Abstract
La notion de bien-composé a été introduite par Latecki en 1995 pour les ensembles et les images 2D et pour les ensembles 3D en 1997. Les images binaires bien-composées disposent d’importantes propriétés topologiques. De plus, de nombreux algorithmes peuvent tirer avantage de ces propriétés topologiques. Jusqu’à maintenant, la notion de bien-composé n’a pas été étudiée en dimension $n$, avec $n > 3$. Dans le travail présenté ici, nous démontrons le théorème fondamental de l’équivalence des connexités pour un ensemble bien-composé, puis nous généralisons la caractérisation des ensembles et des images bien-composés à la dimension $n$.