Antonio Casares

Practical applications of the Alternating Cycle Decomposition

By Antonio Casares, Alexandre Duret-Lutz, Klara J. Meyer, Florian Renkin, Salomon Sickert

2022-02-01

In Proceedings of the 28th international conference on tools and algorithms for the construction and analysis of systems (TACAS’22)

Abstract

In 2021, Casares, Colcombet, and Fijalkow introduced the Alternating Cycle Decomposition (ACD) to study properties and transformations of Muller automata. We present the first practical implementation of the ACD in two different tools, Owl and Spot, and adapt it to the framework of Emerson-Lei automata, i.e., $\omega$-automata whose acceptance conditions are defined by Boolean formulas. The ACD provides a transformation of Emerson-Lei automata into parity automata with strong optimality guarantees: the resulting parity automaton is minimal among those automata that can be obtained by duplication of states. Our empirical results show that this transformation is usable in practice. Further, we show how the ACD can generalize many other specialized constructions such as deciding typeness of automata and degeneralization of generalized Büchi automata, providing a framework of practical algorithms for $\omega$-automata.

Continue reading