Élodie Puybareau

Morphological analysis of brownian motion for physical measurements

By Élodie Puybareau, Hugues Talbot, Noha Gaber, Tarik Bourouina

2017-02-23

In Mathematical morphology and its application to signal and image processing – proceedings of the 13th international symposium on mathematical morphology (ISMM)

Abstract

Brownian motion is a well-known, apparently chaotic mo- tion affecting microscopic objects in fluid media. The mathematical and physical basis of Brownian motion have been well studied but not often exploited. In this article we propose a particle tracking methodology based on mathematical morphology, suitable for Brownian motion analysis, which can provide difficult physical measurements such as the local temperature and viscosity. We illustrate our methodology on simulation and real data, showing that interesting phenomena and good precision can be achieved.

Continue reading

Periodic area-of-motion characterization for bio-medical applications

By Élodie Puybareau, Hugues Talbot, Laurent Najman

2017-02-20

In Proceedings of the IEEE international symposium on bio-medical imaging (ISBI)

Abstract

Many bio-medical applications involve the analysis of sequences for motion characterization. In this article, we consider 2D+t sequences where a particular motion (e.g. a blood flow) is associated with a specific area of the 2D image (e.g. an artery) but multiple motions may exist simultaneously in the same sequences (e.g. there may be several blood vessels present, each with their specific flow). The characterization of this type of motion typically involves first finding the areas where motion is present, followed by an analysis of these motions: speed, regularity, frequency, etc. In this article, we propose a methodology called “area-of-motion characterization” suitable for simultaneously detecting and characterizing areas where motion is present in a sequence. We can then classify this motion into consistent areas using unsupervised learning and produce directly usable metrics for various ap- plications. We illustrate this methodology for the analysis of cilia motion on ex-vivo human samples, and we apply and validate the same methodology for blood flow analysis in fish embryo.

Continue reading