Abstract
We present an original method to segment color images using a classification in the 3-D color space. In the case of ordinary images, clusters that appear in 3-D histograms usually do not fit a well-known statistical model. For that reason, we propose a classifier that relies on mathematical morphology, and more precisely on the watershed algorithm. We show on various images that the expected color clusters are correctly identified by our method. Last, to segment color images into coherent regions, we perform a Markovian labeling that takes advantage of the morphological classification results.