Thierry Géraud

Weakly supervised training for hologram verification in identity documents

By Glen Pouliquen, Guillaume Chiron, Joseph Chazalon, Thierry Géraud, Ahmad Montaser Awal

2024-04-25

In The 18th international conference on document analysis and recognition (ICDAR 2024)

Abstract

We propose a method to remotely verify the authenticity of Optically Variable Devices (OVDs), often referred to as “holograms”, in identity documents. Our method processes video clips captured with smartphones under common lighting conditions, and is evaluated on two public datasets: MIDV-HOLO and MIDV-2020. Thanks to a weakly-supervised training, we optimize a feature extraction and decision pipeline which achieves a new leading performance on MIDV-HOLO, while maintaining a high recall on documents from MIDV-2020 used as attack samples. It is also the first method, to date, to effectively address the photo replacement attack task, and can be trained on either genuine samples, attack samples, or both for increased performance. By enabling to verify OVD shapes and dynamics with very little supervision, this work opens the way towards the use of massive amounts of unlabeled data to build robust remote identity document verification systems on commodity smartphones. Code is available at https://github.com/EPITAResearchLab/pouliquen.24.icdar.

Continue reading

The Dahu graph-cut for interactive segmentation on 2D/3D images

Abstract

Interactive image segmentation is an important application in computer vision for selecting objects of interest in images. Several interactive segmentation methods are based on distance transform algorithms. However, the most known distance transform, geodesic distance, is sensitive to noise in the image and to seed placement. Recently, the Dahu pseudo-distance, a continuous version of the minimum barrier distance (MBD), is proved to be more powerful than the geodesic distance in noisy and blurred images. This paper presents a method for combining the Dahu pseudo-distance with edge information in a graph-cut optimization framework and leveraging each’s complementary strengths. Our method works efficiently on both 2D/3D images and videos. Results show that our method achieves better performance than other distance-based and graph-cut methods, thereby reducing the user’s efforts.

Continue reading

A modern C++ point of <i>view</i> of programming in image processing

By Michaël Roynard, Edwin Carlinet, Thierry Géraud

2022-10-10

In Proceedings of the 21st international conference on generative programming: Concepts & experiences (GPCE 2022)

Abstract

C++ is a multi-paradigm language that enables the programmer to set up efficient image processing algorithms easily. This language strength comes from many aspects. C++ is high-level, so this enables developing powerful abstractions and mixing different programming styles to ease the development. At the same time, C++ is low-level and can fully take advantage of the hardware to deliver the best performance. It is also very portable and highly compatible which allows algorithms to be called from high-level, fast-prototyping languages such as Python or Matlab. One fundamental aspects where C++ shines is generic programming. Generic programming makes it possible to develop and reuse bricks of software on objects (images) of different natures (types) without performance loss. Nevertheless, conciliating genericity, efficiency, and simplicity at the same time is not trivial. Modern C++ (post-2011) has brought new features that made it simpler and more powerful. In this paper, we focus on some C++20 aspects of generic programming: ranges, views, and concepts, and see how they extend to images to ease the development of generic image algorithms while lowering the computation time.

Continue reading

Some equivalence relation between persistent homology and morphological dynamics

By Nicolas Boutry, Laurent Najman, Thierry Géraud

2022-05-17

In Journal of Mathematical Imaging and Vision

Abstract

In Mathematical Morphology (MM), connected filters based on dynamics are used to filter the extrema of an image. Similarly, persistence is a concept coming from Persistent Homology (PH) and Morse Theory (MT) that represents the stability of the extrema of a Morse function. Since these two concepts seem to be closely related, in this paper we examine their relationship, and we prove that they are equal on $n$-D Morse functions, $n\geq 1$. More exactly, pairing a minimum with a $1$-saddle by dynamics or pairing the same $1$-saddle with a minimum by persistence leads exactly to the same pairing, assuming that the critical values of the studied Morse function are unique. This result is a step further to show how much topological data analysis and mathematical morphology are related, paving the way for a more in-depth study of the relations between these two research fields.

Continue reading

Local intensity order transformation for robust curvilinear object segmentation

By Tianyi Shi, Nicolas Boutry, Yongchao Xu, Thierry Géraud

2022-03-22

In IEEE Transactions on Image Processing

Abstract

Segmentation of curvilinear structures is important in many applications, such as retinal blood vessel segmentation for early detection of vessel diseases and pavement crack segmentation for road condition evaluation and maintenance. Currently, deep learning-based methods have achieved impressive performance on these tasks. Yet, most of them mainly focus on finding powerful deep architectures but ignore capturing the inherent curvilinear structure feature (e.g., the curvilinear structure is darker than the context) for a more robust representation. In consequence, the performance usually drops a lot on cross-datasets, which poses great challenges in practice. In this paper, we aim to improve the generalizability by introducing a novel local intensity order transformation (LIOT). Specifically, we transfer a gray-scale image into a contrast- invariant four-channel image based on the intensity order between each pixel and its nearby pixels along with the four (horizontal and vertical) directions. This results in a representation that preserves the inherent characteristic of the curvilinear structure while being robust to contrast changes. Cross-dataset evaluation on three retinal blood vessel segmentation datasets demonstrates that LIOT improves the generalizability of some state-of-the-art methods. Additionally, the cross-dataset evaluation between retinal blood vessel segmentation and pavement crack segmentation shows that LIOT is able to preserve the inherent characteristic of curvilinear structure with large appearance gaps. An implementation of the proposed method is available at https://github.com/TY-Shi/LIOT.

Continue reading

Max-tree computation on GPUs

By Nicolas Blin, Edwin Carlinet, Florian Lemaitre, Lionel Lacassagne, Thierry Géraud

2022-03-09

In IEEE Transactions on Parallel and Distributed Systems

Abstract

In Mathematical Morphology, the max-tree is a region-based representation that encodes the inclusion relationship of the threshold sets of an image. This tree has been proven useful in numerous image processing applications. For the last decade, works have been led to improve the building time of this structure; mixing algorithmic optimizations, parallel and distributed computing. Nevertheless, there is still no algorithm that takes benefit from the computing power of the massively parallel architectures. In this work, we propose the first GPU algorithm to compute the max-tree. The proposed approach leads to significant speed-ups, and is up to one order of magnitude faster than the current State-of-the-Art parallel CPU algorithms. This work paves the way for a max-tree integration in image processing GPU pipelines and real-time image processing based on Mathematical Morphology. It is also a foundation for porting other image representations from Mathematical Morphology on GPUs.

Continue reading

Introducing the boundary-aware loss for deep image segmentation

By Minh Ôn Vũ Ngọc, Yizi Chen, Nicolas Boutry, Joseph Chazalon, Edwin Carlinet, Jonathan Fabrizio, Clément Mallet, Thierry Géraud

2021-11-28

In Proceedings of the 32nd british machine vision conference (BMVC)

Abstract

Most contemporary supervised image segmentation methods do not preserve the initial topology of the given input (like the closeness of the contours). One can generally remark that edge points have been inserted or removed when the binary prediction and the ground truth are compared. This can be critical when accurate localization of multiple interconnected objects is required. In this paper, we present a new loss function, called, Boundary-Aware loss (BALoss), based on the Minimum Barrier Distance (MBD) cut algorithm. It is able to locate what we call the leakage pixels and to encode the boundary information coming from the given ground truth. Thanks to this adapted loss, we are able to significantly refine the quality of the predicted boundaries during the learning procedure. Furthermore, our loss function is differentiable and can be applied to any kind of neural network used in image processing. We apply this loss function on the standard U-Net and DC U-Net on Electron Microscopy datasets. They are well-known to be challenging due to their high noise level and to the close or even connected objects covering the image space. Our segmentation performance, in terms of Variation of Information (VOI) and Adapted Rank Index (ARI), are very promising and lead to $\approx{}15%$ better scores of VOI and $\approx{}5%$ better scores of ARI than the state-of-the-art. The code of boundary-awareness loss is freely available at https://github.com/onvungocminh/MBD_BAL

Continue reading

Continuous well-composedness implies digital well-composedness in $n$-D

By Nicolas Boutry, Rocio Gonzalez-Diaz, Laurent Najman, Thierry Géraud

2021-11-09

In Journal of Mathematical Imaging and Vision

Abstract

In this paper, we prove that when a $n$-D cubical set is continuously well-composed (CWC), that is, when the boundary of its continuous analog is a topological $(n-1)$-manifold, then it is digitally well-composed (DWC), which means that it does not contain any critical configuration. We prove this result thanks to local homology. This paper is the sequel of a previous paper where we proved that DWCness does not imply CWCness in 4D.

Continue reading

ICDAR 2021 competition on historical map segmentation

By Joseph Chazalon, Edwin Carlinet, Yizi Chen, Julien Perret, Bertrand Duménieu, Clément Mallet, Thierry Géraud, Vincent Nguyen, Nam Nguyen, Josef Baloun, Ladislav Lenc, Pavel Král

2021-05-17

In Proceedings of the 16th international conference on document analysis and recognition (ICDAR’21)

Abstract

This paper presents the final results of the ICDAR 2021 Competition on Historical Map Segmentation (MapSeg), encouraging research on a series of historical atlases of Paris, France, drawn at 1/5000 scale between 1894 and 1937. The competition featured three tasks, awarded separately. Task 1 consists in detecting building blocks and was won by the L3IRIS team using a DenseNet-121 network trained in a weakly supervised fashion. This task is evaluated on 3 large images containing hundreds of shapes to detect. Task 2 consists in segmenting map content from the larger map sheet, and was won by the UWB team using a U-Net-like FCN combined with a binarization method to increase detection edge accuracy. Task 3 consists in locating intersection points of geo-referencing lines, and was also won by the UWB team who used a dedicated pipeline combining binarization, line detection with Hough transform, candidate filtering, and template matching for intersection refinement. Tasks 2 and 3 are evaluated on 95 map sheets with complex content. Dataset, evaluation tools and results are available under permissive licensing at https://icdar21-mapseg.github.io/.

Continue reading

A new matching algorithm between trees of shapes and its application to brain tumor segmentation

By Nicolas Boutry, Thierry Géraud

2021-03-02

In Proceedings of the IAPR international conference on discrete geometry and mathematical morphology (DGMM)

Abstract

Many approaches exist to compute the distance between two trees in pattern recognition. These trees can be structures with or without values on their nodes or edges. However, none of these distances take into account the shapes possibly associated to the nodes of the tree. For this reason, we propose in this paper a new distance between two trees of shapes based on the Hausdorff distance. This distance allows us to make inexact tree matching and to compute what we call residual trees, representing where two trees differ. We will also see that thanks to these residual trees, we can obtain good results in matter of brain tumor segmentation. This segmentation does not provide only a segmentation but also the tree of shapes corresponding to the segmentation and its depth map.

Continue reading