Abstract
In this paper, we propose a fast automatic method that seg- ments glioma without any manual assistance, using a fully convolutional network (FCN) and transfer learning. From this segmentation, we predict the patient overall survival using only the results of the segmentation and a home made atlas. The FCN is the base network of VGG-16, pretrained on ImageNet for natural image classification, and fine tuned with the training dataset of the MICCAI 2018 BraTS Challenge. It relies on the “pseudo-3D” method published at ICIP 2017, which allows for segmenting objects from 2D color images which contain 3D information of MRI volumes. For each n th slice of the volume to segment, we consider three images, corresponding to the (n-1)th, nth, and (n-1)th slices of the original volume. These three gray-level 2D images are assembled to form a 2D RGB color image (one image per channel). This image is the input of the FCN to obtain a 2D segmentation of the n th slice. We process all slices, then stack the results to form the 3D output segmentation. With such a technique, the segmentation of a 3D volume takes only a few seconds. The prediction is based on Random Forests, and has the advantage of not being dependant of the acquisition modality, making it robust to inter-base data.