TextCatcher: A method to detect curved and challenging text in natural scenes
In International Journal on Document Analysis and Recognition
Abstract
In this paper, we propose a text detection algorithm which is hybrid and multi-scale. First, it relies on a connected component-based approach: After the segmentation of the image, a classification step using a new wavelet descriptor spots the letters. A new graph modeling and its traversal procedure allow to form candidate text areas. Second, a texture-based approach discards the false positives. Finally, the detected text areas are precisely cut out and a new binarization step is introduced. The main advantage of our method is that few assumptions are put forward. Thus, “challenging texts” like multi-sized, multi-colored, multi-oriented or curved text can be localized. The efficiency of TextCatcher has been validated on three different datasets: Two come from the ICDAR competition, and the third one contains photographs we have taken with various daily life texts. We present both qualitative and quantitative results.