Erwan Pierre

Forecasting electricity prices: An optimize then predict-based approach

By Léonard Tschora, Erwan Pierre, Marc Plantevit, Céline Robardet

2023-04-10

In Proceedings of the 21st international symposium on intelligent data analysis (IDA’23)

Abstract

We are interested in electricity price forecasting at the European scale. The electricity market is ruled by price regulation mechanisms that make it possible to adjust production to demand, as electricity is difficult to store. These mechanisms ensure the highest price for producers, the lowest price for consumers and a zero energy balance by setting day-ahead prices, i.e. prices for the next 24h. Most studies have focused on learning increasingly sophisticated models to predict the next day’s 24 hourly prices for a given zone. However, the zones are interdependent and this last point has hitherto been largely underestimated. In the following, we show that estimating the energy cross-border transfer by solving an optimization problem and integrating it as input of a model improves the performance of the price forecasting for several zones together.

Continue reading

Electricity price forecasting based on order books: A differentiable optimization approach

By Léonard Tschora, Tias Guns, Erwan Pierre, Marc Plantevit, Céline Robardet

2023-01-10

In Proceedings of the 10th IEEE international conference on data science and advanced analytics, (DSAA’23)

Abstract

We consider day-ahead electricity price forecasting on the European market. In this market, participants can offer electricity for sale or purchase for a specific price by submitting overnight orders. Market operators determine the market clearing price – the price at which the amount of electricity supplied equals the amount of electricity demanded – using the Euphemia balancing algorithm. euphemia is a quadratic optimization problem that maximizes the social welfare defined as the sum of the supplier surplus and consumer surplus while ensuring a null energy balance. This mechanism deeply influences the price calculation, but has so far been little considered in electricity price forecasting algorithms. Existing models are generally based on identifying relationships between exogenous characteristics (consumption and production forecasts) and the market clearing price to be predicted. A few studies have examined the euphemia mechanism during prediction, by doing costly manual transformations on order books. In this article, we overcome this limitation by considering the pricing mechanism during model training. For this, we use a predict-and-optimize strategy with differentiable optimization. We design a fully differentiable and scalable solving method for the euphemia optimization problem and apply it on real-life data from the European Power Exchange (EPEX). We design different model architectures using our differentiable solver and empirically study the impact of taking into account the optimal calculation of prices within the training of the neural network.

Continue reading

Electricity price forecasting on the day-ahead market using machine learning

Abstract

The price of electricity on the European market is very volatile. This is due both to its mode of production by different sources, each with its own constraints (volume of production, dependence on the weather, or production inertia), and by the difficulty of its storage. Being able to predict the prices of the next day is an important issue, to allow the development of intelligent uses of electricity. In this article, we investigate the capabilities of different machine learning techniques to accurately predict electricity prices. Specifically, we extend current state-of-the-art approaches by considering previously unused predictive features such as price histories of neighboring countries. We show that these features significantly improve the quality of forecasts, even in the current period when sudden changes are occurring. We also develop an analysis of the contribution of the different features in model prediction using Shap values, in order to shed light on how models make their prediction and to build user confidence in models.

Continue reading