Niko Brummer

Support vector machines versus fast scoring in the low-dimensional total variability space for speaker verification

Abstract

This paper presents a new speaker verification system architecture based on Joint Factor Analysis (JFA) as feature extractor. In this modeling, the JFA is used to define a new low-dimensional space named the total variability factor space, instead of both channel and speaker variability spaces for the classical JFA. The main contribution in this approach, is the use of the cosine kernel in the new total factor space to design two different systems: the first system is Support Vector Machines based, and the second one uses directly this kernel as a decision score. This last scoring method makes the process faster and less computation complex compared to others classical methods. We tested several intersession compensation methods in total factors, and we found that the combination of Linear Discriminate Analysis and Within Class Covariance Normalization achieved the best performance.

Continue reading