Kais Klai

Self-loop aggregation product — a new hybrid approach to on-the-fly LTL model checking

By Alexandre Duret-Lutz, Kais Klai, Denis Poitrenaud, Yann Thierry-Mieg

2011-06-23

In Proceedings of the 9th international symposium on automated technology for verification and analysis (ATVA’11)

Abstract

We present the Self-Loop Aggregation Product (SLAP), a new hybrid technique that replaces the synchronized product used in the automata-theoretic approach for LTL model checking. The proposed product is an explicit graph of aggregates (symbolic sets of states) that can be interpreted as a Büchi automata. The criterion used by SLAP to aggregate states from the Kripke structure is based on the analysis of self-loops that occur in the Büchi automaton expressing the property to verify. Our hybrid approach allows on the one hand to use classical emptiness-check algorithms and build the graph on-the-fly, and on the other hand, to have a compact encoding of the state space thanks to the symbolic representation of the aggregates. Our experiments show that this technique often outperforms other existing (hybrid or fully symbolic) approaches.

Continue reading

Combining explicit and symbolic approaches for better on-the-fly LTL model checking

Abstract

We present two new hybrid techniques that replace the synchronized product used in the automata-theoretic approach for LTL model checking. The proposed products are explicit graphs of aggregates (symbolic sets of states) that can be interpreted as Büchi automata. These hybrid approaches allow on the one hand to use classical emptiness-check algorithms and build the graph on-the-fly, and on the other hand, to have a compact encoding of the state space thanks to the symbolic representation of the aggregates. The Symbolic Observation Product assumes a globally stuttering property (e.g., LTL-X) to aggregate states. The Self-Loop Aggregation Product does not require the property to be globally stuttering (i.e., it can tackle full LTL), but dynamically detects and exploits a form of stuttering where possible. Our experiments show that these two variants, while incomparable with each other, can outperform other existing approaches.

Continue reading