Mancas Matei

Bridging human concepts and computer vision for explainable face verification

By Miriam Doh, Caroline Mazini-Rodrigues, Nicolas Boutry, Laurent Najman, Mancas Matei, Hugues Bersini

2023-10-10

In 2nd international workshop on emerging ethical aspects of AI (BEWARE-23)

Abstract

With Artificial Intelligence (AI) influencing the decision-making process of sensitive applications such as Face Verification, it is fundamental to ensure the transparency, fairness, and accountability of decisions. Although Explainable Artificial Intelligence (XAI) techniques exist to clarify AI decisions, it is equally important to provide interpretability of these decisions to humans. In this paper, we present an approach to combine computer and human vision to increase the explanation’s interpretability of a face verification algorithm. In particular, we are inspired by the human perceptual process to understand how machines perceive face’s human-semantic areas during face comparison tasks. We use Mediapipe, which provides a segmentation technique that identifies distinct human-semantic facial regions, enabling the machine’s perception analysis. Additionally, we adapted two model-agnostic algorithms to provide human-interpretable insights into the decision-making processes.

Continue reading