metric 4

Results in
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Implementation and datasets

[Boo+21] Tim M Booij et al. “ToN_IoT: The role of heterogeneity and the need for standardization of features and attack types in IoT network intrusion data sets”. In: IEEE 

Internet of Things Journal 9.1 (2021), pp. 485–496.

[Kor+19] Nickolaos Koroniotis et al. “Towards the development of realistic botnet dataset in the internet of things for network forensic analytics: Bot-iot dataset”. In: 

Future Generation Computer Systems 100 (2019), pp. 779–796.

[hussain2021iot] Hussain, F., Abbas, S. G., Shah, G. A., Pires, I. M., Fayyaz, U. U., Shahzad, F., ... & Zdravevski, E. (2021). IoT Healthcare Security Dataset. IEEE Dataport. 20

Ton IoT Healthcare IoT Botnet IoT



Attack analysis
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Botnet IoT dataset Ton IoT dataset IoT Healthcare 

Security 

Dataset



Network patterns – Star graphs
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Star

Star

Star



Experiments – Scenario 1 – Attack behavior

20/06/2024 Towards attack detection in traffic data based on spectral graph analysis 23
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Experiments – Scenario 2 – Normal behavior
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1 3
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Experiments Evaluation
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Metrics over real dataset

Dataset

Apply metrics on dataset

𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑𝑛𝑒𝑠𝑠
𝐹𝑙𝑜𝑜𝑑𝑖𝑛𝑔
𝑊𝑖𝑟𝑒𝑛𝑒𝑠𝑠

𝐴𝑠𝑠𝑦𝑚𝑒𝑡𝑟𝑦

Detect attacks
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Challenges over real datasets

Evolution 1

Evolution 2

…

Evolution n

Evolutions

stime                saddr                  daddr            pkts    label

576923  1526344032   192.168.100.46    192.168.100.5     59452 0

576917  1526344032   192.168.100.46    192.168.100.5     30157 1

576916  1526344032   192.168.100.46    192.168.100.5     29726 0 

576921  1526344032   192.168.100.3      13.55.154.73        3018 0

576884  1526344121   192.168.100.1      192.168.100.3      4 0
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From dataset to timeseries

Sergio Iglesias Pérez, Santiago Moral-Rubio, and Regino Criado. 2021. A new approach to combine multiplex networks and time series attributes: Building intrusion detection systems (IDS) in cybersecurity. 
Chaos, Solitons & Fractals 150 (2021), 111143.
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1𝑚𝑖𝑛𝒕𝟎

𝒕𝟏 1𝑚𝑖𝑛

𝒕𝟐 1𝑚𝑖𝑛

𝑡𝑖 > 9

Time-windowing over time-series

𝐴𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒(pkts/bytes/rates related features)

𝐴𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒(pkts/bytes/rates related features)

𝐴𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒(pkts/bytes/rates related features)

Andrew Tomlinson, Jeremy Bryans, Siraj Ahmed Shaikh, and Harsha Kumara
Kalutarage. 2018. Detection of automotive CAN cyber-attacks by identifying
packet timing anomalies in time windows. In 2018 48th Annual IEEE/IFIP international
conference on dependable systems and networks workshops (DSN-W). IEEE,
231–238.

Gianmarco Baldini. 2022. Detection of cybersecurity spoofing attacks in vehicular
networks with recurrence quantification analysis. Computer Communications
191 (2022), 486–499.
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Time-windowing with spectral metrics
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Time-windowing with spectral metrics
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Phases

Classification 
over original 

data 

Classification 
over time-series

Classification 
over time-
windowing

Classification 
over time-

windowing with 
spectral metrics

COD CTS CTW SpectraTW

XGBoost is used for classification over different approaches 
Tianqi Chen and Carlos Guestrin. 2016. Xgboost: A scalable tree boosting system. In Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and 
data mining. 785–794.



Results
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Feature Importance
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Botnet dataset

TonIoT dataset



Spectral Metrics Behavior
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Spectral metrics behavior before and after

the attack in Botnet IoT dataset



Notebooks
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Coming work

• Find new datasets to verify the performance of our introduced spectral metrics.

• Explain why spectral metrics works for different attacks, and different graph patterns.

• Integrate spectral metrics within the Graph processing for Machine Learning (GPML) library.



Thank you
Majed Jaber majed.jaber@epita.fr

Nicolas Boutry nicolas.Boutry@epita.fr

Pierre Parrend pierre.parrend@epita.fr



Any Questions
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